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ROOT’S BARRIER: CONSTRUCTION, OPTIMALITY AND
APPLICATIONS TO VARIANCE OPTIONS

BY ALEXANDER M. G. COX AND JIAJIE WANG

University of Bath

Recent work of Dupire and Carr and Lee has highlighted the importance
of understanding the Skorokhod embedding originally proposed by Root for
the model-independent hedging of variance options. Root’s work shows that
there exists a barrier from which one may define a stopping time which
solves the Skorokhod embedding problem. This construction has the remark-
able property, proved by Rost, that it minimizes the variance of the stopping
time among all solutions.

In this work, we prove a characterization of Root’s barrier in terms of the
solution to a variational inequality, and we give an alternative proof of the
optimality property which has an important consequence for the construction
of subhedging strategies in the financial context.

1. Introduction. In this paper, we analyze the solution to the Skorokhod em-
bedding problem originally given by Root [33], and generalized by Rost [35]. Our
motivation for this is recent work connecting the solution to this problem to ques-
tions arising in mathematical finance—specifically model-independent bounds for
variance options—which has been observed by Dupire [16], Carr and Lee [5] and
Hobson [19]. The financial motivation can be described as follows: consider a (dis-
counted) asset which has dynamics under the risk-neutral measure

dSt

St

= σt dWt,

where the process σt is not necessarily known. We are interested in variance op-
tions, which are contracts where the payoff depends on the realized quadratic vari-
ation of the log-price process: specifically, we have

d(lnSt ) = σt dWt − 1
2σ 2

t dt

and therefore

〈lnS〉T =
∫ T

0
σ 2

t dt.
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An option on variance is then an option with payoff F(〈lnS〉T ). Important exam-
ples include variance swaps, which pay the holder 〈lnS〉T − K , and variance calls
which pay the holder (〈lnS〉T − K)+. We shall be particularly interested in the
case of a variance call, but our results will extend to a wider class of payoffs. Let
dXt = Xt dW̃t for a suitable Brownian motion W̃t and we can find a (continuous)
time change τt such that St = X̃τt , and so

dτt = σ 2
t S2

t

S2
t

dt.

Hence

(X̃τT
, τT ) =

(
ST ,

∫ T

0
σ 2

u du

)
= (ST , 〈lnS〉T ).

Now suppose that we know the prices of call options on ST with maturity T , and at
all strikes (recall that σt is not assumed known). Then we can derive the law of ST

under the risk-neutral measure from the Breeden–Litzenberger formula. Call this
law μ. This suggests that the problem of finding a lower bound on the price of a
variance call (for an unknown σt ) is equivalent to

find a stopping time τ to minimize E(τ − K)+, subject to L(X̃τ ) = μ.(1.1)

This is essentially the problem for which Rost has shown that the solution is
given by Root’s barrier. [In fact, the result trivially extends to payoffs of the form
F(〈lnS〉T ) where F(·) is a convex, increasing function.]

In this work, our aim is twofold: first, to provide a proof that Root’s barrier
can be found as the solution to a particular variational inequality, which can be
thought of as the generalization of an obstacle problem; second, we show that the
lower bound which is implied by Rost’s result can be enforced through a suitable
hedging strategy, which will give an arbitrage whenever the price of a variance call
trades below the given lower bound. To accomplish this second part of the paper,
we will give a novel proof of the optimality of Root’s construction, and from this
construction we will be able to derive a suitable hedging strategy.

The use of Skorokhod embedding techniques to solve model-independent (or
robust) hedging problems in finance can be traced back to Hobson [18]. More
recent results in this direction include Cox, Hobson and Obłój [10], Cox and
Obłój [11] and Cox and Obłój [12]. For a comprehensive survey of the literature on
the Skorokhod embedding problem, we refer the reader to Obłój [27]. In addition,
Hobson [19] surveys the literature on the Skorokhod embedding problem with a
specific emphasis on the applications in mathematical finance.

Variance options have been a topic of much interest in recent years, both from
the industrial point of view, where innovations such as the VIX index have con-
tributed to a large growth in products which are directly dependent on quantities
derived from the quadratic variation, and also on the academic side, with a num-
ber of interesting contributions in the literature. The academic results go back to
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work of Dupire [15] and Neuberger [26], who noted that a variance swap—that
is, a contract which pays 〈lnS〉T , can be replicated model-independently using a
contract paying the logarithm of the asset at maturity through the identity (from
Itô’s lemma)

ln(ST ) − ln(S0) =
∫ T

0

1

St

dSt − 1

2
〈lnS〉T .(1.2)

More recently, work on options and swaps on volatility and variance, (in a model-
based setting) includes Howison, Rafailidis and Rasmussen [20], Broadie and
Jain [3] and Kallsen, Muhle-Karbe and Voss [21]. Other work [22, 23] has con-
sidered the differences between the theoretical payoff (〈lnS〉T ) and the discrete
approximation which is usually specified in the contract [

∑
k ln(S(k+1)δ/Skδ)

2].
Finally, several papers have considered variants on the model-independent prob-
lems [5, 6, 13] or problems where the modeling assumptions are fairly weak. This
latter framework is of particular interest for options on variance, since the markets
for such products are still fairly young, and so making strong modelling assump-
tions might not be as strongly justified as it could be in a well-established market.

The rest of this paper is structured as follows: in Section 2 we review some
known results and properties concerning Root’s barrier. In Section 3, we establish a
connection between Root’s solution and an obstacle problem, and then in Section 4
we show that by considering an obstacle problem in a more general analytic sense
(as a variational inequality), we are able to prove the equivalence between Root’s
problem and the solution to a variational inequality. In Section 5, we give a new
proof of the optimality of Root’s solution and in Section 6 we show how this proof
allows us to construct model-independent subhedges to give bounds on the price
of variance options.

2. Features of Root’s solution. Our interest is in Root’s solution to the Sko-
rokhod embedding problem. Simply stated, for a process (Xt)t≥0, the Skorokhod
embedding problem is to find a stopping time τ such that Xτ ∼ μ. In this paper,
we will consider first the case where X0 = 0, and Xt is a continuous martingale
and a time-homogeneous diffusion, and later the case where X0 ∼ ν, is a centred,
square integrable measure. In such circumstances, it is natural to restrict to the set
of stopping times for which (Xt∧τ )t≥0 is a uniformly integrable (UI) process. We
will occasionally call stopping times for which this is true UI stopping times. In
the case where μ is centered and has a second moment and the underlying pro-
cess X is a Brownian motion (or more generally, a diffusion and martingale with
diffusion coefficient σ such that σ 2 ≥ ε for some strictly positive constant ε), this
is equivalent to the fact that Eτ < ∞. For the case of a general starting measure,
there is a natural restriction on the measures involved, which is that we require

∞ > Uν(x) := −
∫

R
|y − x|ν(dy) ≥ −

∫
R

|y − x|μ(dy) =: Uμ(x),(2.1)
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for all x ∈ R. This assumption implies that m := ∫
xν(dx) = ∫

xμ(dx); see Cha-
con [7]. By Jensen’s inequality, such a constraint is clearly necessary for the ex-
istence of a suitable pair ν and μ; further, by Rost [34], it is the only additional
constraint on the measures we will need to impose. We shall write

S(μ) = {τ : τ is a stopping time,Xτ ∼ μ, (Xt∧τ )t≥0 is UI}.(2.2)

There are a number of important papers concerning the construction of Root’s
barrier. The first work to consider the problem is Root [33], and this paper proved
the existence of a certain Skorokhod embedding when Xt is a Brownian motion.
Specifically, Root showed that if Xt is a Brownian motion with X0 = 0, and μ

is the law of a centered random variable with finite variance, then there exists a
stopping time τ , which is the first hitting time of a barrier, which is defined as
follows:

DEFINITION 2.1 (Root’s barrier). A closed subset B of [−∞,+∞] ×
[0,+∞] is a barrier if:

(1) (x,+∞) ∈ B for all x ∈ [−∞,+∞];
(2) (±∞, t) ∈ B for all t ∈ [0,∞];
(3) if (x, t) ∈ B , then (x, s) ∈ B whenever s > t .

We provide representative examples of barrier functions in Figure 1.
In a subsequent paper Loynes [24] proved a number of results relating to bar-

riers. From our perspective, the most important are, first, that the barrier B can
be written as B = {(x, t) : t ≥ R(x)}, where R : R → [0,∞] is a lower semi-
continuous function (with the obvious extensions to the definition to cover R(x) =

FIG. 1. Examples of Root’s barriers: the representation (a) is an example of a “nice” barrier, where
some explicit calculations can be made (see Example 5.6); in (b) we observe some of the nastier
features which a barrier may possess, including spikes, corresponding to atoms of the distribution μ

and regions in which the barrier can be unbounded.
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∞); we will make frequent use of this representation. In addition, Loynes [24],
Theorem 1, says that Root’s solution is essentially unique: if there are two barriers
which embed the same distribution with a UI stopping time, then their correspond-
ing stopping times are equal with probability one. The case where two different
barriers can occur are then only the cases where, say R(x0) = 0 for x0 > 0, and
then R(x) is undetermined for all x > x0.

The other important reference for our purposes is Rost [35]. This work vastly
extends the generality of the results of Root and Loynes, and uses mostly potential-
theoretic techniques. Rost works in the generality of a Markov process Xt on a
compact metric space E, which satisfies the strong Markov property and is right-
continuous. Then Rost recalls (from an original definition of Dinges [14] in the
discrete setting) the notion of minimal residual expectation:

DEFINITION 2.2. A stopping time τ ∗ ∈ S(μ) is of minimal residual expecta-
tion if, for each t ∈ R+, it minimizes the quantity

E(τ − t)+ = E

∫ τ

τ∧t
ds =

∫ ∞
t

P(τ > s)ds,

over all τ ∈ S(μ).

Then Rost proves that [under (2.1)] there exists a stopping time of minimal
residual expectation [35], Theorem 1, and that the hitting time of any barrier is of
minimal residual expectation [35], Theorem 2. Finally, Rost also shows that the
barrier stopping times are, to a degree, unique [35], Corollary to Theorem 2. The
relevant result for our purposes (where there is a stronger form of uniqueness) is
the corollary to Theorem 3 therein, which says that if Xt is a process for which the
one-point sets are regular, then any stopping time of minimal residual expectation
is Root’s stopping time. The class of processes for which the one-point sets are
regular include the class of time-homogenous diffusions we consider.

Note that a stopping time is of minimal residual expectation if and only if, for
every convex, increasing function F(t) (where, without loss of generality, we take
F(0) = F ′+(0) = 0), it minimizes the quantity

EF(τ) = E

∫ ∞
0

(τ − t)+F ′′(dt),

this fact being a consequence of the above representation.
There are a number of important properties that the Root barrier possesses. First,

we note that, as a consequence of the fact that B is closed and the third property
of Definition 2.1, the barrier is regular (i.e., if we start at a point in the barrier, we
will almost surely return to the barrier instantly) for the class of processes we will
consider (time-homogeneous diffusions) this will have important analytical bene-
fits. Second, for a point (x, t) /∈ B , we know that if the stopped process at time t is
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at x, then we have not yet reached the stopping time for the embedding. This will
help in our characterization of the law of the stopped process (Lemma 3.2).

In the rest of this paper, we will then say that a barrier is either a lower semi-
continuous function R : R → R+, with R(0) �= 0, or the complement of the cor-
responding connected open set D = {(x, t) : 0 < t < R(x)} = R × (0,∞) \ B . As
noted above, by Loynes [24] this is equivalent to the barrier as defined in Defini-
tion 2.1. We will define the hitting time of the barrier as: τD = inf{t > 0 : (Xt , t) /∈
D}. Note that the barrier B is closed and regular, so that (XτD

, τD) ∈ B and
P(x,t)(τD = 0) = 1 whenever (x, t) ∈ B , where P(x,t) is the law of our diffusion
started at x at time t .

Finally, we give some examples where the barrier function can be explicitly cal-
culated. We note that explicit examples appear to be the exception, and in general
are hard to compute. First, if μ is a Normal distribution, we easily see that R(x) is a
constant. Second, if μ consists of two atoms (weighted appropriately) at a < 0 < b

say, the corresponding barrier is

R(x) =
{

0, x /∈ (a, b),

∞, x ∈ (a, b).

In this example, observe that the function R(x) is not unique: we can choose any
behavior outside [a, b], and achieve the same stopping time. Second, we note the
that there are even more general solutions to the Skorokhod embedding problem
(without the uniform integrability condition) since there are also barriers of the
form

R(x) =
⎧⎨
⎩

ta, x = a,

tb, x = b,

∞, x /∈ {a, b},
which will embed the same law (provided ta, tb > 0 are chosen suitably), but which
do not satisfy the uniform integrability condition. In general, a barrier can exhibit
some fairly nasty features: consider, for example, the canonical measure on a mid-
dle third Cantor set C (scaled so that it is on [−1,1]). Root’s result tells us that
there exists a barrier which embeds this distribution, and clearly the resulting bar-
rier function must be finite only on the Cantor set; however, the target distribution
has no atoms, so that the “spikes” in the barrier function can not be isolated (i.e.,
we must have lim infy↑x R(y) = lim infy↓x R(y) = R(x) for all x ∈ (−1,1) ∩ C).

3. Connecting Root’s problem and an obstacle problem. We now consider
alternative methods for describing Root’s barrier. We will, in general, be interested
in this question when our underlying process Xt is a solution to

dXt = σ(Xt)dWt, X0 ∼ ν,(3.1)
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for a Brownian motion (Wt)t≥0, and we will introduce our concepts in this general
context. Initially, we assume that σ : R → R satisfies, for some positive constant K ,

|σ(x) − σ(y)| ≤ K|x − y|;(3.2)

0 < σ 2(x) < K(1 + x2);(3.3)

σ is smooth.(3.4)

Recall that for the financial application we are interested in, we want the specific
case σ(x) = x to be included. Clearly, this case is currently excluded; however, we
will show in Section 4.3 that the results can be extended to include this case.

From standard results on SDEs, (3.2) and (3.3) imply that the unique strong
solution Xa of (3.1) with ν = δa is a strong Markov process with generator
1
2σ 2∂xx for any initial value a ∈ R. Moreover, (3.4) implies that the operator
L := 1

2σ 2∂xx − ∂t is hypoelliptic; see Stroock [36], Theorem 3.4.1.
We will write Root’s Skorokhod embedding problem as:

SEP(σ, ν,μ): Find a lower-semicontinuous function R(x) such that the domain
D = {(x, t) : 0 < t < R(x)} has XτD

∼ μ, and (Xt∧τD
)t≥0 is a UI process, where ν

is the initial law of Xt , and σ the diffusion coefficient.

Our aim is to show that the problem of finding R is essentially equivalent to
solving an obstacle problem. Assuming that the relevant derivatives exist, we shall
show that the problem can be stated in the following way:

OBS(σ, ν,μ): Find a function u(x, t) ∈ C1,1(R × R+) such that

Uν(x) = u(x,0),(3.5a)

0 ≥ Uμ(x) − u(x, t),(3.5b)

0 ≥ ∂u

∂t
(x, t) − 1

2
σ(x)2 ∂2u

∂x2 (x, t),(3.5c)

(
∂u

∂t
(x, t) − 1

2
σ(x)2 ∂2u

∂x2 (x, t)

)(
Uμ(x) − u(x, t)

) = 0,(3.5d)

where (3.5c) is interpreted in a distributional sense—that is, we require∫
R

(
φ(x)

∂u

∂t
(x, t) + 1

2
σ(x)2 ∂u

∂x
(x, t)φ′(x)

)
dx ≤ 0

whenever φ ∈ C∞
K is a nonnegative function. Condition (3.5d) can be interpreted

more generally as requiring

∂u

∂t
(x, t) = 1

2
σ(x)2 ∂2u

∂x2 (x, t)
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in a distributional sense whenever (Uμ(x)−u(x, t)) �= 0. However, this is an open
set, and from the hypoellipticity of the operator L, if this holds in a weak sense, it
will hold in a strong sense. Hence ∂2u

∂x2 (x, t) would be continuous even if we were
only to require (3.5d) to hold in a distributional sense.

In general, we do not expect u to be sufficiently nice that we can easily interpret
all these statements, and one of the goals of this paper is to give a generalization
of OBS(σ, ν,μ) that will make sense more widely. Cases in which u may not be
expected to be C1,1 include the case where μ contains atoms (and therefore Uμ is
not continuously differentiable). In addition, we specify this problem in C1,1 since,
in general, we would certainly not expect the second derivative to be continuous
on the boundary between the two types of behavior in (3.5d).

THEOREM 3.1. Suppose D is a solution to SEP(σ, ν,μ) and is such that

u(x, t) = −E|Xt∧τD
− x| ∈ C1,1(R × R+).

Then u solves OBS(σ, ν,μ).

This gives an initial connection between OBS(σ, ν,μ) and SEP(σ, ν,μ). We
roughly expect solutions to Root’s problem to be the unique solutions to the ob-
stacle problem (of course, we do not currently know that such solutions exist or,
when they do, are unique). This suggests that we can attempt to solve the obsta-
cle problem to find the solution D to Root’s problem. In particular, given a solu-
tion to OBS(σ, ν,μ), we can now identify D as D = {(x, t) : Uμ(x) < u(x, t), t >

0}.

LEMMA 3.2. For any (x, t) ∈ D, P(Xt∧τD
∈ dx) = P(Xt ∈ dx, t < τD).

PROOF. By the lower semi-continuity of R, since (x, t) ∈ D, there exists
h > 0 such that

(x − h,x + h) × [0, t + h) ⊂ D,

and hence, for any y ∈ (x − h,x + h), R(y) > t . On the other hand, if τD ≤ t , we
have

R(XτD
) ≤ τD ≤ t,

and hence, XτD
/∈ (x − h,x + h). Therefore,

P(Xt∧τD
∈ dx) = P(Xt ∈ dx, t < τD) + P(XτD

∈ dx, t ≥ τD)

= P(Xt ∈ dx, t < τD). �
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LEMMA 3.3. The measure corresponding to L(Xt ; t < τD) has density
pD(x, t) with respect to Lebesgue on D, and the density is smooth and satisfies

∂

∂t
pD(x, t) = 1

2

∂2

∂x2 [σ(x)2pD(x, t)].

This result appears to be standard, but we are unable to find concise references.
We give a short proof based on [32], Section V.38.5.

PROOF OF LEMMA 3.3. First note that, as a measure, L(Xt ; t < τD) is domi-
nated by the usual transition measure, so the density pD(x, t) exists.

Let (x0, t0) be a point in D, and we can therefore find an ε > 0 such that A =
(x0 − ε, x0 + ε)× (t0 − ε, t0 + ε) satisfies Ā ⊆ D. Then let f be a smooth function,
supported on A, and by Itô’s lemma,

f (Xt∧τD
, t) = f (X0,0) +

∫ t

0

∂f

∂x
(Xs∧τD

, s)dXs

+
∫ t

0

(
1

2
σ(Xs∧τD

)2 ∂2

∂x2 + ∂

∂t

)
f (Xs∧τD

, s)ds.

Since f is compactly supported, taking t > t0 + ε, the two terms on the left dis-
appear, and the first integral term is a martingale. Hence, taking expectations, and
interchanging the order of differentiation, we get∫ t

0

∫
pD(y, s)

(
1

2
σ(y)2 ∂2

∂x2 + ∂

∂t

)
f (y, s)dy ds = 0.

Interpreting pD(y, s) as a distribution, we have

1

2

∂2

∂x2 [σ(x)2pD(x, t)] − ∂

∂t
pD(x, t) = 0,

for (x, t) ∈ A, and since the heat operator is hypoelliptic, we conclude that
pD(x, t) is smooth in A (e.g., Stroock [36], Theorem 3.4.1). �

We are now able to prove that any solution to Root’s embedding problem is a
solution to the obstacle problem.

PROOF OF THEOREM 3.1. We first observe that u(x,0) = −E|X0 − x|,
and X0 ∼ ν, so that u(x,0) = − ∫ |y − x|ν(dy) and (3.5a) holds. Second, since
(Xt∧τD

)t≥0 is a UI process, by (conditional) Jensen’s inequality,

u(x, t) = −E|x − Xt∧τD
| ≥ −E

[
E[|x − XτD

||Ft∧τD
]] = Uμ(x),

and (3.5b) holds.
We now consider (3.5c). Suppose (x, t) ∈ D, and note that

∂u

∂x
= 1 − 2P(Xt∧τD

< x),(3.6)
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and therefore (in D) by Lemma 3.3 the function u has a smooth second derivative
in x. Further, we get

1

2

∫ t

0
σ(x)2 ∂2u

∂x2 (x, s)ds = −
∫ t

0
σ(x)2pD(x, s)ds

= lim
ε↓0

E

[
1

2ε

∫ t∧τD

0
σ(x)21[x−ε<Xs<x+ε] ds

]
(3.7)

= −ELx
t∧τD

= −E|x − Xt∧τD
| + |x|,

where Lx
t is the local time of the diffusion at x. It follows that u satisfies (3.5c)

on D, and in fact attains equality there. On the other hand, if (x, t) /∈ D, it follows
from the definition of the barrier that if τD > t , the diffusion cannot cross the line
{(x, s) : s ≥ t} in the time interval [t, τD), and hence

Lx
t∧τD

= Lx
t 1τD>t + Lx

τD
1τD≤t = Lx

τD
1τD>t + Lx

τD
1τD≤t = Lx

τD
.

Therefore, for t ≥ R(x),

E|x − Xt∧τD
| = |x| + ELx

t∧τD
= |x| + ELx

τD
= E|x − XτD

|,
where the last equality holds because τD is a UI stopping time. So (3.5b) holds with
equality when (x, t) /∈ D. In particular, we can deduce that either (if (x, t) ∈ D)
we have equality in (3.5c), or we have equality in (3.5b), in which case (3.5d) must
hold. It remains to show that (3.5c) holds when (x, t) /∈ D. However, to see this,
consider (x, t) /∈ D, and note first that u(x, s) = u(x, t) = Uμ(x) whenever s > t ,
since (x, s) /∈ D. Hence ∂u

∂t
(x, t) = 0. It is straightforward to check that u(x, t) is

concave in x, and therefore that ∂2u
∂x2 (x, t) ≤ 0, and (3.5c) also holds. �

This result connects Root’s problem and the obstacle problem under a smooth-
ness assumption on the function u. However, ideally we want a one-to-one cor-
respondence. We know from the results of Rost [35] that there always exists a
solution to SEP(σ, ν,μ), and from Loynes [24] that the solution is unique. Our
aim is to show that a similar combination of existence and uniqueness hold for the
corresponding analytic formulation. As already noted, we cannot make a strong
smoothness assumption on the function u(x, t) as required by OBS(σ, ν,μ), and
so we need a weaker formulation of this problem. Generalizations of the obstacle
problem are well understood, and commonly called variational inequalities. In the
next section, we will reformulate the obstacle problem as a variational inequality,
and we are able to state a problem for which existence and uniqueness are known
due to existing results.

4. Root’s barrier and variational inequalities. We now study the relation
between Root’s Skorokhod embedding problem and a variational inequality. Our
notation and definitions, and some of the key results which we will use, come from
Bensoussan and Lions [1].
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4.1. Variational inequalities. We begin with some necessary notation and re-
sults concerning evolutionary variational inequalities. Given a constant λ > 0 and a
finite time T > 0, we define the Banach spaces Hm,λ ⊆ L2(R) and L2(0, T ;Hm,λ)

with the norms

‖g‖2
Hm,λ =

m∑
k=0

∫
R

e−2λ|x|
∣∣∣∣∂kg

∂xk
(x)

∣∣∣∣2 dx;

‖w‖2
L2(0,T ;Hm,λ)

=
∫ T

0
‖w(·, t)‖2

Hm,λ dt,

where the derivatives ∂kg

∂xk (x) are to be interpreted as weak derivatives—that is,
∂kg

∂xk (x) is defined by the requirement that

∫
R

φ(x)
∂kg

∂xk
(x)dx = (−1)k

∫
R

g(x)
∂kφ

∂xk
(x)dx,

for all φ ∈ C∞
K (R), and C∞

K is the set of compactly supported, smooth functions
on R. In particular, the spaces Hm,λ and L2(0, T ;Hm,λ) are Hilbert spaces with
respect to the obvious inner products. In addition, elements of the set H 1,λ can
always be taken to be continuous, and C∞

K is dense in Hm,λ; see, for example,
Friedman [17], Theorem 5.5.20.

For functions a(x, t), b(x, t) ∈ L∞(R × (0, T )), we define an operator

aλ(t;v,w) =
∫

R
e−2λ|x|

[
a(x, t)

∂v

∂x

∂w

∂x
+ b(x, t)

∂v

∂x
w

]
dx,

for v,w ∈ L2(0, T ;H 1,λ). Moreover if ∂a/∂x exits, we define, for v ∈ H 2,λ,

A(t)v = − ∂

∂x

(
a(x, t)

∂v

∂x

)
+ (

b(x, t) + 2λa(x, t) sgn(x)
)∂v

∂x
.

And finally, for v,w ∈ H 0,λ,

(v,w)λ =
∫

R
e−2λ|x|vw dx,

so that, for suitably differentiable test functions φ(x) and v ∈ H 2,λ,

(φ,A(t)v)λ = aλ(t;v,φ).

Then we have the following restatement of Bensoussan and Lions [1], Theo-
rem 2.2, and Section 2.15, Chapter 3:

THEOREM 4.1. For any given λ > 0 and T > 0, suppose:

(1) a, b, ∂a
∂t

are bounded on R × (0, T ) with a(x, t) ≥ α a.e. in R × (0, T ) for
some α > 0;
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(2) ψ,
∂ψ
∂t

∈ L2(0, T ;H 1,λ), v̄ ∈ H 1,λ, v̄ ≥ ψ(0);
(3) the set

X :=
{
w ∈ L2(0, T ;H 1,λ) :

∂w

∂t
∈ L2(0, T ; (H 1,λ)∗),

w(t) ≥ ψ(t) a.e. t in [0, T ]
}

is nonempty, where (H 1,λ)∗ denotes the dual space of H 1,λ.

Then there exists a unique function v such that:

v ∈ L∞(0, T ;H 1,λ),
∂v

∂t
∈ L2(0, T ;H 0,λ);(4.1)

(
∂v

∂t
,w − v

)
λ

+ aλ(t;v,w − v) ≥ 0,

(4.2)
∀w ∈ H 1,λ such that w ≥ ψ(t) a.e. t ∈ (0, T );

v(·, t) ≥ ψ(t) a.e. t ∈ (0, T );(4.3)

v(·,0) = v̄.(4.4)

Moreover, if v ∈ L2(0, T ;H 2,λ), then v is a solution to the obstacle problem: find
v ∈ L2(0, T ;H 2,λ) such that v satisfies (4.3), (4.4) and

∂v

∂t
+ A(t)v ≥ 0;(4.5)

(
∂v

∂t
+ A(t)v

)
(v − ψ) = 0,(4.6)

almost everywhere in R × (0, T ).

PROOF. For the most part, the theorem is a restatement of Bensoussan and
Lions [1], Theorem 2.2, and Section 2.15, Chapter 3, where we have mapped t �→
T − t , and v �→ −v.

We therefore only need to explain the last part of the result. If we suppose
v ∈ L2(0, T ;H 2,λ) and φ ∈ H 1,λ, we have

aλ(t;v,φ) =
∫

R
e−2λ|x|a(x, t)

∂v

∂x
dφ +

∫
R

e−2λ|x|φ
[
b(x, t)

∂v

∂x

]
dx

=
[
e−2λ|x|a(x, t)

∂v

∂x
φ

]∞

−∞
+

∫
R

e−2λ|x|φ · A(t)v dx,

where the first term on the right-hand side vanishes since v ∈ L2(0, t;H 1,λ) and
φ ∈ H 1,λ. Therefore, by (4.2), for any w ∈ H 1,λ such that w ≥ ψ a.e. in R,(

∂v

∂t
+ A(t)v,w − v

)
λ

≥ 0 a.e. t.
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Taking, for example, w = v + φ, for a positive test function φ, we conclude
that (4.5) holds. Moreover, let w = ψ in the inequality above, we have∫

R
e−2λ|x|

(
∂v

∂t
+ A(t)v

)
(ψ − v)dx ≥ 0.

Then (4.6) follows from (4.3) and (4.5). �

4.2. Connection with Skorokhod’s embedding problem. To connect our em-
bedding problem SEP(σ, ν,μ) with the variational inequality, we need some as-
sumptions on σ , μ and the starting distribution ν. First, on σ : R → R+, we still
assume (3.2) and (3.4) hold. In addition, we assume that

∃K > 0 such that
1

K
< σ < K on R.(4.7)

On μ and ν, we still assume that Uμ(x) ≤ Uν(x) to ensure the existence of a
solution to SEP(σ, ν,μ).

Under these assumptions, we can specify the coefficients in the evolutionary
variational inequality, (4.4) and (4.5)–(4.6), to be

a(x, t) = σ 2(x)

2
; b(x, t) = σ(x)σ ′(x) − λσ 2(x) sgn(x);

(4.8)
ψ(x, t) = Uμ(x); v̄ = Uν(x),

and then the corresponding operators are given by A(t) = −σ 2(x)
2

∂2

∂x2 and

aλ(t;v,w) =
∫

R
e−2λ|x|

[
σ 2(x)

2

∂v

∂x

∂w

∂x
+ (

σ(x)σ ′(x) − λσ 2(x) sgn(x)
)∂v

∂x
w

]
dx.

We write the evolutionary variational inequality as:

VI(σ, ν,μ): Find a function v : R × [0, T ] → R satisfying (4.1)–(4.4), where
all the coefficients are given in (4.8).

We also have a stronger formulation, that is:

SVI(σ, ν,μ): For given T > 0, we seek a function v, in a suitable space, such
that (4.3)–(4.6) hold, where all the coefficients are given in (4.8).

Our main result is then to show that finding the solution to SEP(σ, ν,μ) is equiv-
alent to finding a (and hence the unique) solution to VI(σ, ν,μ):

THEOREM 4.2. Suppose (3.2), (3.4) and (4.7) hold, and let T > 0. Also,
let D and v be the solutions to SEP(σ, ν,μ) and VI(σ, ν,μ), respectively. Define
u(x, t) := −Eν |x − Xt∧τD

| and DT by

DT := {(x, t) ∈ R × [0, T ];v(x, t) > ψ(x, t)}.(4.9)
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Then we have DT = D ∩ R × [0, T ], and for all (x, t) ∈ R × [0, T ],
u(x, t) = v(x, t).

Moreover, if u ∈ L2(0, T ;H 2,λ), then u is also the solution to SVI(σ, ν,μ).

PROOF. Let λ > 0 be fixed, and suppose D is a solution to SEP(σ, ν,μ).
We need to show u is a solution to VI(σ, ν,μ). First note that Uμ(x) + |x| is
continuous on R, and converges to 0 as x → ±∞, and hence is bounded. So
x �→ Uμ(x)+|x| ∈ L∞(0, T ;H 0,λ), and then Uμ(x) ∈ L∞(0, T ;H 0,λ). Similarly,
Uν(x) ∈ L∞(0, T ;H 0,λ). Since 0 ≥ Uν(x) ≥ u(x, t) ≥ Uμ(x) for all t ∈ [0, T ],
we have u ∈ L∞(0, T ;H 0,λ). By (3.6), we also have | ∂u

∂x
| ≤ 1 since u is the poten-

tial of some probability distribution. Therefore we have u ∈ L∞(0, T ;H 1,λ). By
Lemma 3.3 and the fact that u is constant (in time) outside D, | ∂u

∂t
| ≤ σ 2pν(x, t)

a.e. on R×[0, T ] where pν(x, t) is the transition density of the diffusion process X

starting from ν. Then by standard Gaussian estimates (e.g., Stroock [36], Theo-
rem 3.3.11), we know there exists some constant A > 0, depending only on K ,
such that∥∥∥∥∂u

∂t

∥∥∥∥
L2(0,T ;H 0,λ)

≤
∫

R

∫ T

0

∫
R

A

1 ∧ t
exp

{
−2

(
At − (x − y)2

At

)−
− 2λ|x|

}
dx dt ν(dy)

=
∫

R

∫ T

0

A

1 ∧ t

∫ y+At

y−At
e−2λ|x| dx dt ν(dy)

+
∫

R

∫ T

0

Ae2At

1 ∧ t

∫
R\(y−At,y+At)

exp
{
−2(x − y)2

At
− 2λ|x|

}
dx dt ν(dy)

≤
∫

R

∫ T

0

A

1 ∧ t

∫ At

−At
e−2λ|x| dx dt ν(dy)

+
∫

R

∫ T

0

Ae2At

1 ∧ t

∫
R\(y−At,y+At)

exp
{
−2(x − y)2

At

}
dx dt ν(dy)

= A

λ

∫ T

0

1

1 ∧ t
(1 − e−2λAt )dt + 2A

∫ T

0

e2At

1 ∧ t

∫ ∞
At

exp
{
−2z2

At

}
dz dt

≤ A

λ

∫ T

0

2Aλt

1 ∧ t
dt + A3/2π1/2

√
2

∫ T

0

e2At
√

t

1 ∧ t
dt < ∞,

where we have applied Hölder’s inequality in the first line to get∣∣∣∣∂u

∂t

∣∣∣∣2 =
∣∣∣∣
∫

R
p(t, y, x)ν(dy)

∣∣∣∣2 ≤
∫

R
p(t, y, x)2ν(dy).
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So ∂u
∂t

∈ L2(0, T ;H 0,λ), and we have shown (4.1) holds.
By the same arguments used in the proof of Theorem 3.1, (4.3) and (4.4) hold.

Now we consider (4.2). We begin by observing that, for any φ ∈ C∞
K , if we write

μt(dx) for the law of Xt∧τD
, we have∫

R

∂φ

∂x

∂u

∂x
dx =

∫
R

∂φ

∂x

(
1 − 2P(Xt∧τD

≤ x)
)

dx

= −2
∫

R

∫
R

∂φ

∂x
1{y≤x}μt(dy)dx

(4.10)
= 2

∫
R

φ(y)μt(dy)

= 2E[φ(Xt∧τD
)].

In addition, for any w ∈ H 1,λ, we can find a sequence {φn} ⊂ C∞
K such that

lim
n→∞

∥∥φn − (
w − u(·, t))∥∥H 1,λ = 0.(4.11)

Moreover, e−λ|x|u(x, t) is bounded, and if e−λ|x|w is also bounded, then we can,
in addition, find a sequence {φn} ⊂ C∞

K such that e−2λ|x|φn(x) ≥ −K ′ for some
constant K ′ independent of n. For any n, we therefore have∫

R
e−2λ|x| σ 2

2

∂u

∂x

∂φn

∂x
dx = −

∫
R

e−2λ|x|(σσ ′ − λσ 2 sgn(x)
)∂u

∂x
φn dx

(4.12)
+

∫
R

e−2λ|x|φnσ
2μt(dx).

On the other hand, since ∂u/∂t vanishes outside D, and, using the same
arguments as (3.7) (which still hold on account of Lemma 3.3), is equal to
−σ(x)2pD(x, t), we have, for almost every t ∈ [0, T ]∫

R
e−2λ|x|φn

∂u

∂t
dx +

∫
R

e−2λ|x|φnσ
2μt(dx)

(4.13)
=

∫
R\Dt

e−2λ|x|φnσ
2μt(dx),

where Ds := {x ∈ R : (x, s) ∈ D}. By (4.12) and (4.13),(
∂u

∂t
, φn

)
λ

+ aλ(t;u,φn)

=
∫

R
e−2λ|x|

[
∂u

∂t
φn + σ 2

2

∂u

∂x

∂φn

∂x
+ (

σσ ′ − λσ 2 sgn(x)
)∂u

∂x
φn

]
dx

=
∫

R
e−2λ|x|φn

∂u

∂t
dx +

∫
R

e−2λ|x|φnσ
2μt(dx)

=
∫

R\Dt

e−2λ|x|φnσ
2μt(dx),
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for almost every t ∈ [0, T ]. Now suppose initially we have e−λ|x|w bounded, and
choose a sequence φn as above. Then we can let n → ∞ and apply Fatou’s lemma
and the fact that u = ψ on R \ Dt and w ≥ ψ to get

−
(

∂u

∂t
,w − u

)
λ

+ aλ(t;u,w − u) =
∫

R\Dt

e−2λ|x|(w − ψ)σ 2μt(dx) ≥ 0,

for almost every t ∈ [0, T ]. So (4.2) holds when e−λ|x|w is bounded. The gen-
eral case follows from noting that max{w,−N} converges to w in H 1,λ. We can
conclude that u is a solution to VI(σ, ν,μ). In addition, the final statement of the
theorem now follows from Theorem 4.1.

Conversely, suppose that we have already found the solution to VI(σ, ν,μ),
denoted by v(x, t). By Theorem 4.1 and the preceding argument, we have

−Eν |x − Xt∧τD
| = v(x, t),

when (x, t) ∈ R × [0, T ]. Finally, we need only note (from (3.7), and the line
above) that whenever (x, t) ∈ D, we have u(x, t) > ψ(x, t), and hence DT = D ∩
R × [0, T ]. �

REMARK 4.3. The constant λ which appears in the variational inequality can
now be seen to be unimportant: if we consider two positive numbers λ < λ∗, then
by Theorem 4.1, there exist v and v∗ satisfying (4.1)–(4.4) with the parameters λ

and λ∗, respectively. According to Theorem 4.2,

u(x, t) = v(x, t) = v∗(x, t),

so v = v∗. Therefore, the description of Root’s barrier by the strong variational
inequality is not affected by the choice of the parameter λ > 0. We do, however,
need λ > 0, since this assumption is used, in, for example, (4.12), to ensure we can
integrate by parts.

REMARK 4.4. As noted in Bensoussan and Lions [1], and which is well
known, one can connect the solution to the variational inequality VI(σ, ν,μ) to
the solution of a particular optimal stopping problem. In our context, the func-
tion v which arises in the solution to VI(σ, ν,μ) is also the function which arises
from solving the problem

v(x, t) = sup
τ≤t

Ex[
Uμ(Xτ )1{τ<t} + Uν(Xτ )1{τ=t}

]
.(4.14)

This seems a rather interesting observation, and at one level extends a number
of connections known to exist between solutions to the Skorokhod embedding
problem, and solutions to optimal stopping problems (e.g., Peskir [29], Obłój [28]
and Cox, Hobson and Obłój [10]).

What is rather interesting, and appears to differ from these other situations,
is that the above examples are all cases where the same stopping time is both a
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Skorokhod embedding, and a solution to the relevant optimal stopping problem. In
the context here, we see that the optimal stopping problem is not solved by Root’s
stopping time. Rather, the problem given in (4.14) runs “backwards” in time: if we
keep t fixed, then the solution to (4.14) is

τD = inf{s ≥ 0 : (Xs, t − s) /∈ D} ∧ t.

In addition, our connection between these two problems is only through the an-
alytic statement of the problem: it would be interesting to have a probabilistic
explanation for the correspondence.

REMARK 4.5. The above ideas also allow us to construct alternative embed-
dings which fail to be uniformly integrable. Consider using the variational inequal-
ity to construct the domain D in the manner described above, but with the func-
tion ψ chosen to be Uμ(x) − α, for some α > 0. By (4.14), one can check that
the solution to the variational inequality is a decreasing function with respect to t ,
and hence, B = D� is a barrier, which is nonempty, so that τD < ∞ a.s., and the
functions u(x, t) and v(x, t) defined in Theorem 4.2 agree (e.g., by taking bounded
approximations to D). In particular, limt→∞ u(x, t) = Uμ(x) − α. Since Xt∧τD

is
no longer uniformly integrable, we cannot simply infer that this holds in the limit,
but we can consider for example

u(x, t) − u(z, t) = −E[|Xt∧τD
− x| − |Xt∧τD

− z|]
which is a bounded function. Taking the limit as t → ∞, we can deduce that

−E[|XτD
− x| − |XτD

− z|] = Uμ(x) − Uμ(z).

From this expression, we can divide through by (x − z) and take the limit as x ↓ z

to get 2P(XτD
> z) − 1. The law of XτD

now follows.
Note also that there is no reason that the distribution above needed to have

the same mean as ν, and this can lead to constructions where the means differ. In
general, these constructions will not give rise to a uniformly integrable embedding,
but if we take two general (integrable) distributions, there is a natural choice, which
is to find the smallest α ∈ R such that Uν(x) ≥ Uμ(x) − α. In such a case, we
conjecture that the resulting construction would be minimal in the sense that there
is no other construction of a stopping time which embeds the same distribution, and
is almost surely smaller. See Monroe [25] and Cox [8] for further details regarding
minimality.

4.3. Geometric Brownian motion. An important motivating example for our
study is the financial application of Root’s solution described in the Introduction.
In both [16] and [5], the case σ(x) = x plays a key role in both the pricing and the
construction of a hedging portfolio. However, in the previous section, we only dis-
cussed the relation between Root’s construction and variational inequalities under
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the assumptions (3.2), (3.4) and (4.7), where the last assumption is not satisfied
by σ in this special case.

In this section, we study this special case: σ(x) = x, so that Xt is a geometric
Brownian motion. In addition, we will assume that the process is strictly positive,
so that ν and μ are supported on (0,∞). We therefore consider the Skorokhod
embedding problem SEP(σ, ν,μ) with starting distribution ν, where ν and μ are
integrable probability distributions satisfying

supp(μ) ⊂ (0,∞), supp(ν) ⊂ (0,∞),
(4.15)

Uμ(x) ≤ Uν(x) and
∫

x2 dν < ∞.

We recall from (2.1) that this implies, in particular, that the means of μ and ν

agree.
The solution to the stochastic differential equation

dXt = Xt dWt, X0 = x0

is the geometric Brownian motion x0 exp{Wt − t/2}, and, for y > 0, the transition
density of the process is

pt(y, x) := 1

x

1√
2πt

1{x>0} exp
{
−(lnx − lny + t/2)2

2t

}
.(4.16)

By analogy with Theorem 3.1, if D is the solution to SEP(σ, ν,μ), then we
would expect

∂u

∂t
= x2

2

∂2u

∂x2 on D; u(x, t) = Uμ(x) on R × (0,∞) \ D;
where u is defined as before by u(x, t) = −E|x − Xt∧τD

|. However, if we fol-
low the arguments in Section 4.2, we find that we need to set a(x, t) = x2/2 in
VI(σ, ν,μ), which would not satisfy the first condition of Theorem 4.1. To avoid
this we will perform a simple transformation of the problem. We set

v(x, t) = u(ex, t), (x, t) ∈ R × [0, T ].
Define the operator A(t) := −1

2
∂2

∂x2 + 1
2

∂
∂x

; then we have, when (ex, t) ∈ D,

∂v

∂t
+ A(t)v = 0.(4.17)

We state our main result of this section as follows:

THEOREM 4.6. Suppose σ(x) = x on (0,∞) and μ and ν satisfy (4.15).
Moreover, assume D solves SEP(σ, ν,μ), and u(x, t) := −E|x − Xt∧τD

|. Then
v(x, t) := u(ex, t) is the unique solution to (4.1)–(4.4) where we set

a(x, t) = 1
2 ; b(x, t) = 1

2 − λ · sgn(x); ψ(x, t) = Uμ(ex);
(4.18)

v̄ = Uν(e
x); λ > 1

2 .
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PROOF. Much of the proof will follow the proof of Theorem 4.2. As be-
fore, (4.3) and (4.4) are clear. In addition, we note that ψ − ex is continuous
and converges to 0 as x → ∞ and converges to Uμ(0) < ∞ as x → −∞, so
x �→ ψ − ex ∈ L∞(0, T ;H 0,λ). Hence ψ ∈ L∞(0, T ;H 0,λ) since we have λ > 1

2 .
Thus, v ∈ L∞(0, T ;H 0,λ). Moreover, we can easily see |∂v/∂x| is bounded by ex .
Therefore, v ∈ L∞(0, T ;H 1,λ) when λ > 1

2 . On the other hand, since |∂v/∂t | is
bounded by e2x

∫
pt(y, ex)ν(dy), we have, by Hölder’s inequality,∣∣∣∣∂v

∂t

∣∣∣∣2 ≤
∫

R+

1

2πt
exp

{
−(x − lny + t/2)2

t
+ 2x

}
ν(dy),

and hence,∥∥∥∥∂v

∂t

∥∥∥∥
L2(0,T ;H 0,λ)

≤
∫

R+

∫ T

0

∫
R

e−2λ|x|

2πt
exp

{
−(x − lny + t/2)2

t
+ 2x

}
dx dt ν(dy)

≤
∫

R+

∫ T

0

∫
R

1

2πt
exp

{
−(x − lny − t/2)2

t
+ 2 lny

}
dx dt ν(dy)

≤
∫

R+
y2ν(dy)

∫ T

0

1

2
√

πt
dt < ∞.

Therefore (4.1) is verified.
Using (4.10), for φ ∈ C∞

K we get∫
R

(
∂φ

∂x
(x) + φ(x)

)
∂v

∂x
dx =

∫ ∞
0

∂

∂y
[φ(ln(y))y]∂u

∂x
(y, t)dy

(4.19)
= 2E[φ(ln(Xt∧τD

))Xt∧τD
],

and so we define the measure νt by∫
φ(x)νt (dx) = E[φ(ln(Xt∧τD

))Xt∧τD
].

Now take any w ∈ H 1,λ, and take {φn} ⊂ C∞
K satisfying (4.11). By (4.17)

and (4.19), similar arguments to those used in the proof of Theorem 4.2 give∫
R

e−2λ|x| ∂v

∂x

(
1

2

∂φn

∂x
+ 1

2
φn − λ · sgn(x)

)
dx =

∫
R

e−2λ|x|φnνt (dx),

and ∫
R

e−2λ|x| ∂v

∂t
φn dx +

∫
R

e−2λ|x|φnνt (dx) =
∫

R\D̃t

e−2λ|x|φnνt (dx),
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for almost all t ∈ [0, T ], where D̃t := {x ∈ R : (ex, t) ∈ D}. Thus, for almost every
t ∈ [0, T ], (

∂v

∂t
, φn

)
λ

+ aλ(t;v,φn)

=
∫

R

(
∂v

∂t
φn + 1

2

∂φn

∂x

∂v

∂x
+

(
1

2
− λ · sgn(x)

)
φn

∂v

∂x

)
dx

=
∫

R\D̃t

e−2λ|x|φnνt (dx).

Finally, following the same arguments as in the proof of Theorem 4.2, we con-
clude (4.2) holds. Therefore v is a solution to (4.1)–(4.4) with coefficients deter-
mined by (4.18). The uniqueness is clear since it is easy to check the coefficients
defined in (4.18) satisfy the conditions in Theorem 4.1. �

5. Optimality of Root’s solution. For a given distribution μ, Rost [35] proves
that Root’s construction is optimal in the sense of “minimal residual expectation.”
It is easy to check that this is equivalent to the slightly more general problem

minimize E[F(τ)]
subject to: L(Xτ ) = μ;

τ is a UI stopping time.

Here we assume μ is a given integrable and centered distribution, X is the diffusion
process defined by (3.1), where the diffusion coefficient σ satisfies (3.2)–(3.4),
with initial distribution L(X0) = ν, and F is a given convex, increasing function
with right derivative f and F(0) = 0.

Our aim in this section is twofold. First, since Rost’s original proof relies heav-
ily on notions from potential theory, to give a proof of this result using proba-
bilistic techniques. Second, we shall be able to give a “pathwise inequality” which
encodes the optimality in the sense that we can find a submartingale Gt , and a
function H(x) such that

F(t) ≥ Gt + H(Xt)(5.1)

and such that, for τD , equality holds in (5.1) and Gt∧τD
is a UI martingale. It then

follows that τD does indeed minimize EF(τ) among all solutions to the Skorokhod
embedding problem. The importance of (5.1) is that we can characterize the sub-
martingale Gt , which will correspond in the financial setting to a dynamic trading
strategy for constructing a sub-replicating hedging strategy for call-type payoffs
on variance options.

We first define the key functions G(x, t) and H(x), where the submartingale
in (5.1) is Gt = G(Xt, t), and give key results concerning these functions.
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We suppose that we have solved Root’s problem for the given distributions, and
hence have our barrier B = D�. Define the function

M(x, t) = E(x,t)f (τD),(5.2)

where τD is the corresponding Root stopping time. In the following, we shall as-
sume

M(x, t) is locally bounded on R × R+.(5.3)

We suppose also (at least initially) that (3.2)–(3.4) and (4.7) still hold. Note
that M(x, t) now has the following important properties. First, since f is right-
continuous (it is the right derivative of F ), M(x, t) = f (t) whenever (x, t) /∈ D

and t > 0. In addition, since f is increasing, for all x and t we have M(x, t) ≥
f (t).

Now define a function Z(x) by

Z(x) = 2
∫ x

0

∫ y

0

M(z,0)

σ 2(z)
dz dy.(5.4)

So in particular, we have Z′′(x) = 2M(x,0)

σ 2(x)
, and Z(x) is a convex function. Define

also

G(x, t) =
∫ t

0
M(x, s)ds − Z(x),(5.5)

and

H(x) =
∫ R(x)

0

(
f (s) − M(x, s)

)
ds + Z(x),(5.6)

where R(x) is the barrier function. Two key results concerning these functions are
then:

PROPOSITION 5.1. We have, for all (x, t) ∈ R × R+,

G(x, t) + H(x) ≤ F(t).(5.7)

And also:

LEMMA 5.2. Suppose that f is bounded, and for any T > 0,

E

[∫ T

0
Z′(Xs)

2σ(Xs)
2 ds

]
< ∞, EZ(X0) < ∞.(5.8)

Then the process

G(Xt∧τD
, t ∧ τD) is a martingale,(5.9)

and

G(Xt, t) is a submartingale.(5.10)
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Using these results, we are able to prove the following theorem, which gives us
Rost’s result regarding the optimality of Root’s construction.

THEOREM 5.3. Suppose D solves SEP(σ,μ, ν), and equations (5.3) and (5.8)
hold. Then

EF(τD) ≤ EF(τ)(5.11)

whenever τ is a stopping time such that Xτ ∼ μ.

PROOF. We begin by considering the case where EτD < ∞,Eτ < ∞ and f

is bounded. Since Z(x) is convex, by the Meyer–Itô formula (e.g., Protter [30],
Theorem IV.71),

Z(Xt) = Z(X0) +
∫ t

0
Z′(Xr)dXr + 1

2

∫ t

0
Z′′(Xr)σ

2(Xr)dr.

By (5.8) and the fact that f is bounded (and hence also M(Xs,0) is bounded), we
get

EZ(Xt∧τ ) = EZ(X0) + E

∫ t∧τ

0
M(Xs,0)ds ≤ f (∞)Eτ + EZ(X0).

Applying Fatou’s lemma, we deduce that for any stopping time τ with finite ex-
pectation, Z(Xτ ) is integrable. Moreover for such a stopping time, by convexity,
Z(Xt∧τ ) ≤ E[Z(Xτ )|Ft ], and so, by Lemma 5.2, G(Xt∧τ , t ∧ τ) is a submartin-
gale which is bounded below by a UI martingale, and bounded above by f (∞)τ .
It follows that EG(Xt∧τ , t ∧ τ) → EG(Xτ , τ ) as t → ∞. The same arguments
hold when we replace τ by τD .

Since R(XτD
) ≤ τD and if t ∈ [R(x),∞), then τD = t,P(x,t)-a.s., so that

M(XτD
, s) = f (s) for s ≥ τD , we have

G(XτD
, τD) +

∫ R(XτD
)

0

(
f (s) − M(XτD

, s)
)
ds + Z(XτD

)

=
∫ τD

0
M(XτD

, s)ds +
∫ R(XτD

)

0

(
f (s) − M(XτD

, s)
)
ds

(5.12)
=

∫ τD

0
M(XτD

, s)ds +
∫ τD

0

(
f (s) − M(XτD

, s)
)
ds

=
∫ τD

0
f (s)ds = F(τD).

On the other hand, since XτD
∼ Xτ , and observing that G(XτD

, τD) and F(τD)

are integrable, so too is H(XτD
), and

EH(XτD
) = EH(Xτ ).
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In addition, by Lemma 5.2 and the limiting behavior deduced above, we have

EG(XτD
, τD) = EG(X0,0) ≤ lim

t→∞EG(Xt∧τ , t ∧ τ) = EG(Xτ , τ ).

Putting these together, we get

EF(τD) = E[G(XτD
, τD) + H(XτD

)]
≤ E[G(Xτ , τ ) + H(Xτ )]
≤ EF(τ).

We now consider the case where at least one of τ or τD has infinite expec-
tation. Note that if F(·) �≡ 0, then there is some α,β ∈ R with β > 0 such that
F(t) ≥ α + βt , and hence we cannot have Eτ = ∞ or EτD = ∞ without the cor-
responding term in (5.11) also being infinite. The only case which need concern
us is the case where Eτ < ∞, but EτD = ∞. Note, however, that τD remains UI,
so E[Xt∧τD

|Ft ] = Xt . In addition, from the arguments applied above, we know
Z(Xτ ) is integrable, and since Xτ ∼ XτD

, so too is Z(XτD
). Then H(Xτ ) and

H(XτD
) are both bounded above by an integrable random variable, so their ex-

pectations are well defined (although possibly not finite), and equal. Then, as
above, −E[Z(XτD

)|Ft ] ≤ −Z(Xt∧τD
) ≤ G(Xt∧τD

, t ∧ τD). We can deduce that
EG(XτD

, τD) ≤ limn→∞ EG(Xt∧τD
, t ∧ τD) = G(X0,0) ≤ EG(Xτ , τ ). The re-

maining steps follow as previously, and it must follow that in fact EF(τD) ≤
EF(τ), which contradicts the assumption that Eτ < ∞ and EτD = ∞.

To observe that the result still holds when f is unbounded, observe that we
can apply the above argument to f (t) ∧ N , and FN(t) = ∫ s

0 f (s) ∧ N ds to get
EFN(τD) ≤ EFN(τ), and the conclusion follows on letting N → ∞. �

We now turn to the proofs of our key results:

PROOF OF PROPOSITION 5.1. If t ≤ R(x), then the left-hand side of (5.7) is∫ t

0
f (s)ds +

∫ R(x)

t

(
f (s) − M(x, s)

)
ds = F(t) −

∫ R(x)

t

(
M(x, s) − f (s)

)
ds,

and we know M(x, s) ≥ f (s) ≥ 0, so that the inequality holds.
Now consider the case where R(x) ≤ t . Then the left-hand side of (5.7) becomes∫ t

R(x)
M(x, s)ds +

∫ R(x)

0
f (s)ds =

∫ t

R(x)
f (s)ds +

∫ R(x)

0
f (s)ds = F(t). �

PROOF OF LEMMA 5.2. We begin by noting that Z(x) is convex, and therefore
the Meyer–Itô formula (e.g., Protter [30], Theorem IV.71) gives

Z(Xt) − Z(Xs) =
∫ t

s
Z′(Xr)dXr + 1

2

∫ t

s
Z′′(Xr)σ

2(Xr)dr.
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It follows from (5.8) that the first integral is a martingale. So we get

E[Z(Xt) − Z(Xs)|Fs] =
∫ t

s
E[M(Xr,0)|Fs]dr, s ≤ t.

In addition, since M(x, t) ≥ f (t) and f (t) is increasing, for r, u ≥ 0 by the
strong Markov property, writing X̃ for an independent stochastic process with the
same law as X and τ̃D for the corresponding hitting time of the barrier, we have

E(x,r)[f (τD)|Fr+u] = 1τD>r+uE(x,r)[f (τD)|Fr+u]
+ 1τD≤r+uE(x,r)[f (τD)|Fr+u]

≤ 1τD>r+uE(Xx
u,r+u)[f (τ̃D)] + 1τD≤r+uf (r + u)

≤ M(Xx
u, r + u).

When r = 0, we have E(x,0)[f (τD)|Fu] ≤ M(Xx
u,u). For s, u ∈ [0, t],

E[M(Xt,u)|Fs] = EXsM(X̃t−s, u)

≥ E(Xs,u−(t−s))[f (τ̃D)](5.13)

≥ M
(
Xs,u − (t − s)

)
,

when u ≥ t − s. On the other hand, if u < t − s,

E[M(Xt,u)|Fs] = E
[
E(Xt−u,0)[M(X̃u,u)]|Fs

]
≥ E

[
E(Xt−u,0)[f (τ̃D)]|Fs

]
(5.14)

≥ E[M(Xt−u,0)|Fs].
Then we can write

E[G(Xt, t)|Fs] =
∫ t

0
E[M(Xt,u)|Fs]du − E[Z(Xt)|Fs]

= G(Xs, s) +
∫ t

0
E[M(Xt,u)|Fs]du −

∫ s

0
M(Xs,u)du

− E[Z(Xt) − Z(Xs)|Fs]
≥ G(Xs, s) +

∫ t−s

0
E[M(Xt−u,0)|Fs]du −

∫ s

0
M(Xs,u)du

−
∫ t

s
E[M(Xu,0)|Fs]du +

∫ t

t−s
M(Xs, s − t + u)du

≥ G(Xs, s) +
∫ t

s
E[M(Xu,0)|Fs]du −

∫ t

s
E[M(Xu,0)|Fs]du

+
∫ s

0
M(Xs,u)du −

∫ s

0
M(Xs,u)du

≥ G(Xs, s).
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Where we have used (5.13) and (5.14) in the third line.
On the other hand, on {τD ≥ s}, from the definition of M(x, t) and the Markov

property, we get

E[M(Xt∧τD
, t ∧ τD − u)|Fs] = M(Xs, s − u)(5.15)

when u ≤ s, and

E[M(Xt∧τD
, t ∧ τD − u)|Fu] = M(Xu,0)(5.16)

when u ∈ [s, t ∧ τD]. Then a similar calculation to above gives, for s ≤ τD ,

E[G(Xt∧τD
, t ∧ τD)|Fs]

= E

[∫ t∧τD

0
M(Xt∧τD

, t ∧ τD − u)du
∣∣∣Fs

]
− E[Z(Xt∧τD

)|Fs]

=
∫ s

0
M(Xs, s − u)du + E

[∫ t∧τD

s
M(Xt∧τD

, t ∧ τD − u)du
∣∣∣Fs

]

− Z(Xs) − E

[∫ t∧τD

s
M(Xu,0)du

∣∣∣Fs

]

= E

[∫ t

s
E[M(Xt∧τD

, t ∧ τD − u) − M(Xu,0)|Fu]1{u≤τD} du
∣∣∣Fs

]
+G(Xs, s)

= G(Xs, s),

where we have used (5.15) and (5.16). �

REMARK 5.4. Note that the fact that our choice of D given in the solution is
the domain D which arises in solving Root’s embedding problem is only used in
Theorem 5.3 to enforce the lower bound. In fact, we could choose any barrier B ,
and D = B� as our domain, and this would result in a lower bound, with corre-
sponding functions G and H . The choice of Root’s barrier gives the optimal lower
bound, in that we can attain equality for some stopping time. In this context, it is
worth recalling the lower bounds given by Carr and Lee [5], Proposition 3.1—here
a lower bound is given which essentially corresponds to choosing the domain with
R(x) = Q, for a constant Q. The arguments given above show that similar con-
structions are available for any choice of R, and the optimal choice corresponds to
Root’s construction.

REMARK 5.5. Although the preceding section is written for a diffusion on R,
it is not hard to check that the case where σ(x) = x can also be included without
many changes. In this setting, we need to restrict the space variable to the space
(0,∞) (so we assume that τD < ∞ a.s.), and consider a starting distribution which
is also supported on (0,∞), and with a corresponding change to (5.3).
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We end this section with a brief example which illustrates some of the relevant
quantities.

EXAMPLE 5.6. Suppose we take Root’s barrier D := {(x, t) : t < R(x)} with
the boundary function R(x) = −λ(x + α)(x − β)1(−α,β), where λ,α,β > 0; see
Figure 1a. Given a standard Brownian motion W and Root’s stopping time τD =
inf{t > 0 : t ≥ R(Wt)}, define μ := L(WτD

). Let F(t) = t2/2, and we will see
E[F(τD)] ≤ E[F(τ)] for any UI stopping time τ such that Wτ ∼ μ.

For (x, t) ∈ R × R+, define M(x, t) = E(x,t)[τD]. Then if t ≥ R(x), M(x, t) =
t . If 0 ≤ t < R(x), since τD = λ(WτD

+ α)(WτD
− β), using Itô’s formula, we can

compute M(x, t) to be

M(x, t) = λ

1 + λ
[t − (x + α)(x − β)] for 0 ≤ t < R(x).

Defining G,H,Z as in (5.4)–(5.6), we get the explicit expressions

Z(x) = λ

6(1 + λ)
·
⎧⎪⎨
⎪⎩

−β4 − 2αβ3 + (2β3 + 6αβ2)x, x ≥ β,

−x4 − 2(α − β)x3 + 6αβx2, x ∈ (−α,β),

−α4 − 2α3β − (2α3 + 6α2β)x, x ≤ −α,

G(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

1 + λ

[
t2

2
− t (x + α)(x − β)

]
− Z(x), if 0 ≤ t < R(x),

R2(x)

2(1 + λ)
+ 1

2
t2 − Z(x), if t ≥ R(x),

H(x) = − R2(x)

2(1 + λ)
+ Z(x).

It is easy to check directly that G(Wt, t) is a submartingale, and that it is a martin-
gale up to the stopping time τD . We also can check that (5.7) holds here:

G(x, t) + H(x) − F(t) =
⎧⎪⎨
⎪⎩−[R(x) − t]2

2(1 + λ)
, if 0 ≤ t < R(x),

0, if t ≥ R(x).

Therefore, for any UI stopping time τ such that L(Wτ ) = μ = L(WτD
),

E[F(τ)] ≥ E[G(Wτ , τ) + H(Wτ )] ≥ E[G(WτD
, τD)] + E[H(WτD

)]
(5.17)

= E[F(R(WτD
))] + E

[∫ τD

R(WτD
)
M(WτD

, s)ds

]
= E[F(τD)],

which shows the optimality of Root’s stopping time. Figure 2 illustrates some of
the relevant functions derived here.
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(a) (b)

FIG. 2. We give graphical representations of some of the relevant quantities derived in Example 5.6,
for α = 2, β = 3 and λ = 1/2. In (a) we see G(x, t) + H(x), which is a lower bound for F(t), and
in (b) we see the difference G(x, t) + H(x) − F(t), which is indeed negative.

6. Financial applications. We now turn to our motivating financial problem:
consider an asset price St defined on a complete probability space (�, F , (Ft )t≥0,

P), with

dSt

St

= rt dt + σt dWt(6.1)

under some probability measure Q ∼ P, where P is the objective probability mea-
sure, and Wt a Q-Brownian motion. In addition, we suppose rt is the risk-free
rate which we require to be known, but which need not be constant. In particular,
let rt , σt be locally bounded, predictable processes so that the integral in (6.1) is
well defined, and so St is an Itô process. We suppose that the process σt is not
known (or more specifically, we aim to produce conclusions which hold for all σt

in the class described). Specifically, we shall suppose:

ASSUMPTION 6.1. The asset price process, under some probability measure
Q ∼ P, is the solution to the SDE (6.1), where rt and σt are locally bounded,
predictable processes.

In addition, we need to make the following assumptions regarding the set of call
options, which are initially traded:

ASSUMPTION 6.2. We suppose that call options with maturity T , and at all
strikes {K :K ≥ 0} are traded at time 0, and the prices, C(K), are assumed to
be known. In addition, we suppose call-put parity holds, so that the price of a

put option with strike K is P(K) = e− ∫ T
0 rs dsK − S0 + C(K). We make the ad-

ditional assumptions that C(K) is a continuous, decreasing and convex function,

with C(0) = S0, C′+(0) = −e− ∫ T
0 rs ds and C(K) → 0 as K → ∞.
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Many of these notions can be motivated by arbitrage concerns; see, for example,
Cox and Obłój [12]. That there are plausible situations in which these assumptions
do not hold can be seen by considering models with bubbles (e.g., [9]), in which
call-put parity fails, and C(K) �→ 0 as K → ∞. Let us define Bt = e

∫ t
0 rs ds , and

make the assumptions above. Following the perspective that the prices correspond
to expectations under Q, the implied law of B−1

T ST (which we will denote μ) can
be recovered by the Breeden–Litzenberger formula [2],

μ((K,∞)) = Q∗(
B−1

T ST ∈ (K,∞)
) = −2BT C′+(BT K).(6.2)

Here we have used Q∗ to emphasize the fact that this is only an implied probabil-
ity, and not necessarily the distribution under the actual measure Q. From (6.2) we
deduce that Uμ(x) = S0 − 2C(BT x) − x, giving an affine mapping between the
function Uμ(x) and the call prices. We do not impose the condition that the law
of B−1

T ST under Q is μ, we merely note that this is the law implied by the traded
options. We also do not assume anything about the price paths of the call options:
our only assumptions are their initial prices, and that they return the usual pay-
off at maturity. It can now also be seen that the assumption that C′+(0) = −B−1

T

is equivalent to assuming that there is no atom at 0—that is, μ is supported on
(0,∞). Finally, it follows from the assumptions that μ is an integrable measure
with mean S0.

Our goal is to now to use the knowledge of the call prices to find a lower bound
on the price of an option which has payoff

F

(∫ T

0
σ 2

t dt

)
= F(〈lnS〉T ).

Consider the discounted stock price,

Xt = e− ∫ t
0 rs dsSt = B−1

t St .

Under Assumption 6.1, Xt satisfies the SDE

dXt = Xtσt dWt.

Defining a time change τt = ∫ t
0 σ 2

s ds, and writing At for the right-continuous in-
verse, so that τAt = t , we note that W̃t = ∫ At

0 σs dWs is a Brownian motion with
respect to the filtration F̃t = FAt , and if we set X̃t = XAt , we have

dX̃t = X̃t dW̃t .

In particular, X̃t is now of a form where we may apply our earlier results, using
the target distribution arising from (6.2), and noting also that X̃0 = S0 and X̃τT

=
XT = B−1

T ST .
We now define functions as in Section 5, so that f (t) = F ′+(t) and (5.2)–(5.6)

hold. Our aim is to use (5.7), which now reads

G(XAt , t) + H(XAt ) = G(X̃t , t) + H(X̃t ) ≤ F(t) = F

(∫ At

0
σ 2

s ds

)
,(6.3)
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to construct a sub-replicating portfolio. We shall first show that we can construct a
trading strategy that sub-replicates the G(X̃t , t) portion of the portfolio. Then we
argue that we are able, using a portfolio of calls, puts, cash and the underlying, to
replicate the payoff H(XT ).

Since G(X̃t , t) is a submartingale, we do not expect to be able to replicate this in
a completely self-financing manner. However, by the Doob–Meyer decomposition
theorem, and the martingale representation theorem, we can certainly find some
process φ̃t such that

G(X̃t , t) ≥ G(X̃0,0) +
∫ t

0
φ̃s dX̃s

and such that there is equality at t = τD . Moreover, since G(X̃τD∧t , τD ∧ t) is a
martingale, and G is C2,1 in D, we have

G(X̃τD∧t , τD ∧ t) = G(X̃0,0) +
∫ τD∧t

0

∂G

∂x
(X̃τD∧s, τD ∧ s)dX̃s.

More generally, we would not expect ∂G
∂x

to exist everywhere in D�; however,
if, for example, left and right derivatives exist, then we could choose φ̃t ∈
[ ∂G

∂x
(x−, t), ∂G

∂x
(x+, t)] as our holding of the risky asset (or alternatively, but less

explicitly, take φ̃t = ∂/∂x[Ex,tG(X̃t+δ, t0 + δ)], for t ∈ [t0, t0 + δ]).
It follows that we can identify a process φ̃t with

G(X̃τt , τt ) ≥ G(X̃0,0) +
∫ τt

0
φ̃s dX̃s = G(X0,0) +

∫ t

0
φ̃τs dXs,

where we have used, for example, Revuz and Yor [31], Proposition V.1.4. Finally,
writing φs = φ̃τs , we have

G(Xt, τt ) ≥ G(X0,0) +
∫ t

0
φs dXs = G(X0,0) +

∫ t

0
φs d(B−1

s Ss).

If we consider the self-financing portfolio which consists of holding φsB
−1
T units

of the risky asset, and an initial investment of G(X0,0)B−1
T − φ0S0B

−1
T in the

risk-free asset, this has value Vt at time t , where

d(B−1
t Vt ) = B−1

T φt d(B−1
t St ),

and therefore

VT = BT

(
V0B

−1
0 +

∫ T

0
B−1

T φs d(B−1
s Ss)

)
= G(X0,0) +

∫ T

0
φs dXs.

We now turn to the H(XT ) component in (6.3). If H(x) can be written as the
difference of two convex functions (so, in particular, H ′′(dK) is a well-defined
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signed measure), we can write

H(x) = H(S0) + H ′+(S0)(x − S0) +
∫
(S0,∞)

(x − K)+H ′′(dK)

+
∫
(0,S0]

(K − x)+H ′′(dK).

Taking x = XT = B−1
T ST , we get

H(XT ) = H(S0) + H ′+(S0)(B
−1
T ST − S0) + B−1

T

∫
(S0,∞)

(ST − BT K)+H ′′(dK)

+ B−1
T

∫
(0,S0]

(BT K − ST )+H ′′(dK).

This implies that the payoff H(XT ) can be replicated at time T by “holding” a
portfolio of

B−1
T

(
H(S0) − H ′+(S0)S0

)
in cash;

B−1
T H ′+(S0) units of the asset;

(6.4)
B−1

T H ′′(dK) units of the call with strike BT K for K ∈ (S0,∞);
B−1

T H ′′(dK) units of the put with strike BT K for K ∈ (0, S0];
where the final two terms should be interpreted appropriately. In practice, the func-
tion H(·) can typically be approximated by a piecewise linear function, where the
“kinks” in the function correspond to traded strikes of calls or puts, in which case
the number of units of each option to hold is determined by the change in the gra-
dient at the relevant strike. The initial cost of setting up such a portfolio is well
defined, provided∫

(0,S0]
P(BT K)|H ′′|(dK) +

∫
(S0,∞)

C(BT K)|H ′′|(dK) < ∞,(6.5)

where |H ′′|(dK) is the total variation of the signed measure H ′′(dK). We therefore
shall make the following assumption:

ASSUMPTION 6.3. The payoff H(XT ) can be replicated using a suitable port-
folio of call and put options, cash and the underlying, with a finite price at time 0.

We can therefore combine these to get the following theorem:

THEOREM 6.4. Suppose that Assumptions 6.1, 6.2 and 6.3 hold, and suppose
F(·) is a convex, increasing function with F(0) = 0 and right derivative f (t) =
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F ′+(t) which is bounded. Then there exists an arbitrage if the price of an option
with payoff F(〈lnS〉T ) is less than

B−1
T G(S0,0) + B−1

T H(S0) + B−1
T

∫
(S0,∞)

C(BT K)H ′′(dK)

(6.6)
+ B−1

T

∫
(0,S0]

P(BT K)H ′′(dK),

where the functions G and H are as defined in (5.5) and (5.6), and are determined
by the solution τD to SEP(σ, δS0,μ) for σ(x) = x, and where μ is determined
by (6.2).

Moreover, this bound is optimal in the sense that there exists a model which is
free of arbitrage, under which the bound can be attained.

PROOF. It follows from Theorem 4.6 that, given μ, we can find a do-
main D and corresponding stopping time τD which solves SEP(σ, δS0,μ). Ap-
plying Proposition 5.1 (and bearing in mind Remark 5.5), we conclude that the
strategy described above will indeed sub-replicate, and we can therefore produce
an arbitrage by purchasing the option, and selling short the portfolio of calls, puts
and the underlying given in (6.4), and in addition, holding the dynamic portfolio
with −φtB

−1
T units of the underlying at time t . It is not hard to check, given that f

is bounded (and choosing the lower limits in (5.4) to be S0 rather than 0) that
(Z′(X̃s)σ (X̃s))

2 ≤ (X̃s/X̃0 − 1)2, and hence that (5.8) holds. Condition (5.3) also
clearly holds. As a consequence, we do indeed have a subhedge.

To see that this is the best possible bound, we need to show that there is a model
which satisfies Assumption 6.1, has law μ under Q at time T , and such that the
subhedge is actually a hedge. But consider the stopping time τD for the process X̃t .
Define the process

Xt = X̃t/(T −t)∧τD
for t ∈ [0, T ]

which corresponds to the choice of σ 2
s = T −s+1

(T −t)2 1{s/(T −s)<τD}. Since τD < ∞ a.s.,

then XT = X̃τD
, τT = τD and St = XtBt is a price process satisfying Assump-

tion 6.1 with

F

(∫ T

0
σ 2

t dt

)
= F(τD).

Finally, it follows from (5.12) that at time T , the value of the hedging portfolio
exactly equals the payoff of the option. �

REMARK 6.5. The above results are given in the context of an increasing,
convex function, but there is also a similar result concerning increasing, concave
functions which can be derived. Consider a bounded, increasing function f as
before, and define the function

L(t) =
∫ t

0

(
f (∞) − f (s)

)
ds = f (∞)t − F(t).
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Using Theorem 6.4 and (1.2), it is easy to see that the price of a contract with
payoff L(〈lnS〉T ) must be bounded above by

2f (∞)Q − 2f (∞)B−1
T log(S0) − B−1

T G(S0,0) − B−1
T H(S0)

− B−1
T

∫
(S0,∞)

C(BT K)H ′′(dK) − B−1
T

∫
(0,S0]

P(BT K)H ′′(dK),

where Q is the price of a log-contract [i.e., an option with payoff ln(ST )]. As
before, this upper bound is the best possible, under a similar set of assumptions.

REMARK 6.6. An analogous result can be shown for forward start options.
Suppose that the option has payoff

F

(∫ T

S
σ 2

t dt

)
= F(〈S〉T − 〈S〉S)

for fixed times 0 < S < T . Then we can use the previous results for general starting
distributions to deduce a similar result to Theorem 6.4 for forward start options,
provided we assume that there are calls traded at both S and T . We use essentially
the same idea as above: we aim to hold a portfolio which (sub-)replicates G(Xt, τt )

for t ∈ [S,T ], and hold the payoff H(XT ) as a portfolio of calls. However, we now
have τt = ∫ t

S σ 2
s ds, and so X̃t = XAt , gives X̃0 = XS (recall that At was assumed

right-continuous). The procedure is much as above, except that we need to use
the solution to Theorem 5.3 with a general target distribution, and the amount
G(X̃0,0) will be a FS-random variable. The initial distribution ν can be derived
using the Breeden–Litzenberger formula (6.2) at time S. To ensure that we hold
the amount G(X̃0,0) at time S, we observe that G(X̃0,0) = G(XS,0). Hence if,
for example, G(x,0) can be written as the difference of two convex functions, we
can replicate this amount by holding a portfolio of calls and puts with maturity S

in a similar manner to (6.4). The remaining details follow as in the hedge described
in Theorem 6.4

REMARK 6.7. We can also consider modifications to the realized variance.
Consider a slightly different time-change: suppose we set

τt =
∫ t

0
σ 2

s λ(Xs)ds,

for some “nice” function λ(x), which in particular we suppose is bounded above
and below by positive constants. Then following the computations above, we see
that

X̃t = XAt =
∫ At

0
Xsλ(Xs)

−1/2(σsλ(Xs)
1/2 dWs) =

∫ t

0
XAsλ(XAs )

−1/2 dW̃s,

and therefore dX̃t = σ(X̃t )dW̃t , where σ(x) = xλ(x)−1/2. We then conjecture
that it is possible to extend Theorem 4.6 to cover this new class of functions σ(x)
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(the conditions that should be imposed on λ such that this result may be extended
remains an interesting question for future research). It would then be possible to
modify the above arguments to provide robust hedges on convex payoffs of the
form

F

(∫ T

0
σ 2

s λ(Xs)ds

)
.

An interesting special case of this would then be to give robust bounds on the price
of an option on corridor variance

F

(∫ T

0
σ 2

s 1{Ss∈[a,b]} ds

)
,(6.7)

by considering λ(x) = 1{x∈[a,b]}, however this would only work in the case where
there are no discount rates (i.e., Bt = 1). In general, we can only give a tight lower
bound for options on

F

(∫ T

0
σ 2

s 1{Xs∈[̃a,b̃]} ds

)
,

although this does provide a lower bound for (6.7) by considering the case where
ã = a and b̃ = BT b.

7. Conclusions. We conclude by summarizing the results, and describing
some interesting questions for future work. In this paper, we have given a vari-
ational inequality representation of Root’s solution to the Skorokhod embedding
problem, and provided a novel proof of optimality, which allows us to construct a
model-independent subhedge for options on variance. We believe that our results
provide interesting insights into all three aspects of the work: the construction of
solutions to the Skorokhod embedding problem, proving optimality results for the
same and finally the connections with model-independent hedging.

We also believe that there are interesting lines of research that now arise. The
construction opens up a number of questions regarding Root’s solution to the Sko-
rokhod embedding problem: for example, what can be said about the shape of the
boundary? Under what conditions on μ will the boundary be smooth? When does
R(x) → 0 as x → ±∞? When is R(x) bounded? Properties of free boundaries are
well studied in the analytic literature, and may be useful in answering these ques-
tions. The connection to minimality and noncentered target distributions raised in
Remark 4.5, and the question asked at the end of this remark would also be inter-
esting lines for research.

The connection with optimal stopping noted in Remark 4.4 is interesting, and
obtaining a deeper understanding between optimal stopping problems and optimal
Skorokhod embeddings seems to be an interesting area of research.

Another natural question concerns the upper bound/super-hedging strategy. It
has been remarked by Obłój [27] and Carr and Lee [5] that a related construc-
tion of Rost should provide a suitable upper bound, but similar questions to those
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answered here remain (although we hope to be able to provide some answers
in subsequent work). We note, however, that numerical evidence (see Carr and
Lee [5]) seems to suggest that the Root bounds may be more appropriate in the fi-
nancial applications. It would also be of interest to see to what extent these model-
independent bounds may be useful in practice. In Cox and Obłój [12], an analysis
of the use of model-independent bounds as a hedging strategy for barrier options
was performed. A similar analysis of the strategies derived in this work would also
be of interest.

Other questions that arise from the practical standpoint include how to incorpo-
rate additional market information (e.g., calls at an intermediate time [4]), and how
to adjust for the fact that there will generally only be a finite set of quoted calls;
see [13] for a related question. Remark 6.7 also suggests open questions regarding
more general choices of σ(x).

Acknowledgment. We are grateful to Sam Howison for a helpful discussion
which has much improved the material in Sections 3 and 4.
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