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Abstract. In this paper we consider (probability-)measure valued processes,

which we call MVMs, which have a natural martingale structure. Following
previous work of Eldan and Cox-Källblad, these processes are known to have

a close connection to the solutions to the Skorokhod Embedding Problem. In

this paper, we consider properties of these processes, and in particular, we
are able to show that the MVMs connected to the Bass and Root embeddings

have natural measure-valued analogues which also possess natural optimality

properties. We also introduce a new MVM which is a generalisation of both
the Bass and Root MVMs.

1. Introduction

We consider here an alternative approach to the Skorokhod embedding problem
(SEP) which is based on viewing real-valued processes as measure-valued stochastic
processes. The Skorokhod Embedding Problem (SEP) is a longstanding and clas-
sical problem in probability; we refer the reader to the survey articles [23, 15], and
the recent paper [6] for a more recent approach inspired by methods from Optimal
Transport.

The observation which connects the SEP and measure-valued processes is the fol-
lowing: that, modulo technicalities, there is a one-to-one correspondence between:

• the set of (continuous, UI) martingales Mt with M0 = 0 and M∞ ∼ µ;
• the set of (continuous) measure-valued martingales (MVMs) ξt with ξ0 = µ

and ξ∞ = δy for some y ∈ Rd.
The first formulation is (up to a time change, and for 1-dimensional processes),
equivalent to the SEP, and we say that a measure-valued process ξt is a measure-
valued martingale (MVM) if, for any A ∈ B(Rd), ξt(A) is a martingale. To see
the correspondence, given Mt, we may define ξt by ξt(A) := P(M∞ ∈ A|Ft) and,
conversely, Mt :=

∫
x ξt(dx); see Section 2 for details.

While there is a one-to-one correspondence between processes and MVMs on
[0,∞), for any t < ∞, the process ξs, s ≤ t, naturally carries more information
than the corresponding process Ms, s ≤ t, since also the marginal distribution
to eventually be embedded is known. In [9], this was used to formulate optimal
embedding problems as dynamic programming problems, exploiting the fact that
the MVM approach allows one to include the terminal embedding constraint in
the current state of the controlled process; see also [4, 5, 18]. MVMs and their
connection to the SEP have also appeared in [12]. There is also a stream of literature
dating back to at least [26] who look at martingale measures, where the assumption
that the measures are probability measures is typically dropped. Subsequently, a
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substantial literature on these processes has developed, although much of it under
the assumption that the martingale measures are either orthogonal, or have nuclear
covariance, e.g. [11]. Such processes have been useful in a variety of applications;
see e.g. [17].

Here, we consider an application of the measure-valued viewpoint that truly
exploits the metric structure of the underlying space of measures. Specifically,
motivated by the theory of optimal transport, we equip the space of measures with
the 1-Wasserstein metric. The metric structure then allows for a study of functions
defined on this space. First, we study the evolution over time of the Wasserstein
distance between to measure-valued martingales: we show that for any two MVMs
ηt and ξt, the process t 7→ W(ξt, ηt) is a sub-martingale for t ≥ 0. Second, we
introduce a suitable notion of ‘speed’. That is, a means by which one can measure
how fast a measure-valued process evolves over time – while the speed of an MVM
ξt is always bounded from below by the quadratic variation of its mean process Mt,
these quantities will in general differ.

By use of these observations, we then obtain two optimality properties of the
well-known Bass [3] solution to the SEP. We show that when ηt is the MVM asso-
ciated with a Brownian motion, then the above-mentioned process measuring the
distance of ηt to ξt, is in fact a martingale – as opposed to a sub-martingale – when
evaluated for the Bass solution. On the other hand, the Bass MVM also miminises
the speed among all MVMs. We also obtain an optimality property of the Root [24]
solution. In fact, modulo a suitable scaling of space, the Bass and Root solutions
solve the same optimisation problem. We emphasise that these optimality proper-
ties genuinely exploit the properties of the embeddings viewed as measure-valued
martingales rather than stopped processes. We also discuss Markov properties of
the involved MVMs.

1.1. Notation. We recall some useful definitions and notation relating to probabil-
ity measures. Specifically, we recall that the pushforward of a probability measure
λ on X by a function f : X → Y , is the measure µ given by µ(A) = λ(f−1(A)),
and is denoted f#λ. Further, on the space of probability measures, we introduce
the functional M(µ) =

∫
xµ(dx) for the mean. For a semimartingale X, we write

〈X〉 for the quadratic variation process.

2. Basics on Measure-Valued Martingales

For any p ≥ 1, we introduce the set of p-integrable probability measures:

(2.1) Pp :=

{
µ ∈M+(Rd) : µ(Rd) = 1,

∫
|x|p µ(dx) <∞

}
,

where M+(X) is the set of non-negative measures on X; we will mostly be inter-
ested in the set P1.

We consider a fixed underlying filtered probability space, (Ω,F , (Ft),P), satis-
fying the usual conditions.

Definition 2.1. We say that an adapted process (ξt)t≥0 with ξt ∈ P1, t ≥ 0,
is a measure-valued martingale if, for any f ∈ Cb(Rd), ξ·(f) :=

∫
f(x)ξ·(dx) is a

martingale.

Note, trivially, that for f ∈ Cb(Rd), the martingale ξ·(f) is uniformly integrable
with well defined limit ξ∞(f) (in particular, ξ∞ is a measure; see [16, Proposi-
tion 2.1]). We also note that an adapted process ξ· ∈ P1 is a measure-valued
martingale, if and only if, ξ·(A) is a martingale for any A ∈ B(R), and then, in fact,
ξ·(f) is a martingale for any (non-negative) measurable function; see [9, Remark 2].

We also wish to discuss continuity of measure-valued martingales. In order to
do this, we make the following definition:
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Definition 2.2. We say that a measure-valued martingale is continuous if, for any
1-Lipschitz function f , ξ·(f) =

∫
f(x) ξ·(dx) is a continuous process.

It immediately follows that M(ξ·) is a continuous process whenever ξ· is con-
tinuous; conversely, whenever ξ· is continuous in the sense of weak convergence
of measures, and also its mean is continuous, it is continuous in the above sense.
Specifically, Definition 2.2 is equivalent to requiring continuity of t 7→ ξt in the
topology of W1, the L1 Wasserstein metric (cf. (4.2) below), by the duality of the
Wasserstein distance [1, Theorem 6.1.1].

Since our underlying probability space is assumed to satisfy the usual conditions,
of course, for every f ∈ Cb(R+), the martingale ξ·(f) has a càdlàg version. More
pertinently, according to [16, Theorem 2.5] and [9, Remark 4], we can choose a
version of any given measure-valued martingale ξ, such that ξ·(f) is càdlàg for
every 1-Lipschitz function f . In what follows, we will assume that we always take
this càdlàg (in the sense of Definition 2.2) version of ξ. Moreover, by a slight
modification of [9, Remark 4], given that ξ0 ∈ Pp, for some p ≥ 1, there exists a
version of ξ which is càdlàg with respect to continuity in the topology induced by
Wp; whenever ξ0 ∈ Pp we will assume that we take this version.

We need one further concept. Consider the set of singular measures on Rd:
Ps := {µ ∈ P1 : µ = δy, y ∈ Rd}. Motivated by the fact that the support of a
measure-valued martingale can only ever decrease – if ξt0(A) = 0, then ξt(A) = 0
for all t ≥ t0 – we define as follows:

Definition 2.3. We say that a measure-valued martingale ξ· is terminating if ξt →
ξ∞ ∈ Ps a.s. as t→∞, where the convergence is in the sense of weak convergence
of measures. It is finitely terminating if τs := inf{t ≥ 0 : ξt ∈ Ps} is finite a.s.

Lemma 2.4. Suppose ξ· is a terminating measure-valued martingale with ξ0 = µ.
Then X· := M(ξ·) is a UI martingale with X∞ ∼ µ.

Proof. First, observe that by the martingale property, for f ∈ Cb(Rd),

E [f(X∞)] = E
[∫

f(x) ξ∞(dx)

]
= E

[∫
f(x) ξ0(dx)

]
=

∫
f(x)µ(dx).

and so X∞ ∼ µ. In particular, X∞ is integrable.
Now observe that the martingale statement can be shown for each co-ordinate

individually. Write fK(x) := (x ∧K) ∨ (−K). Then ξt ∈ P1 implies that∫
fK(x) ξt(dx)→

∫
x ξt(dx) = Xt

as K → ∞. Moreover,
∫
fK(x) ξt(dx) = E [fK(X∞)|Ft] → E [X∞|Ft] by the

(conditional) Dominated Convergence Theorem. Hence Xt = E [X∞|Ft] for all
t ≥ 0, and it follows that Xt is a UI martingale. �

Corollary 2.5. If ξ· is a terminating measure-valued martingale with ξ0 = µ, then

for every 1-Lipschitz function f , Xf
· := ξ·(f) is a uniformly integrable martingale

with Xf
0 =

∫
f dµ and Xf

∞ ∼ f#µ.

3. Examples of MVMs

In this section we will introduce certain natural MVMs, which will also become
an important focus for our later optimality results. We will pay particular attention
to MVMs associated with various solutions to the Skorokhod embedding problem.
When doing so, we restrict to the case of one dimension, d = 1, and suppose that
the given probability space (Ω,F , (Ft),P) supports a Brownian motion (Bt)t≥0.

Recall that for a given centred distribution µ ∈ P1(R), a solution to the SEP is a
stopping time τ such that Bτ ∼ µ and (Bt∧τ )t≥0 is uniformly integrable. Following
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[12, 9], the SEP is equivalent to the problem of finding a terminating MVM with
ξ0 = µ and such that M(ξt) is a Brownian motion up to time τ := inf{t ≥ 0 : ξs ∈
Ps}. Specifically, if we let

(3.1) ξt(A) := P (Bτ ∈ A|Ft) , A ∈ B(R),

then the process ξt is an MVM with ξ0 = µ. Note that by definition ξ0 = µ and ξt
is terminating.

We now consider some examples (see also [12]).

• The Root MVM: Root [24] (see also [19, 25]) showed that there exists a
barrier R such that τR := inf{t ≥ 0 : (t, Bt) ∈ R} is a solution to the SEP; we
denote the associated MVM defined via (3.1) by ξR. More precisely, a barrier
is a subset of R+ × R such that (t, x) ∈ R implies (s, x) ∈ R for all s ≥ t. The
results of Root (and subsequent authors) then show that for any centred, integrable
probability measure µ, there exists a barrier R such that BτR ∼ µ, and Bt∧τR is
uniformly integrable. Moreover, by [22], such a barrier is unique. Given the barrier

R, we can further define stopping times τ t,xR := inf{s ≥ 0 : (t + s, x + Ws) ∈ R}
for some Brownian motion W , W0 = 0. Then µt,xR (A) := P(x+Wτt,xR

∈ A) defines

a class of probability measures, and we have ξRt = µt,BtR , a.s. Note that ξR is a
terminating MVM (since τR is almost surely finite) and that Bt∧τR =

∫
x ξRt (dx).

• The Bass MVM: A second natural construction of MVMs, which has a
strong ‘transport’ influence, and is closely related to the construction of a solution
to the SEP due to [3] (see also [12, 13]), is described as follows. Let (Bt)t∈[0,1]

be a Brownian motion started at 0, and observe then that ηt(A) := P(B1 ∈ A|Ft)
is an MVM given by ηt = N (Bt, 1 − t). Let µ be a given (integrable, centred)
probability measure. Write Fµ, Fηt for the c.d.f.s of µ and ηt respectively, and write
h = F−1

µ ◦ Fη0 . We will call h the scale function of the MVM. Then h(B1) ∼ µ.

Moreover, it is easily seen that the measure-valued process ξh defined by ξht := h#ηt,
or equivalently∫

f(x) ξht (dx) :=

∫
(f ◦ h)(x) ηt(dx) =

∫
f(x) (h#ηt)(dx) = E [f(h(B1))|Ft] ,

for f ∈ Cb(Rd), defines an MVM with ξh0 = µ.
Strictly speaking, to recover Bass’ solution to the SEP, one needs to show how

to convert this MVM into a stopping time for a Brownian motion. Since ξh is an
MVM, then Mh

· := M(ξh· ) is a (continuous) martingale. In particular, there exists
a time-change τt := inf{s ≥ 0 : 〈Mh〉s ≥ t} such that Mτt is a Brownian motion
(with respect to the filtration Gt := Fτt) up to the (G-)stopping time σ := τ−1

1 =
sup{s ≥ 0 : τs < 1}, and Bσ ∼ µ. Bass’ solution is then the stopping time σ (which
can also be constructed directly through stochastic calculus arguments). Of course,

the MVM ξ̃ht := ξhτt is another example of an MVM. To distinguish, we will call ξh

the canonical-time Bass embedding, and ξ̃h the natural-time Bass embedding. We
will typically be interested in the canonical-time MVM, and we will often call this
MVM simply the Bass MVM.

Note that in both cases, the ‘canonical’ choice of h = F−1
µ ◦Fη0 is not necessary

to deduce that the resulting process is an MVM. In fact, an arbitrary h such that
h#η0 = µ can be chosen to determine an MVM.

• The Azéma-Yor MVM: The Azéma-Yor solution to the SEP, [2], is given
by τAY := inf{t ≥ 0 : Bt ≤ ψ(St)}, where ψ is the inverse Barycentre function
of µ and St := sups≤tBt. To be specific, we introduce the following notation
from [10]: given a (probability) measure µ, and p ∈ [0, 1], we write µp for the
(sub-probability) measure given by µp((−∞, x]) = (µ((−∞, x]) − p)+. Then it
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is clear that p ∈ [0, 1) 7→ 1
p

∫
xµp(dx) is a continuous, increasing function, and

in fact strictly increasing as long as p ≤ µ({sup suppµ}). In particular, writing
sup suppµ = r, and inf suppµ = ` we see that for all x ∈

[∫
xµ(dx), r

)
there exists

π(x) ∈ [0, 1) such that x(1 − π(x)) =
∫
xµp(dx). The inverse barycentre function

for µ, ψ, is then given by ψ(x) = F−1
µ (π(x)) for x < r, and ψ(r) = r. Moreover,

the corresponding MVM can then be written as:

ξAYt =

{
St−Bt

St−ψ(St)
δψ(St) + Bt−ψ(St)

St−ψ(St)

µπ(St)

1−π(St),
t < τAY

δψ(SτAY ), t ≥ τAY .

• The Bass-Root MVM: The final example we give is a combination of the
Bass and Root cases. Specifically, let R be the Root barrier associated with a non-
atomic measure λ. Given a measure µ, choose the function κ = F−1

µ ◦ Fλ, and set

ξκ,R· = κ#ξ
R
· . It follows that ξκ,R0 = µ, and ξκ,R is a terminating MVM. As above,

we will call this time-scale the canonical-time Bass-Root embedding (associated
to the barrier R), and note that there is a corresponding natural-time Bass-Root
embedding. As above, we will typically work with the canonical-time Bass-Root
MVM.

Of course, both the Bass and Root MVMs are special cases of the Bass-Root
MVM (corresponding, respectively, to the cases where R = {(t, x) : t ≥ 1} and
h(x) = x, or, equivalently, λ = η0 and λ = µ).

4. MVMs in Wasserstein space and the first optimality property

We will now study the properties of MVMs in Wasserstein spaces. To this end
we define the set of transport plans from Rd to Rd which couple measures λ, µ ∈ P1:

(4.1) Π(λ, µ) :=
{
ν ∈ P(Rd × Rd) : ν(A× Rd) = λ(A), ν(Rd ×A) = µ(A)

}
.

For any p ≥ 1, the p-Wasserstein metric (see (7.1.1) in [1]) on Pp is then given by:

(4.2) Wp
p (λ, µ) := inf

{∫
|x1 − x2|p dν(x1, x2) : ν ∈ Π(λ, µ)

}
.

We note that the infimum is attained, in particular, the set Πp
o(λ, µ) of optimisers

is non-empty, closed and compact in the weak topology.
In this section we study the evolution over time of the Wasserstein distance

between two MVMs; specifically, for any two MVMs ξ, η ∈ Pp, p ≥ 1, we are
interested in the stochastic process t 7→ Wp(ξt, ηt). It is clearly adapted. Moreover,
recall from Section 2 that we may – and do – consider versions of η and ξ which
are càdlàg in the topology induced by Wp; an application of the triangle inequality
then yields that the process Wp(η·, ξ·) is right-continuous. We further adopt the
following convention: for any two random measures λ and µ on Rd, we say that a
(random) measure on Rd×Rd is a transport plan from λ to µ, and write ν ∈ Π(λ, µ),
if the assertions in (4.1) hold a.s. For any t ≥ 0, we then have

Wp
p (ξt, ηt) = ess inf

{∫
|x1 − x2|p dν(x1, x2) : ν ∈ Π(ξt, ηt)

}
a.s.(4.3)

The first result we have is the following:

Proposition 4.1. Let p ≥ 1 and let ξ1
t , ξ

2
t ∈ Pp(Rd), t ≥ 0, be two measure-valued

martingales. Then,

i) the process Wp
p (ξ1

t , ξ
2
t ), t ≥ 0, is a sub-martingale;

ii) if ξ1 and ξ2 satisfy, for some family of measures m(x, dy), x ∈ Rd,

(4.4) ξ2
t (dy) =

∫
ξ1
t (dx)m(x,dy), t ≥ 0,

then Wp
p (ξ1

t , ξ
2
t ), t ≥ 0, is a martingale;
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iii) for any MVM ξ1
t ∈ Pp(Rd), t ≥ 0, and measure µ ∈ Pp(Rd), there exists

an MVM ξ2
t ∈ Pp(Rd), t ≥ 0, of the form (4.4) with ξ2

0 = µ.

Proof. i) Let 0 < s < t and note that for any ν(dx1,dx2) ∈ Π(ξ1
t , ξ

2
t ), by use of

Fubini’s theorem, we may define an Fs-measurable random measure νs by setting
for bounded and measurable f : Rd × Rd → R

(4.5)

∫
f(x1, x2) νs(dx1,dx2) = E

[∫
f(x1, x2) ν(dx1,dx2)|Fs

]
.

Then, in particular,

νs(A× Rd) = E[ν(A× Rd)|Fs] = E[ξ1
t (A)|Fs] = ξ1

s (A), a.s., A ∈ B(Rd),

and it follows that νs is an element of Π(ξ1
s , ξ

2
s ). Next, since the set {

∫
|x1 −

x2|p dν(x1, x2) : ν ∈ Π(ξ1
t , ξ

2
t )} is directed downwards, there exists a sequence

νn ∈ Π(ξ1
t , ξ

2
t ) such that

∫
|x1 − x2|p dνn(x1, x2) ↘ Wp

p (ξ1
t , ξ

2
t ) a.s. By use of the

monotone convergence theorem, we thus obtain

E
[
Wp
p (ξ1

t , ξ
2
t )|Fs

]
= E

[
lim
n→∞

∫
|x1 − x2|p νn(dx1,dx2)|Fs

]
= lim
n→∞

∫
|x1 − x2|p νns (dx1,dx2) ≥ Wp

p (ξ1
s , ξ

2
s ),

where νns is defined via (4.5) with respect to νn.
ii) Let t > 0 and define ν(dx, dy) := ξ1

t (dx)m(x, dy); by (4.4) we have that
ν ∈ Π(ξ1

t , ξ
2
t ). By use of i) we then obtain

Wp
p

(
ξ1
0 , µ
)

=

∫
|x− y|pξ1

0(dx)m(x, dy)

= E
[∫
|x− y|pξ1

t (dx)m(x, dy)

]
= E

[
Wp
p

(
ξ1
t , ξ

2
t

)]
.

iii) Recall that the set of minimizers for (4.2) is non-empty and let ν0 ∈ Πp
o(ξ

1
0 , µ).

It follows by disintegration (see e.g. [1, Theorem 5.3.1]) that there exists a family of
measures m0(x,dy), x ∈ R, such that ν0(dx,dy) = ξ1

0(dx)m0(x, dy). Then, define

ξ2
t :=

∫
ξ1
t (dx)m0(x,dy), t ≥ 0.

Since ∫
ξ1
s (dx)m(x, dy) = E

[∫
ξ1
t (dx)m(x, dy)|Fs

]
, s ≤ t,

the thus defined process ξ2 ∈ Pp is indeed a measure-valued martingale; by defini-
tion, it satisfies (4.4) and the condition ξ2

0 = µ. �

We note that the above result does not require the measure-valued martingales
to be terminating; in particular, it holds also for ξ2

t = λ ∈ P1 constant.

4.1. The first optimisation problem: optimality of the Bass embedding.
We first recall the following notation from Section 3: Bt denotes a 1-dimensional
Brownian motion, ηt := Law(B1|Ft) and for any µ ∈ P1 and h : R → R such
that h#η0 = µ, ξht := Law(h(B1)|Ft) defines a finitely terminating measure-valued
martingale with ξh0 = µ – the canonical-time Bass MVM. In particular,

(4.6) ξht = h#ηt.

As a consequence of Proposition 4.1, we then obtain the following characterisa-
tion of the Bass embedding as the solution to a particular optimisation problem:
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Theorem 4.2. Given p ≥ 1, let µ ∈ Pp(R) be a given atomless measure. Define
h(x) := F−1

µ ◦ Fη0(x), x ∈ R, and let ξh· be the associated canonical-time Bass

MVM. Then, ξh· minimises, simultaneously for all weight-functions w : [0, 1]→ R,

(4.7) E
[∫ 1

0

w(t)Wp
p (ηt, ξt)dt

]
,

over all measure-valued martingales ξt with ξ0 = µ.

Proof. According to part ii) of Proposition 4.1, Wp
p (ηt, ξ

h
t ) is a martingale; specifi-

cally, for t ≥ 0, (Id× h)#ηt ∈ Π(ηt, ξ
h
t ) and

Wp
p (η0, µ) =

∫
|x− h(x)|pη0(dx) = E

[∫
|x− h(x)|pηt(dx)

]
= E

[
Wp
p

(
ηt, ξ

h
t

)]
.

On the other hand, according to Proposition 4.1 i),Wp
p (ηt, ξt) is a sub-martingale for

any other measure-valued martingale ξ. Hence, given that ξ0 = µ, E[Wp
p (ηt, ξt)] ≥

E[Wp
p (ηt, ξ

h
t )], for t ≥ 0. Integration with respect to w(t) and use of Fubini yields

the result. �

Remark 4.3. We note that for w(t) = δ1, the criterion in (4.7) reduces to minimis-
ing E[(B1−M(ξ1))p] over measure-valued martingales with ξ0 = µ and terminating
before t = 1. In particular, for the case p = 2, since the law of B1 and M(ξ1) are
fixed, this is equivalent to maximising E[B1M(ξ1)].

5. Markov properties of MVMs

In this section, we consider certain natural ‘Markov-like’ properties of MVMs.
Clearly, one can simply ask that the MVM is itself a Markov process, in the usual
sense. This is closely related to the definition of the Markov property due to
Eldan [12], who gave a definition of the (time-homogenous) Markov property for
the (closely related) notion of a ‘Skorokhod embedding scheme’. An example of an
embedding scheme/MVM that has this Markovianity is the Root embedding/MVM,
where the process is completely determined by the current value of the MVM,
through the corresponding Root barrier. As the MVM evolves, the barrier will
move to reflect the current measure, but will evolve consistently. Note that this
evolution can be defined from any given starting measure. (We note that [12] also
required a shift invariance, so that the evolution of the process was invariant to
constant shifts).

In fact, we will need a different form of the Markov property: specifically, we
want to be able to control the evolution of the MVM in terms of the mean of the
process, in such a way that if the mean of the process is at a given level at a given
time, then we can conclude the value of the process at that time; however we then
require a property relating the motion of the process to the motion of its mean
which will imply that the mean process is (time-inhomogeneous) Markovian. Note
that in this formulation, it will be important to have a fixed starting point for the
process.

The required property is:

Definition 5.1 (Lipschitz-Markov). We say that a MVM is Lipschitz-Markov if

(5.1) W1(ξt(ω), ξt(ω
′)) = |M(ξt(ω))−M(ξt(ω

′))|.

We note that (5.1) holds as an inequality for any MVM ξ. Indeed, it follows
from the duality of the Wasserstein distance (Theorem 6.1.1, [1]) that for any two
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measures λ, µ ∈ P1,

W1(λ, µ) = sup
f 1-Lipschitz

{∫
f(x) d(λ− µ)

}
≥ max

{∫
x d(λ− µ),

∫
(−x) d(λ− µ)

}
= |M(λ)−M(µ)|.(5.2)

The Lipschitz-Markov property has appeared in e.g. [14, 21], in the following
form: an adapted process, say M , is called Lipschitz-Markov if, for any bounded
1-Lipschitz function f : R→ R, there exists a 1-Lipschitz function g : R→ R, such
that

(5.3) g(Ms) = E[f(Mt)|Fs], s ≤ t.
In the form of Definition 5.1, the Lipschitz-Markov property first appeared in [7],
where, in particular, its relation to the Root embedding was studied. It follows from
the dual representation of the W1-distance, that a MVM ξt is Lipschitz-Markov if
and only if M(ξt) is Lipschitz-Markov in the sense of [14, 21]; see [7, Lemma 5].

In particular, every Lipschitz-Markov MVM has a Markov mean process (see
[20, Remark 1.70]). We also have the following result:

Lemma 5.2. A MVM is Lipschitz-Markov if and only if it is of the form ξt(ω) =
mt(M(ξt(ω))) for some function mt and there is an isotonic map T (i.e. x ≤ T (x)),
which may depend on t, x and y, such that mt(x) = T#mt(y) whenever x > y.

In particular, the Root, Bass and Bass-Root MVMs are Lipschitz-Markov.

Proof. To argue the sufficiency, suppose w.l.o.g. that M(ξt(ω
′)) ≥M(ξt(ω)). Then,

the existence of an isotonic map such that ξt(ω
′) = T#ξt(ω), implies that

W1(ξt(ω
′), ξt(ω)) ≤

∫
|T (x)− x|dξt(ω)

=

∫
T (x)dξt(ω)−

∫
xdξt(ω) = |M(ξt(ω

′))−M(ξt(ω))|;

equalities must thus hold throughout according to (5.2). For the necessity, we refer
to the discussion immediately preceding Lemma 4 of [7].

That the Root MVM is Lipschitz-Markov then follows as in the proof of this
same result.

To prove that the Bass MVM is Lipschitz-Markov, recall that ξht = h#ηt =
h#N (M(ηt), 1−t); if h is monotone, then so is M(ξht ) viewed as a function of M(ηt).
Therefore M(ηt), and thus also h#ηt, may be recovered from M(ξht ). Moreover,
the existence of the isotone map T , then follows from the monotonicity of this
mapping combined with the monotonicity of h itself. The Bass-Root case follows
by combining the two arguments. �

Remark 5.3. We note that we have several notions of Markovianity here. To
try and clarify the situation, we discuss this property in relation to the MVMs
introduced earlier. We consider first the Markov property of the MVM as a process
in the space of probability measures (analogous to the case considered by [12]). In
this case, it is easy to see that the Root embedding is a time-homogenous Markov
process (this is essentially shown in [12]). If we consider the Bass MVM in the
form ξht = h#ηt, where ηt = N (Bt, 1 − t), then it is easy to see that ξht is a time-
inhomogeneous Markov process. On the other hand, in the time-changed version
where ξ̃ht := ξhτt is chosen such that 〈M(ξ̃h· )〉t = t, then again, arguments of Eldan

show that ξ̃ht is a time-homogenous Markov process.
However, if we fix the starting law ξ0, and hence h, and consider just the mean

process M(ξht ), then it is possible to check that this process is a time-inhomogeneous

Markov process. On the other hand, the process M(ξ̃ht ) is not a Markov process.
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Similar arguments show that the mean process corresponding to the Bass and Bass-
Root (on the underlying Brownian time-scale) are also both time-inhomogenous
Markov processes. In the alternative Bass-Root case, where the time-scale is fixed
so that the mean is a Brownian motion up to stopping, the resulting process is not
Markov (in particular, the stopping time is not generally adapted to the filtration
of the mean process).

6. The notion of ‘Speed’ of MVMs and the second optimality
property

6.1. The speed of an MVM. A key question is how to define a suitable notion
of ‘speed’ for MVMs. That is, a means by which one can measure how fast a MVM
evolves over time. We want a notion of speed which replaces the usual notion of
quadratic variation, but which is strictly increasing whenever the MVM evolves.
As we will see below, this is not the case for the quadratic variation of the mean
process M(ξt). However, we will be able to define a notion of speed such that,
in certain circumstances, the speed of our MVMs and the quadratic variation of
the mean process coincide, while in general the speed will dominate the quadratic
variation. These features will be important for our second optimality property.

We first make some definitions relating to Lipschitz functions: we write C0,1(Rd)
for the set of Lipschitz functions f : Rd → R equipped with the norm:

||f || = sup
x∈Rd

|f(x)|+ sup
x6=y

|f(x)− f(y)|
|x− y|

.

In addition, we write Lip1 for the (closed) subset
{
f ∈ C0,1| supx 6=y

|f(x)−f(y)|
|x−y| ≤ 1

}
.

We now introduce the notion of a simple Lipschitz-valued process: we say that
the process (ft)t≥0 is in the set SL1 if

ft(x) =

∞∑
n=0

fi(x)1{t∈(τi,τi+1]}

where fi ∈ Lip1 is Fτi -measurable, and (τi)i is a sequence of increasing stopping
times such that P(limn→∞ τn =∞) = 1.

To a process (ft)t ∈ SL1 we associate a martingale (effectively, a stochastic
integral against ξt)

1 defined by:

It :=
∑
i

(∫
fi(x) ξτi+1∧t(dx)−

∫
fi(x) ξτi∧t(dx)

)
.

Since ξt ∈ P1 for each t, and fi are 1-Lipschitz, this sum is well defined and the

resulting process is a martingale. Then we can associate an increasing process Aft
to each f ∈ SL1 by defining Af to be the compensator of the supermartingale I2

t .

Definition 6.1. We define the speed of the MVM ξt to be the smallest increasing,

càdlàg, adapted process [ξ]t such that [ξ]t ≥ Aft almost surely, for every f ∈ SL1.

Note that such a process is trivially well defined by the fact that the set of in-
creasing processes is directed downwards, so if At, Ãt are both increasing candidates

for the speed, then so too is At∧Ãt. In particular, it is easy to see that d[ξ]t ≥ dAft ,
for any f ∈ SL1.

1There is a substantial literature on the construction of stochastic integrals for the closely
related case of martingale measures (effectively, when ξt can be a signed measure, instead of a

probability measure), however this literature is dominated by the cases where either ξt satisfies
an orthogonality condition, or possesses nuclear covariance; in our setup, neither condition is
natural. We refer to [26] for details. A natural question is whether the stochastic integral defined

for the class SL1 of simple processes can be extended to a natural limit.
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Proposition 6.2. Suppose ξ is an MVM with speed [ξ]. Then

(i) [ξ]t ≥ 〈ξ〉t := 〈M(ξ)〉t, the quadratic variation of the mean process;
(ii) [ξ]t ≡ 0 if and only if ξ is constant;

(iii) if (τt)t≥0 is a time-change, and ξ̃t := ξτt , then [ξ̃]t = [ξ]τt , that is, the
speed is invariant under time-change.

We note that the condition in (ii) is not true for the quadratic variation process,
as the subsequent example demonstrates:

Example 6.3. Let ξt be an MVM in a Brownian filtration with ξ0 = U([−1, 1]).
Between time 0 and the first hitting time of ±ε, we use the Brownian motion to flip
an artificial coin, based on which we have either ξ = U([−1,−1/

√
2]∪ [0, 1/

√
2]) or

the converse. Then for this example, the mean process does not move at all, but
the distance changes a lot. Variants on this can be used to get small movement in
the quadratic variation, but large movements in speed in various natural ways. In
particular, we see that it is certainly not always true that [ξ]t = 〈ξ〉t.

Proof of Proposition 6.2. The first part of the result follows immediately from con-
sidering a simple process such that ft(x) = x for all t.

To see (ii), note that if ξ is not constant almost surely, then there exist h ∈ Lip1

and t1 < t2 such that
∫
h(x) ξt1(dx) 6=

∫
h(x) ξt2(dx) with positive probability.

Taking ft(x) = h(x)1{t∈(t1,t2]}, then f ∈ SL1 gives a non-trivial martingale, and
hence a non-zero compensator.

Finally, the last part follows immediately from the definition of the speed of the
process. �

6.2. The class of consistent MVMs. As demonstrated by Example 6.3, the
speed of an MVM will typically not coincide with the quadratic variation of its
mean process. In this section we study a class of MVMs for which this is however
the case. Specifically, the following result yields a sufficient condition for the speed
and quadratic variation of a process to actually coincide:

Definition 6.4. We call a Lipschitz-Markov MVM ξt consistent if its associated
function mt satisfies W1(ms(x),mt(x)) ≤ α(ε) for all x and |t − s| < ε, for some
function α : R+ → R+ such that α(ε)ε−1/2 → 0 as ε→ 0.

Lemma 6.5. If ξt is a consistent Lipschitz-Markov MVM, then [ξ]t = 〈ξ〉t.

Proof. Let g ∈ Lip1. By the Lipschitz-Markov property of ξ·, for s < t we get

∣∣∣∣∫ g(x) (ξt − ξs) (dx)

∣∣∣∣ ≤ W1(ξt, ξs)

≤ W1 (ξt,mt(M(ξs))) +W1 (mt(M(ξs)), ξs)

≤ |M(ξt)−M(ξs)|+ α(t− s).

Now take f ∈ SL1. Possibly taking a finer (stochastic) partition τ1 ≤ τ2 ≤ . . . ,
which includes the original partition associated with f , and also the time t, and
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using the fact that α(ε)2 < δε, for some δ > 02, we have:∑
i

(∫
fi(x)

(
ξτi+1∧t − ξτi∧t

)
(dx)

)2

(6.1)

≤
∑
i:τi<t

[
α(τi+1 − τi)2 + 2α(τi+1 − τi)|M(ξτi+1

)−M(ξτi)|

+ |M(ξτi+1
)−M(ξτi)|2

]
≤ δt+ 2

( ∑
i:τi<t

α(τi+1 − τi)2

) 1
2
( ∑
i:τi<t

|M(ξτi+1
)−M(ξτi)|2

) 1
2

+
∑
i

|M(ξτi+1∧t)−M(ξτi∧t)|2

≤ δt+ 2

√
δt
∑
i

|M(ξτi+1∧t)−M(ξτi∧t)|2 +
∑
i

|M(ξτi+1∧t)−M(ξτi∧t)|2,

where we used Cauchy-Schwarz. Note that for δ > 0 arbitrarily small, (6.1)
still holds for ε sufficiently small. Further, we may find a sequence of parti-

tions, with |Πn| → 0, such that Aft = limn↑∞
∑
|Iτni+1∧t − Iτni ∧t|

2 and 〈ξ〉t =

limn↑∞
∑
|M(ξτni+1∧t) −M(ξτni ∧t)|

2, a.s.. Hence, we deduce that Aft ≤ 〈ξ〉t, t ≥ 0.

Since f ∈ SL1 was arbitrary, we thus have that 〈ξ〉t is an increasing process domi-

nating Aft for all f ∈ SL1. It follows that [ξ]t ≤ 〈ξ〉t, and applying Proposition 6.2
we conclude. �

Corollary 6.6. A consistent Lipschitz-Markov MVM ξ is continuous if its mean
process, M(ξ), is continuous.

Proof. Let f ∈ SL1 correspond to the constant process, fi = g ∈ Lip1 for all i. It

is sufficient to show that Af has no jumps, but by Lemma 6.5, dAft ≤ d〈ξ〉t, and
the conclusion follows. �

Proposition 6.7. The Bass-Root MVMs with Lipschitz scale function κ (and hence
also the Bass and Root MVMs) are continuous Lipschitz-Markov MVMs with

〈ξκ,R〉t = [ξκ,R]t.

Proof. Consider a Bass-Root MVM, with K-Lipschitz scale function κ, that is

ξκ,Rt = κ#ξ
R
t for an appropriate Root MVM ξRt with barrier R; recall that τR =

inf{t ≥ 0 : ξRt ∈ Ps}. Let t > 0 and x ∈ R be such that d((t, x),R) > 0,
where d denotes the Euclidean distance, and let 0 < s < t. In turn, let Bs,x

and Bt,x be two independent BMs starting respectively in (s, x) and (t, x). Define
ms(x) := L(κ(Bs,xτs )), with τs the first time Bs,x hits the barrier R, and let mt(x)
be analogously defined.

We first derive an appropriate bound on W1(ms(x),mt(x)). To this end, let
δ > 0 and a > 0 such that the box [s, t+ δ]× [x− a, x+ a] is disjoint from R. Note
that we have the following finite bound

β0 := sup {Er,y [|κ(Br,yτr )|] : (r, y) ∈ [s, t+ δ]× [x− a, x+ a]} <∞.(6.2)

In order to compare the laws of κ(Bs,xτs ) and κ(Bt,xτt ), we couple the paths originating
from (s, x) and (t, x), respectively, and exiting the box [s, t + δ] × [x − a, x + a]
at the same points as those will necessarily contribute to the same law. It then
suffices to find an appropriate bound on the mass that we may not couple in this
way. To this end, let β > 0, and note that according to Lemma A.2 (i), the

2For later use, we note that this identity holds even if δ is a fixed constant.
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probability of Bs,x exiting the box before t is bounded by 2β(t− s), provided that
t − s < ∆, for some sufficiently small ∆ > 0. Further, applying Lemma A.2 (iii),
choosing if necessary δ and ∆ even smaller, the total mass corresponding to paths
exiting the box at the ‘top’ and ‘bottom’ but not being coupled is bounded by
β(t− s) for t− s < ∆. Finally, applying Lemma A.1, we may bound the total mass
corresponding to paths exiting the box along the line (x, t + δ), x ∈ (−a, a), and

not being coupled, by
√

2/π t−sδ ; indeed, although the presence of the ‘top’ and
‘bottom’ of the box naturally modifies the distribution of Bs,x and Bt,x along this
line, the corresponding contribution to the total variation distance is compensated
by the fact that the ‘tails’ for x 6∈ (−a, a) are cut off. Summing up and applying
(6.2), we obtain that there exists δ > 0 and ∆ > 0, such that for t− s < ∆,

W1

(
L (κ(Bs,xτs )) ,L

(
κ(Bt,xτt )

))
≤ β0

(
3β +

√
2/πδ−1

)
(t− s).

In consequence, for any d > 0, there exist ∆d > 0 and βd > 0 such that for any
0 < s < t and x > 0 with d((t, x),R)) > d and t− s < ∆d,

W1 (ms(x),mt(x)) ≤ βd(t− s).

Applying Lemma 6.5, we obtain [ξκ,R]t = 〈ξκ,R〉t, for t ≤ τd := inf{t ≥ 0 :
d((M(ξRt ), t),R) ≤ d}. Since d > 0 was arbitrarily chosen, it follows that [ξκ,R]t =
〈ξκ,R〉t, for t < τR.

It only remains to argue that the speed [ξκ,R]· does not possess a jump at t = τR.
To this end, consider the Root barrier corresponding to a single atom. Let s < t and
consider now the same BM starting in (s, x) and (t, x) and couple the corresponding
paths. Then, using that κ is K-Lipschitz we have

W1(ms(x),mt(x)) ≤ KE[|Bs,xτs −B
t,x
τt |] ≤ KE[L0

t−s] ≤ K
√
t− s;

we note that this bound is improved for any other Root barrier. In particular,
the first inequality in (6.1) holds for α(t) = t, and it follows that d[ξκ,R]t ≤
β̃(dt + d〈ξκ,R〉t), for some β̃ > 0, and since 〈ξκ,R〉t is continuous for the Bass-
Root embedding we may conclude. �

Remark 6.8. Yet another natural candidate for measuring the ‘speed’ of a MVM,
is given by the following increasing process:

[̃ξ]t = lim inf
|Πn|→0

∑
i:ti+1<t

W2
1 (ξti+1

, ξti),(6.3)

where the limit is taken over a fixed sequence Πn = {0 = t0 ≤ t1 ≤ . . . , tk →
∞ as k → ∞} of partitions of R+ with |Πn| = supi |ti+1 − ti|. Recall that by the
duality of the Wassertein distance, |W1(ξti+1

, ξti)| = sup{|ξti+1
(f) − ξti(f)| : f ∈

Lip1(Fti+1)}, which yields [̃ξ]t ≥ [ξ]t. For consistent MVMs, we immediately see
that equality holds. More generally, regardless of whether the speed coincides with
the quadratic variation or not, we expect equality to hold for a large class of MVMs
being adapted to the Brownian filtration.

6.3. The ρ-speed of an MVM. We observe that, although important in some
of our definitions (in particular, through the use of the Wasserstein topology),
the metric of the underlying space (Rd) so far has not been too significant. In
this section, we consider one way of transforming the underlying geometry of the
space, and examine the consequences for the processes. The starting point for
this observation is that if (ξt)t is an MVM, and ρ is an increasing function such
that |ρ(x)| ≤ K(1 + |x|) for some K > 0, then χt := ρ#ξt is also a MVM. This
follows immediately from the definition of the pushforward, so that

∫
f(x)χt(dx) =∫

f ◦ ρ(x) ξt(dx).
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Of course, to the process χ, we can associate a speed process, [χ]t, and we can
think of this process as the ρ-speed of the process ξ. This corresponds to the
following definition:

We say that f ∈ Lip1,ρ if and only if f = g◦ρ, where g ∈ Lip1. Then (ft) ∈ SL1,ρ

if f is of the form

ft(x) =

∞∑
n=0

fi(x)1{t∈(τi,τi+1]}

where fi ∈ Lip1,ρ is Fτi-measurable, and (τi) is a sequence of increasing stopping
times such that P(limn→∞ τn =∞) = 1. Then we have:

Definition 6.9. The ρ-speed of the MVM ξ is the smallest increasing, càdlàg,

adapted process [ξ]ρt such that [ξ]ρt ≥ A
f
t almost surely, for every f ∈ SL1,ρ.

It is a simple consequence of the definitions and the argument that [ξ]ρt ≥
〈Mρ(ξ)〉t, where Mρ(ξ) :=

∫
ρ(x) ξ(dx).

6.4. The second optimisation problem: optimality of the Bass and mod-
ified Root solution. As a consequence of the above properties of the (ρ)-speed,
we obtain yet another optimality property of the Bass embedding. More gener-
ally, our next result provides an optimality criterion which is minimised by the
(canonical-time) Bass-Root MVM:

Theorem 6.10. Let µ, λ ∈ P1(R) be given atomless probability measures, and let
ξR be the Root MVM corresponding to embedding λ. Define κ = F−1

µ ◦ Fλ and

write ρ = κ−1 for its right continuous inverse. Then the canonical-time Bass-Root

MVM, ξκ,R = κ#ξ
R, is a terminating, continuous MVM with ξκ,R0 = µ, which

minimises

E [F ([ξ]
ρ
∞)](6.4)

for any increasing, convex function F , over the class of continuous, terminating
MVMs with ξ0 = µ.

In particular, we see that the (canonical-time) Bass MVM minimises (6.4) for
the choice of ρ(x) = h−1(x) with h given as in Section 3, whereas the Root MVM
minimises (6.4) with the ρ-speed replaced by the non-modified speed [ξ·].

Proof of Theorem 6.10. The MVM ξκ,R is terminating with ξκ,R0 = µ by definition,
and continuous by Corollary 6.6 and Proposition 6.7. Moreover, ρ#ξ

κ,R = ξR, and
so [ξκ,R]ρ∞ = [ξR]∞. But by Proposition 6.7, we have [ξR]∞ = 〈ξR〉∞, and so
E[F ([ξκ,R]ρ∞)] = E[F (〈ξR〉∞)]. Note in particular, that MR· := M(ξR· ) is a stopped
Brownian motion, stopped according to the first hitting time of a Root barrier, and
also has stopped law λ.

Now consider any other ξ satisfying the conditions of the theorem. As above,
we have ρ#ξ· = χ· for some terminating MVM χ. Then [ξ]ρt = [χ]t ≥ 〈χ〉t, by
Proposition 6.2 (i). In particular, M· := M(χ·) is a uniformly integrable, continuous
martingale, with M∞ ∼ λ, and so E [F ([ξ]ρ∞)] ≥ E[F (〈M〉∞)] ≥ E[F (〈MR〉∞)],
where the first step follows from the increase of F , and the second from convexity
of F and the optimality of the Root embedding, which completes the proof. �

Appendix A. Auxiliary estimates

Lemma A.1. Let 0 < u < v, then

||N (0, u)−N (0, v)||TV ≤
√

2

π

v − u
u

.
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Proof. Denote the densities corresponding to N (0, u) and N (0, v) by pu and pv,
and denote by δ > 0 the value for which pu(δ) = pv(δ). Then, the total variation
distance between N (0, u) and N (0, v) is bounded by

||pu − pv||TV ≤ 4

∫ ∞
δ

pv(dx)− pu(dx)

= 4

(
pv([δ,∞))− pv

(
[δ

√
v

u
,∞)

))
= 4pv

(
[δ, δ

√
v

u
)

)
≤ 4pv(0)δ

(√
v

u
− 1

)
.(A.1)

We note that δ solves v−
1
2 e−

1
2
x2

v = u−
1
2 e−

1
2
x2

u , which implies that

δ =

√
ln( vu )
1
u −

1
v

=

√
ln(1 + v−u

u )
1
u −

1
v

≤

√
v−u
u
v−u
uv

=
√
v.

Moreover, √
v

u
=

√
1 +

v − u
u
≤ 1 +

1

2

v − u
u

.

Putting the above bounds for δ and
√
v/u back into (A.1) and using that pv(0) =

(2πv)−
1
2 , we easily conclude. �

Lemma A.2. Let Bt, t ≥ 0 be a BM and define τa := inf{t ≥ 0 : Bt ≥ a} and
τa,a := inf{t ≥ 0 : Bt 6∈ (−a, a)}; the corresponding density functions exist and we
denote them by pa and pa,a. Then the following holds:

i) For any β > 0, there exists ∆ > 0 such that for ε < ∆,

P(τa ≤ ε) ≤ βε;

ii) For any β > 0, there exists δ > 0 and ∆ > 0, such that for ε < ∆,∫ δ

0

|pa(t+ ε)− pa(t)|dt ≤ βε.

iii) For any β > 0, there exists δ > 0 and ∆ > 0, such that for ε < ∆,∫ δ

0

|pa,a(t+ ε)− pa,a(t)|dt ≤ βε.

Proof. i) Recall that by the reflection principle

P(τa ≤ t) = P(|Bt| ≥ a) = 2

∫ ∞
a

1√
2πt

e
−x2
2t dx;

differentiating twice in t we obtain

pa(t) =
a√
2πt3

e
−a2
2t . and

∂pa

∂t
(t) =

a(a2 − 3t)√
4πt7

e
−a2
2t .(A.2)

Next, since t 7→ P(τa ≤ t) is differentiable, we have P(τa ≤ ε) = pa(s)ε for some
s < ε. We note from (A.2) that pa is continuous and that limt→0 p

a(t) = 0; hence,
for any β > 0, by choosing ∆ small enough, we may ensure that pa(s) ≤ β, for all
s < ∆ which yields the claim.

ii) We see from (A.2) that pa(t) is increasing for t ≤ t̄ and decreasing for t ≥ t̄,
where t̄ = a2/3. Let ∆ < t̄ and δ := t̄−∆. Then, for any ε < ∆,∫ δ

0

|pa(t+ ε)− pa(t)|dt ≤ P(τa ≤ δ + ε)− P(τa ≤ δ) = pa(s)ε,
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for some s ∈ (δ, t̄). By use of the same arguments as in i), for any β > 0, choosing
if necessary t̄ even smaller, we may ensure that pa(s) ≤ β for all s < t̄ which yields
the claim.

iii) According to [8] (see pp. 355 and 641),

pa,a(t) =

∞∑
−∞

(−1)kpa(1+2k)(t) = 2

∞∑
−∞

pa(1+4k)(t);

hence pa,a is continuously differentiable and limt→0 p
a,a(t) = 0. Since it is further

a density function and thus non-negative, there must exist t̄ > 0 such that pa,a(t)
is non-decreasing for t ≤ t̄. We may thus apply the same argument as in ii) to
conclude. �
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formulae. Second Edition. Birkhäuser Verlag, Basel, 2002, pp. xvi+672. doi:
10.1007/978-3-0348-8163-0.

[9] A. M. G. Cox and S. Källblad. “Model-independent bounds for Asian options:
a dynamic programming approach”. To Appear, SIAM Journal on Control
and Optimisation. url: https://arxiv.org/abs/1507.02651.
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[23] J. Ob lój. “The Skorokhod embedding problem and its offspring”. Probability
Surveys 1 (2004), pp. 321–392.

[24] D. H. Root. “The existence of certain stopping times on Brownian motion”.
Ann. Math. Statist. 40 (1969), pp. 715–718.

[25] H. Rost. “Skorokhod stopping times of minimal variance”. Séminaire de Prob-
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