Solution of a constraint generalised eigenvalue problem using the inexact Shift-and-Invert Lanczos method on a paper by V. Simoncini

Melina Freitag

Department of Mathematical Sciences
University of Bath

Numerical Analysis Seminar
9th December 2005
Introduction

The Lanzcos method

Motivation

The SI-Lanczos process on the constraint problem

Shift-and-Invert Lanczos

Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system

Block definite preconditioning

Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
Outline

Introduction

The Lanzcos method

Motivation

The SI-Lanczos process on the constraint problem

Shift-and-Invert Lanczos

Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system

Block definite preconditioning

Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
The Lanzcos method

Problem

- Eigenproblem for $A \in \mathbb{C}^{n,n}$, $A = A^T$:
 \[Ax = \lambda x. \]

- let the eigenvalues be
 \[|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n| \]

- associated eigenvectors x_1, x_2, \ldots, x_n

- A is large and sparse, need iterative methods.
The Lanzcos method

Idea behind Lanczos

- keep iterates from Power method $v, Av, \ldots, A^{k-1}v$ which form a Krylov subspace associated with A and v

$$\mathcal{K}_j(A, v) = \text{span}\{v, Av, \ldots, A^{j-1}v\}.$$

- $v, Av, \ldots, A^{k-1}v$ are usually ill-conditioned
- orthogonalise the vectors $v, Av, \ldots, A^{k-1}v$ in the Krylov space using a modified Gram-Schmidt process
The Lanzcos method

Idea behind Lanczos

- keep iterates from Power method $v, Av, \ldots, A^{k-1}v$ which form a
 Krylov subspace associated with A and v

$$\mathcal{K}_j(A, v) = \text{span}\{v, Av, \ldots, A^{j-1}v\}.$$

- $v, Av, \ldots, A^{k-1}v$ are usually ill-conditioned
- orthogonalise the vectors $v, Av, \ldots, A^{k-1}v$ in the Krylov space using
 a modified Gram-Schmidt process
Lanczos algorithm

- choose initial vector v and normalise $v_1 = \frac{v}{\|v\|_2}$
- On subsequent steps $k = 1, 2, \ldots$ take

$$\tilde{v}_{k+1} = Av_k - \sum_{j=1}^{k} v_j t_{jk}$$

where t_{jk} is the Gram-Schmidt coefficient $t_{jk} = \langle Av_k, v_j \rangle$.
- normalise

$$v_{k+1} = \frac{\tilde{v}_{k+1}}{t_{k+1,k}} \quad \text{where} \quad t_{k+1,k} = \|\tilde{q}_{k+1}\|_2$$
Matrix formulation and calculation of eigenvalues

Lanczos in matrix form
The Lanczos process can be written in the form

$$AV_m = V_m T_m + v_{m+1} \beta_m e_m^T$$

where

$$T_m = \begin{bmatrix}
\alpha_1 & \beta_1 \\
\beta_1 & \alpha_2 & \cdot \\
& \cdot & \cdot & \cdot \\
& & \beta_{m-1} & \alpha_m \\
\end{bmatrix}$$

Theorem
Let V_m, T_m and β_m generated by the Lanczos process and

$$T_m s = \mu s, \quad \|s\|_2 = 1.$$

Let $y = V_m s \in \mathbb{C}^n$, then
The Lanzcos method

Matrix formulation and calculation of eigenvalues

Lanczos in matrix form
The Lanczos process can be written in the form

\[AV_m = V_m T_m + v_{m+1} \beta_m e_m^T \]

where

\[T_m = \begin{bmatrix}
\alpha_1 & \beta_1 \\
\beta_1 & \alpha_2 & \ddots \\
& \ddots & \ddots & \ddots \\
& & \beta_{m-1} & \alpha_m
\end{bmatrix} \]

Theorem
Let \(V_m, T_m \) and \(\beta_m \) generated by the Lanczos process and

\[T_m s = \mu s, \quad \|s\|_2 = 1. \]

Let \(y = V_m s \in \mathbb{C}^n \), then
The Lanzcos method

An example

first 10 Lanczos steps

10 steps of Lanczos (no reorthogonalization) applied to A

Melina Freitag

Constraint eigenproblems and SI-Lanczos
An example

first 20 Lanczos steps

20 steps of Lanczos (no reorthogonalization) applied to A
The Lanczos method

An example

The first 30 Lanczos steps

30 steps of Lanczos (no reorthogonalization) applied to A
The constraint eigenvalue problem

- Computation of the smallest non-zero eigenvalues and corresponding eigenvectors of
 \[Ax = \lambda Mx \]

 where \(M = M^T \) positive definite and \(A = A^T \) positive semidefinite.

- Assume sparse basis \(C \) for null-space of \(A \) is available.

- Dimension of the null-space is high compared with the problem dimension.

- Constraint in terms of the null-space orthogonality, for smallest non-zero eigenvalue:

 \[
 \min_{\substack{C^T M x = 0 \\ 0 \neq x \in \mathbb{R}}} \frac{x^T A x}{x^T M x}
 \]
The constraint eigenvalue problem

- Computation of the smallest non-zero eigenvalues and corresponding eigenvectors of

\[Ax = \lambda Mx \]

where \(M = M^T \) positive definite and \(A = A^T \) positive semidefinite.

- assume sparse basis \(C \) for null-space of \(A \) is available

- dimension of the null-space is high compared with the problem dimension

- constraint in terms of the null-space orthogonality, for smallest non-zero eigenvalue:

\[
\min_{\substack{C^T M x = 0 \\ 0 \neq x \in \mathbb{R}}} \frac{x^T A x}{x^T M x}
\]
The constraint eigenvalue problem

- Computation of the smallest non-zero eigenvalues and corresponding eigenvectors of
 \[Ax = \lambda Mx \]
 where \(M = M^T \) positive definite and \(A = A^T \) positive semidefinite.
- Assume sparse basis \(C \) for null-space of \(A \) is available
- Dimension of the null-space is high compared with the problem dimension
- Constraint in terms of the null-space orthogonality, for smallest non-zero eigenvalue:
 \[
 \min_{C^TMx=0, 0 \neq x \in \mathbb{R}} \frac{x^TAx}{x^TMx}
 \]
Motivation

Application areas

Electromagnetic cavity resonator

\[\text{curl}(\mu^{-1}\text{curl}u) = \omega^2 u \quad \text{in} \quad \Omega \]

\[\text{div}(\varepsilon u) = 0 \quad \text{in} \quad \Omega \]

\[u \times n = 0 \quad \text{on} \quad \partial\Omega \]

where \(u \) is the electric field, \(n \) denotes the outward normal vector, \(\mu \) the magnetic permeability, \(\varepsilon \) the electric permittivity.

Network problems

\[Ax = \lambda x, \quad \text{with} \quad Ac = 0 \]

where \(A = A^T \) SPD, \(M = I \) and the eigenpair \((0, c)\) is known, looking for second smallest eigenvalue \(\lambda_2 \) with the constraint \(c^T x = 0 \).
Motivation

Application areas

Electromagnetic cavity resonator

\[
\text{curl}(\mu^{-1}\text{curl}\mathbf{u}) = \omega^2 \mathbf{u} \quad \text{in} \quad \Omega \\
\text{div}(\varepsilon \mathbf{u}) = 0 \quad \text{in} \quad \Omega \\
\mathbf{u} \times \mathbf{n} = 0 \quad \text{on} \quad \partial\Omega
\]

where \(\mathbf{u} \) is the electric field, \(\mathbf{n} \) denotes the outward normal vector, \(\mu \) the magnetic permeability, \(\varepsilon \) the electric permittivity.

Network problems

\[
Ax = \lambda x, \quad \text{with} \quad Ac = 0
\]

where \(A = A^T \) SPD, \(M = I \) and the eigenpair \((0, c)\) is known, looking for second smallest eigenvalue \(\lambda_2 \) with the constraint \(c^T x = 0 \).
Simplify the problem

- Consider smallest non-zero eigenvalues and corresponding eigenvectors of

\[Ax = \lambda x \]

where \(M = I \) positive definite and \(A = A^T \) positive semidefinite.

- The null-space is one-dimensional

\[Ac = 0 \]

- Constraint in terms of the null-space orthogonality, for smallest non-zero eigenvalue:

\[
\min_{c^T x = 0, \, 0 \neq x \in \mathbb{R}} \frac{x^T Ax}{x^T x}
\]
Motivation

Different formulations of the problem

- \[Ax = \lambda x, \quad c^T x = 0 \]
- Shifting the null eigenvalue
 \[
 (A + cH^{-1}c^T)x = \eta x,
 \]
 where \(H = \frac{1}{\gamma}c^Tc \) shifts zero eigenvalue to \(\gamma \).
 Smallest eigenvalues coincide.
- Enforce constraint with augmented system
 \[
 \begin{bmatrix}
 A & c \\
 c^T & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 = \lambda
 \begin{bmatrix}
 I & 0 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}.
 \]
 Smallest eigenvalues coincide.
Different formulations of the problem

- $Ax = \lambda x, \quad c^T x = 0$
- Shifting the null eigenvalue

$$ (A + cH^{-1}c^T)x = \eta x, $$

$H = \frac{1}{\gamma}c^T c$ shifts zero eigenvalue to γ.

Smallest eigenvalues coincide.

- Enforce constraint with augmented system

$$ \begin{bmatrix} A & c \\ c^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}. $$

Smallest eigenvalues coincide.
Different formulations of the problem

- $Ax = \lambda x$, \quad $c^T x = 0$

- Shifting the null eigenvalue

 \[(A + cH^{-1}c^T)x = \eta x,\]

 \[H = \frac{1}{\gamma}c^T c \text{ shifts zero eigenvalue to } \gamma.\]

 Smallest eigenvalues coincide.

- Enforce constraint with augmented system

 \[
 \begin{bmatrix}
 A & c \\
 c^T & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 = \lambda
 \begin{bmatrix}
 I & 0 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}.
 \]

 Smallest eigenvalues coincide.
Outline

Introduction
 The Lanczos method
 Motivation

The SI-Lanczos process on the constraint problem
 Shift-and-Invert Lanczos
 Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system
 Block definite preconditioning
 Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
Shift-and-Invert Lanczos for generalised eigenproblem

- Consider
 \[Ax = \lambda I x, \quad A = A^T, \]

- apply Lanczos to spectrally transformed problem
 \[(A - \sigma I)^{-1} I x = \eta x, \quad \eta = (\lambda - \sigma)^{-1} \]

- basic recursion for SI-Lanczos
 \[(A - \sigma I)^{-1} V_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T, \]
 where \(V_j = [v_1, \ldots, v_j] \) is an orthogonal basis, \(T_j \) tridiagonal with
 \[T_j = V_j^T (A - \sigma I)^{-1} V_j \]

- If \(T_j s_j^{(i)} = \eta_j^{(i)} s_j^{(i)} \) we get eigenpairs for \(A \) by \((1/\eta_j^{(i)} + \sigma, V_j s_j^{(i)}) \).
Consider

\[Ax = \lambda I x, \quad A = A^T, \]

apply Lanczos to spectrally transformed problem

\[(A - \sigma I)^{-1} I x = \eta x, \quad \eta = (\lambda - \sigma)^{-1} \]

basic recursion for SI-Lanczos

\[(A - \sigma I)^{-1} V_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T, \]

where \(V_j = [v_1, \ldots, v_j] \) is an orthogonal basis, \(T_j \) tridiagonal with

\[T_j = V_j^T (A - \sigma I)^{-1} V_j \]

If \(T_j s_j^{(i)} = \eta_j^{(i)} s_j^{(i)} \) we get eigenpairs for \(A \) by \((1/\eta_j^{(i)} + \sigma, V_j s_j^{(i)})\).
Consider

\[Ax = \lambda Ix, \quad A = A^T, \]

apply Lanczos to spectrally transformed problem

\[(A - \sigma I)^{-1} Ix = \eta x, \quad \eta = (\lambda - \sigma)^{-1} \]

basic recursion for SI-Lanczos

\[(A - \sigma I)^{-1} V_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T, \]

where \(V_j = [v_1, \ldots, v_j] \) is an orthogonal basis, \(T_j \) tridiagonal with

\[T_j = V_j^T (A - \sigma I)^{-1} V_j \]

If \(T_j s_j^{(i)} = \eta_j^{(i)} s_j^{(i)} \) we get eigenpairs for \(A \) by \((1/\eta_j^{(i)} + \sigma, V_j s_j^{(i)}) \)
Shift-and-Invert Lanczos and constraints

- \((A - \sigma I)^{-1} x = \eta x, \quad c^T x = 0\).
- start iteration with \(v_1\) such that \(c^T v_1 = 0\) and \(v_1^T v_1 = 1\)
- \(c^T x\) is automatically satisfied by exact eigenvectors
- finite precision arithmetic orthogonality constraint not satisfied
- let \(\pi = c(c^T c)^{-1} c^T\), then \(I - \pi\) projects onto \(\mathbb{R}^n\) orthogonal to the null-space of \(A\)
- modify Lanczos algorithm to enforce orthogonality constraint \(c^T v_j = 0\):

\[
\tilde{v} = (I - \pi)(A - \sigma I)^{-1} v_j \\
v_{j+1} t_{j+1,j} = \tilde{v} - V_j T_{:,j}, \quad T_{:,j} = V_j^T \tilde{v}
\]
Shift-and-Invert Lanczos and constraints

- \((A - \sigma I)^{-1} x = \eta x, \quad c^T x = 0\).
- start iteration with \(v_1\) such that \(c^T v_1 = 0\) and \(v_1^T v_1 = 1\).
- \(c^T x\) is automatically satisfied by exact eigenvectors.
- finite precision arithmetic orthogonality constraint not satisfied.
- let \(\pi = c(c^T c)^{-1} c^T\), then \(I - \pi\) projects onto \(\mathbb{R}^n\) orthogonal to the null-space of \(A\).
- modify Lanczos algorithm to enforce orthogonality constraint \(c^T v_j = 0\):

\[
\begin{align*}
\tilde{v} & = (I - \pi)(A - \sigma I)^{-1} v_j \\
v_{j+1}t_{j+1,j} & = \tilde{v} - V_j T_{:,j}, \quad T_{:,j} = V_j^T \tilde{v}
\end{align*}
\]
Shift-and-Invert Lanczos and constraints

- \((A - \sigma I)^{-1} x = \eta x, \quad c^T x = 0.\)
- start iteration with \(v_1\) such that \(c^T v_1 = 0\) and \(v_1^T v_1 = 1\)
- \(c^T x\) is automatically satisfied by exact eigenvectors
- finite precision arithmetic orthogonality constraint not satisfied
- let \(\pi = c(c^T c)^{-1} c^T\), then \(I - \pi\) projects onto \(\mathbb{R}^n\) orthogonal to the null-space of \(A\)
- modify Lanczos algorithm to enforce orthogonality constraint \(c^T v_j = 0:\)

\[
\tilde{v} = (I - \pi)(A - \sigma I)^{-1} v_j \\
v_{j+1} t_{j+1,j} = \tilde{v} - V_j T_{:,j}, \quad T_{:,j} = V_j^T \tilde{v}
\]
Inexact Shift-and-Invert Lanczos and constraints

- let z_j be approximate solution to the system

$$ (A - \sigma I)z = v_j $$

- Set $Z_j = [z_1, \ldots, z_j]$

$$ (A - \sigma I)^{-1}V_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T, $$

becomes

$$ Z_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T, \quad \bar{T}_j = V_j^T Z_j $$

- Problem: $c^T z_j = 0$ depends on the iterative solver and preconditioning strategy

- enforce the constraint in the outer Lanczos iteration:

$$ (I - \pi)Z_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T, \quad V_j = (I - \pi)V_j $$

- enforce the constraint during the solution of the inner system
Inexact Shift-and-Invert Lanczos and constraints

- Let z_j be approximate solution to the system

 $$(A - \sigma I)z = v_j$$

- Set $Z_j = [z_1, \ldots, z_j]$

 $$(A - \sigma I)^{-1}V_j = V_jT_j + v_{j+1}t_{j+1,j}e_j^T,$$

 becomes

 $$Z_j = V_j\bar{T}_j + v_{j+1}t_{j+1,j}e_j^T, \quad \bar{T}_j = V_j^T Z_j$$

- Problem: $c^T z_j = 0$ depending on the iterative solver and preconditioning strategy

- Enforce the constraint in the outer Lanczos iteration:

 $$(I - \pi)Z_j = V_jT_j + v_{j+1}t_{j+1,j}e_j^T, \quad V_j = (I - \pi)V_j$$

- Enforce the constraint during the solution of the inner system.
Inexact Shift-and-Invert Lanczos and constraints

- let z_j be approximate solution to the system
 $$(A - \sigma I)z = v_j$$

- Set $Z_j = [z_1, \ldots, z_j]$
 $$(A - \sigma I)^{-1}V_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T,$$ becomes
 $$Z_j = V_j \tilde{T}_j + v_{j+1} t_{j+1,j} e_j^T, \quad \tilde{T}_j = V_j^T Z_j$$

- Problem: $c^T z_j = 0$ depending on the iterative solver and preconditioning strategy
 - enforce the constraint in the outer Lanczos iteration:
 $$(I - \pi) Z_j = V_j T_j + v_{j+1} t_{j+1,j} e_j^T, \quad V_j = (I - \pi) V_j$$
 - enforce the constraint during the solution of the inner system
let \(z_j \) be approximate solution to the system

\[
(A - \sigma I)z = v_j
\]

Set \(Z_j = [z_1, \ldots, z_j] \)

\[
(A - \sigma I)^{-1}V_j = V_jT_j + v_{j+1}t_{j+1,j}e_j^T,
\]

becomes

\[
Z_j = V_j\bar{T}_j + v_{j+1}t_{j+1,j}e_j^T, \quad \bar{T}_j = V_j^T Z_j
\]

Problem: \(c^T z_j = 0 \) depending on the iterative solver and preconditioning strategy

enforce the constraint in the outer Lanczos iteration:

\[
(I - \pi)Z_j = V_jT_j + v_{j+1}t_{j+1,j}e_j^T, \quad V_j = (I - \pi)V_j
\]

enforce the constraint during the solution of the inner system
Inexact Shift-and-Invert Lanczos and constraints

- Let \(z_j \) be approximate solution to the system
 \[
 (A - \sigma I)z = v_j
 \]

- Set \(Z_j = [z_1, \ldots, z_j] \)
 \[
 (A - \sigma I)^{-1}V_j = V_jT_j + v_{j+1}t_{j+1,j}e_j^T,
 \]
 becomes
 \[
 Z_j = V_j\bar{T}_j + v_{j+1}t_{j+1,j}e_j^T, \quad \bar{T}_j = V_j^TZ_j
 \]
- Problem: \(c^Tz_j = 0 \) depending on the iterative solver and preconditioning strategy
- Enforce the constraint in the **outer** Lanczos iteration:
 \[
 (I - \pi)Z_j = V_jT_j + v_{j+1}t_{j+1,j}e_j^T, \quad V_j = (I - \pi)V_j
 \]
- Enforce the constraint during the solution of the **inner** system
On Krylov subspace methods (for solving linear systems)

- want to solve

\[(A - \sigma I)z = v\]

- using right preconditioner \(P\) we obtain

\[(A - \sigma I)P^{-1}\hat{z} = v\]

- minimise the residual \(v - (A - \sigma I)P^{-1}\hat{z}\) with zero starting guess

\[z^{(m)} = P^{-1}\hat{z}^{(m)} \quad \text{with} \quad \hat{z}^{(m)} \in \mathcal{K}_m((A - \sigma I)P^{-1}, v)\]

- examples: CG, MINRES, GMRES
On Krylov subspace methods (for solving linear systems)

- want to solve

\[(A - \sigma I)z = v\]

- using right preconditioner \(P\) we obtain

\[(A - \sigma I)P^{-1}\hat{z} = v\]

- minimise the residual \(v - (A - \sigma I)P^{-1}\hat{z}\) with zero starting guess

\[z^{(m)} = P^{-1}\hat{z}^{(m)} \quad \text{with} \quad \hat{z}^{(m)} \in \mathcal{K}_m((A - \sigma I)P^{-1}, v)\]

- examples: CG, MINRES, GMRES
Original system - Augmented system

Augmented System

\[
\begin{bmatrix}
A - \sigma I & c \\
c^T & 0
\end{bmatrix}
\begin{bmatrix}
P^{-1} \hat{z} \\
v
\end{bmatrix}
\Leftrightarrow
(A - \sigma I)P^{-1} \hat{z} = Ib
\]

Vectors generating the subspace \(\mathcal{K}_m((A - \sigma I)P^{-1}, Ib) \)

\[
((A - \sigma I)^k P^{-1})^k Ib = \begin{bmatrix} G^k v \\ 0 \end{bmatrix}
\]

Minimisation procedure

\[
\hat{z}^{(m)} \in \mathcal{K}_m((A - \sigma I)P^{-1}, Ib) \quad \hat{z}^{(m)} = [\hat{x}^{(m)}; 0]
\]

optimal approximate solution of \(G \hat{x} = v \) in
Original system - Augmented system

Augmented System

\[
\begin{bmatrix}
A - \sigma I & c \\
c^T & 0
\end{bmatrix}
\begin{bmatrix}
P^{-1}\hat{z} \\
0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
(A - \sigma I)P^{-1}\hat{z} \\
0
\end{bmatrix} = Ib
\]

Vectors generating the subspace \(\mathcal{K}_m((A - \sigma I)P^{-1}, Ib) \)

\[
((A - \sigma I)^k P^{-1})^k Ib = \begin{bmatrix} G^k v \\ 0 \end{bmatrix}
\]

Minimisation procedure

\[
\hat{z}^{(m)} \in \mathcal{K}_m((A - \sigma I)P^{-1}, Ib) \quad \hat{z}^{(m)} = [\hat{x}^{(m)}; 0]
\]

optimal approximate solution of \(G\hat{x} = v \) in
Original system - Augmented system

Augmented System

\[
\begin{bmatrix}
A - \sigma I & c \\
c^T & 0
\end{bmatrix}
\begin{bmatrix}
P^{-1} \hat{z} \\
0
\end{bmatrix} \Leftrightarrow (A - \sigma I)P^{-1} \hat{z} = I b
\]

Vectors generating the subspace \(\mathcal{K}_m((A - \sigma I)P^{-1}, Ib) \)

\[
((A - \sigma I)^k P^{-1})^k Ib = \begin{bmatrix}
G^k v \\
0
\end{bmatrix}
\]

Minimisation procedure

\[
\hat{z}^{(m)} \in \mathcal{K}_m((A - \sigma I)P^{-1}, Ib) \quad \hat{z}^{(m)} = [\hat{x}^{(m)}; 0]
\]

optimal approximate solution of \(G \hat{x} = v \) in
Outline

Introduction
 The Lanczos method
 Motivation

The SI-Lanczos process on the constraint problem
 Shift-and-Invert Lanczos
 Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system
 Block definite preconditioning
 Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
Original system - Augmented system

- **Original system:**
 \[(A - \sigma I)x = v\] with \[c^T x = 0\]

- **Augmented system**
 \[
 \begin{bmatrix}
 A - \sigma I & c \\
 c^T & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 v \\
 0
 \end{bmatrix}
 \iff
 (A - \sigma I)z = Ib
 \]

- show that augmented system is not better than original system
- analyse 2 preconditioning techniques
Original system - Augmented system

- Original system:
 \[(A - \sigma I)x = v \quad \text{with} \quad c^T x = 0\]

- Augmented system
 \[
 \begin{bmatrix}
 A - \sigma I & c \\
 c^T & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 v \\
 0
 \end{bmatrix}
 \Leftrightarrow (A - \sigma I)z = Ib
 \]

- show that augmented system is not better than original system
- analyse 2 preconditioning techniques
Original system - Augmented system

- Original system:
 \[(A - \sigma I)x = v \quad \text{with} \quad c^T x = 0\]

- Augmented system
 \[
 \begin{bmatrix}
 A - \sigma I & c \\
 c^T & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 v \\
 0 \\
 \end{bmatrix}
 \iff
 (A - \sigma I)z = Ib
 \]

- show that augmented system is not better than original system
- analyse 2 preconditioning techniques
The preconditioner and its properties

- structured symmetric definite preconditioner

\[P_D = \begin{bmatrix} K_1 & 0 \\ 0 & c^T K_1^{-1} c \end{bmatrix}, \quad K_1 = A_1 - \tau I, \quad \tau \in \mathbb{R} \]

where \(K_1 = K_1^T \) nonsingular and \(A_1 c = 0 \) so \(\tau \neq 0 \) \((A_1 = 0)\)

- We have

\[c^T K_1^{-1} = -\frac{1}{\tau} c^T \]

\[c^T K_1^{-1} c = -\frac{1}{\tau} c^T c \quad \text{symplifies} \quad P_D \]

and with \(K = A - \sigma I \)

\[c^T (KK_1^{-1})^k = \frac{\sigma}{\tau} c^T \quad \text{for} \quad k \geq 0 \]
The preconditioner and its properties

- structured symmetric definite preconditioner

\[PD = \begin{bmatrix} K_1 & 0 \\ 0 & c^T K_1^{-1} c \end{bmatrix}, \quad K_1 = A_1 - \tau I, \quad \tau \in \mathbb{R} \]

where \(K_1 = K_1^T \) nonsingular and \(A_1 c = 0 \) so \(\tau \neq 0 \) \((A_1 = 0)\)

- We have

\[c^T K_1^{-1} = -\frac{1}{\tau} c^T \]

\[c^T K_1^{-1} c = -\frac{1}{\tau} c^T c \quad \text{symplifies} \quad P_D \]

and with \(K = A - \sigma I \)

\[c^T (K K_1^{-1})^k = \frac{\sigma}{\tau} c^T \quad \text{for} \quad k \geq 0 \]
Equivalence of optimal solutions

Theorem

Let \(v \) satisfy \(c^T v = 0 \). The optimal Krylov subspace solution of the augmented system \(z^{(m)} \) with right preconditioner \(P_D \) can be written as

\[
z^{(m)} = [x^{(m)}; 0],
\]

where \(x^{(m)} \) is the optimal Krylov subspace solution of the original (non-augmented) system with preconditioner \(K_1 \).

Proof Idea

\[
((A - \sigma I)P_D^{-1})^k \begin{bmatrix} v \\ 0 \end{bmatrix} = \begin{bmatrix} (KK_1^{-1})^k v \\ 0 \end{bmatrix}
\]

If \(\hat{z}^{(m)} \in \mathcal{K}_m((A - \sigma I)P_D^{-1}, Ib) \) then \(\hat{x}^{(m)} \in \mathcal{K}_m((KK_1^{-1}, v) \) both optimal approximate solutions.
Equivalence of optimal solutions

Theorem

Let v satisfy $c^Tv = 0$. The optimal Krylov subspace solution of the augmented system $z^{(m)}$ with right preconditioner P_D can be written as

$$z^{(m)} = [x^{(m)}; 0],$$

where $x^{(m)}$ is the optimal Krylov subspace solution of the original (non-augmented) system with preconditioner K_1.

Proof Idea

$$((A - \sigma I)P_D^{-1})^k \begin{bmatrix} v \\ 0 \end{bmatrix} = \begin{bmatrix} (K K_1^{-1})^k v \\ 0 \end{bmatrix}$$

If $\hat{z}^{(m)} \in \mathcal{K}_m((A - \sigma I)P_D^{-1}, Ib)$ then $\hat{x}^{(m)} \in \mathcal{K}_m((K K_1^{-1}, v)$ both optimal approximate solutions.
Remark
The solution $z^{(m)} = [x^{(m)}; 0]$, satisfies $c^T x^{(m)} = 0$.

Proof

- Since $\hat{x}^{(m)}$ is optimal approximate solution in $K_m((K K_1^{-1}, v)$

$$\hat{x}^{(m)} = \phi_{m-1}(K K_1^{-1}) v$$

and $c^T (K K_1^{-1})^k = \frac{\sigma}{\tau} c^T$ we have $c^T \hat{x}^{(m)} = 0$.

- Then

$$c^T x^{(m)} = -\frac{1}{\tau} c^T K_1 x^{(m)} = -\frac{1}{\tau} c^T \hat{x}^{(m)} = 0$$
Orthogonality constraint satisfied

Remark
The solution $z^{(m)} = [x^{(m)}; 0]$, satisfies $c^T x^{(m)} = 0$.

Proof
- since $\hat{x}^{(m)}$ is optimal approximate solution in $\mathcal{K}_m((KK_1^{-1}, v)$
 \[\hat{x}^{(m)} = \phi_{m-1}(KK_1^{-1})v \]
 and $c^T (KK_1^{-1})^k = \frac{\sigma}{\tau} c^T$ we have $c^T \hat{x}^{(m)} = 0$.
- Then
 \[c^T x^{(m)} = -\frac{1}{\tau} c^T K_1 x^{(m)} = -\frac{1}{\tau} c^T \hat{x}^{(m)} = 0 \]
Orthogonality constraint satisfied

Remark
The solution \(z^{(m)} = [x^{(m)}; 0] \), satisfies \(c^T x^{(m)} = 0 \).

Proof
- since \(\hat{x}^{(m)} \) is optimal approximate solution in \(\mathcal{K}_m((KK_1^{-1}), v) \)
 \[
 \hat{x}^{(m)} = \phi_{m-1}(KK_1^{-1})v
 \]
 and \(c^T (KK_1^{-1})^k = \frac{\sigma}{\tau} c^T \) we have \(c^T \hat{x}^{(m)} = 0 \).
- Then
 \[
 c^T x^{(m)} = -\frac{1}{\tau} c^T K_1 x^{(m)} = -\frac{1}{\tau} c^T \hat{x}^{(m)} = 0
 \]
The preconditioner and its properties

- structured symmetric indefinite preconditioner

\[P_I = \begin{bmatrix} K_1 & c \\ c^T & 0 \end{bmatrix}, \quad K_1 = A_1 - \tau I, \quad \tau \in \mathbb{R} \]

where $K_1 = K_1^T$ nonsingular and $A_1 c = 0$ so $\tau \neq 0$ ($A_1 = 0$ possible)

- also possible $K_1 = A_1 - \sigma M_1$ for general $M_1 = M_1^T$
Block indefinite preconditioning

The preconditioner and its properties

- structured symmetric indefinite preconditioner

\[P_I = \begin{bmatrix} \kappa_1 & c \\ c^T & 0 \end{bmatrix}, \quad K_1 = A_1 - \tau I, \quad \tau \in \mathbb{R} \]

where \(K_1 = K_1^T \) nonsingular and \(A_1 c = 0 \) so \(\tau \neq 0 \) \((A_1 = 0\) possible)

- also possible \(K_1 = A_1 - \sigma M_1 \) for general \(M_1 = M_1^T \)
Equivalence of optimal solutions

Theorem

Let \(v \) satisfy \(c^T v = 0 \). The optimal Krylov subspace solution of the augmented system \(z^{(m)} \) with right preconditioner \(P_I \) can be written as

\[
z^{(m)} = [x^{(m)}; 0],
\]

where \(x^{(m)} \) is the optimal Krylov subspace solution of the original (non-augmented) system with preconditioner \(K_1 \).

Remark

The solution \(z^{(m)} = [x^{(m)}; 0] \), satisfies \(c^T x^{(m)} = 0 \).
Equivalence of optimal solutions

Theorem

Let v satisfy $c^Tv = 0$. The optimal Krylov subspace solution of the augmented system $z^{(m)}$ with right preconditioner P_I can be written as

$$z^{(m)} = [x^{(m)}; 0],$$

where $x^{(m)}$ is the optimal Krylov subspace solution of the original (non-augmented) system with preconditioner K_1.

Remark

The solution $z^{(m)} = [x^{(m)}; 0]$, satisfies $c^Tx^{(m)} = 0$.
Outline

Introduction
 The Lanzcos method
 Motivation

The SI-Lanczos process on the constraint problem
 Shift-and-Invert Lanczos
 Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system
 Block definite preconditioning
 Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
Back to the solve of the outer system

- augmented formulation of the problem

\[
\begin{bmatrix}
A & c \\
c^T & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
= \lambda
\begin{bmatrix}
I & 0 \\
0^T & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
\]

- $n_c = 1$ zero eigenvalue of the original problem become infinite
- $n_c = 1$ more eigenvalues arise (corresponding) to the singular part of I; infinite
- non-zero eigenvalues remain unchanged; find smallest eigenvalues of the augmented system; eigenvectors are of the form $[x; 0]$
- exact SI-Lanczos - inexact SI Lanczos
Back to the solve of the outer system

- augmented formulation of the problem

\[
\begin{bmatrix}
A & c \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \lambda
\begin{bmatrix}
I & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

- \(n_c = 1\) zero eigenvalue of the original problem become infinite
- \(n_c = 1\) more eigenvalues arise (corresponding) to the singular part of \(I\); infinite
- non-zero eigenvalues remain unchanged; find smallest eigenvalues of the augmented system; eigenvectors are of the form \([x; 0]\)
- exact SI-Lanczos - inexact SI Lanczos
Back to the solve of the outer system

- augmented formulation of the problem

\[
\begin{bmatrix}
A & c \\
c^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \lambda
\begin{bmatrix}
I & 0 \\
0^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

- $n_c = 1$ zero eigenvalue of the original problem become infinite
- $n_c = 1$ more eigenvalues arise (corresponding) to the singular part of \mathcal{I}; infinite
- non-zero eigenvalues remain unchanged; find smallest eigenvalues of the augmented system; eigenvectors are of the form $[x; 0]$
- exact SI-Lanczos - inexact SI Lanczos
Back to the solve of the outer system

- augmented formulation of the problem

\[
\begin{bmatrix}
A & c \\
{c^T} & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \lambda
\begin{bmatrix}
I & 0 \\
0^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

- \(n_c = 1\) zero eigenvalue of the original problem become infinite
- \(n_c = 1\) more eigenvalues arise (corresponding) to the singular part of \(\mathcal{I}\); infinite
- non-zero eigenvalues remain unchanged; find smallest eigenvalues of the augmented system; eigenvectors are of the form \([x; 0]\)
- exact SI-Lanczos - inexact SI Lanczos
Back to the solve of the outer system

- augmented formulation of the problem

\[
\begin{bmatrix}
A & c \\
c^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \lambda
\begin{bmatrix}
I & 0 \\
0^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

- \(n_c = 1\) zero eigenvalue of the original problem become infinite
- \(n_c = 1\) more eigenvalues arise (corresponding) to the singular part of \(I\); infinite
- non-zero eigenvalues remain unchanged; find smallest eigenvalues of the augmented system; eigenvectors are of the form \([x; 0]\)
- exact SI-Lanczos - inexact SI Lanczos
Theorem
Let u_1 satisfy $c^T u_1 = 0$. Inexact SI-Lanczos with shift σ applied to the augmented formulation with staring vector $v_1 = [u_1; 0]$ and inner right preconditioner

$$P_D = \begin{bmatrix} K_1 & 0 \\ 0 & c^T K_1^{-1} c \end{bmatrix}, \quad K_1 = A_1 - \tau I, \quad A_1 c = 0, \quad A_1 \in \mathbb{R}^{n \times n}$$

with $K_1 = K_1^T$ nonsingular generates the same approximation iterates as inexact SI-Lanczos with shift σ applied to the original problem with starting vector u_1 and inner right preconditioner K_1.

Proof Idea
Uses results that optimal Krylov subspace approximate solution of inner systems are essentially the same. Induction.
Theorem

Let u_1 satisfy $c^T u_1 = 0$. Inexact SI-Lanczos with shift σ applied to the **augmented formulation** with staring vector $v_1 = [u_1; 0]$ and inner right preconditioner

$$P_D = \begin{bmatrix} K_1 & 0 \\ 0 & c^T K_1^{-1} c \end{bmatrix}, \quad K_1 = A_1 - \tau I, \quad A_1 c = 0, \quad A_1 \in \mathbb{R}^{n \times n}$$

with $K_1 = K_1^T$ nonsingular generates the **same approximation** iterates as inexact SI-Lanczos with shift σ applied to the **original problem** with starting vector u_1 and inner right preconditioner K_1.

Proof Idea

Uses results that optimal Krylov subspace approximate solution of inner systems are essentially the same. Induction.
Preconditioning with P_I

Theorem
Let u_1 satisfy $c^Tu_1 = 0$. Inexact SI-Lanczos with shift σ applied to the augmented formulation with starting vector $v_1 = [u_1; 0]$ and inner right preconditioner

$$P_I = \begin{bmatrix} K_1 & c \\ c^T & 0 \end{bmatrix}, \quad K_1 = A_1 - \tau I, \quad A_1 c = 0, \quad A_1 \in \mathbb{R}^{n \times n}$$

with $K_1 = K_1^T$ nonsingular generates the same approximation iterates as inexact SI-Lanczos with shift σ applied to the original problem with starting vector u_1 and inner right preconditioner K_1.

Proof Idea
Uses results that optimal Krylov subspace approximate solution of inner systems are essentially the same. Induction.
Remarks

- key condition is $c^T K_1 = \beta c^T$ for $\beta \neq 0$
- here: $K_1 = A_1 - \tau I$
- could use $K_1 = \alpha A_1 + cH^{-1}c^T$ with $H = c^T c$, $\alpha \in \mathbb{R}$, $A_1 c = 0$.
Remarks

- also possible: higher dimensional null-spaces of A, where C is a basis of the null-space such that $AC' = 0$

- also possible: generalised eigenproblem $Ax = \lambda Mx$
Remarks

- also possible: higher dimensional null-spaces of A, where C is a basis of the null-space such that $AC = 0$
- also possible: generalised eigenproblem $Ax = \lambda Mx$
Outline

Introduction
- The Lanczos method
- Motivation

The SI-Lanczos process on the constraint problem
- Shift-and-Invert Lanczos
- Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system
- Block definite preconditioning
- Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
Regularisation of the problem

- other than augmented formulation, a so-called regularised formulation is available
- move zero eigenvalues away from the origin and also (hopefully) far away from the sought after eigenvalues
- let \(H \in \mathbb{R}^{n_c \times n_c} \) (here \(H \) is just a scalar) be symmetric and nonsingular, then the transformed generalised eigenvalue problem is given by

\[
(A + cH^{-1}c^T)x = \eta x
\]
Regularisation of the problem

- other than augmented formulation, a so-called regularised formulation is available
- move zero eigenvalues away from the origin and also (hopefully) far away from the sought after eigenvalues
- let $H \in \mathbb{R}^{n_c \times n_c}$ (here H is just a scalar) be symmetric and nonsingular, then the transformed generalised eigenvalue problem is given by

\[(A + cH^{-1}c^T)x = \eta x\]
Regularisation of the problem

- other than augmented formulation, a so-called regularised formulation is available
- move zero eigenvalues away from the origin and also (hopefully) far away from the sought after eigenvalues
- let $H \in \mathbb{R}^{n_c \times n_c}$ (here H is just a scalar) be symmetric and nonsingular, then the transformed generalised eigenvalue problem is given by
 $$ (A + cH^{-1}c^T)x = \eta x $$
Theorem

Let

\[Ax = \lambda x \quad \text{and} \quad (A + cH^{-1}c^T)x = \eta x \]

and \(\lambda_i, \eta_i \) be eigenvalues.

- If \(\lambda_i \neq 0 \) there exists \(j \) such that \(\lambda_i = \eta_j \).
- If \(\lambda_i = 0 \) there corresponds an eigenvalue \(\eta_j \) with \(\eta_j \in \Lambda(c^T c, H) \).

Remarks

- no practical advantage
- inner solver \((A + cH^{-1}c^T)z = v \) produces the same Krylov subspace as \(Az = v \)
Shifting of the zero eigenvalue

Theorem

Let

\[Ax = \lambda x \quad \text{and} \quad (A + cH^{-1}c^T)x = \eta x \]

and \(\lambda_i, \eta_i \) be eigenvalues.

- If \(\lambda_i \neq 0 \) there exists \(j \) such that \(\lambda_i = \eta_j \).
- If \(\lambda_i = 0 \) there corresponds an eigenvalue \(\eta_j \) with \(\eta_j \in \Lambda(c^Tc, H) \)

Remarks

- No practical advantage
- Inner solver \((A + cH^{-1}c^T)z = v \) produces the same Krylov subspace as \(Az = v \)
Shifting of the zero eigenvalue

Theorem

Let

\[Ax = \lambda x \quad \text{and} \quad (A + cH^{-1}c^T)x = \eta x \]

and \(\lambda_i, \eta_i \) be eigenvalues.

- If \(\lambda_i \neq 0 \) there exists \(j \) such that \(\lambda_i = \eta_j \).
- If \(\lambda_i = 0 \) there corresponds an eigenvalue \(\eta_j \) with \(\eta_j \in \Lambda(c^Tc, H) \).

Remarks

- no practical advantage
- inner solver \((A + cH^{-1}c^T)z = v\) produces the same Krylov subspace as \(Az = v\)
Outline

Introduction
 The Lanczos method
 Motivation

The SI-Lanczos process on the constraint problem
 Shift-and-Invert Lanczos
 Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system
 Block definite preconditioning
 Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
2D computational model of an electromagnetic cavity resonator

- variational formulation: Find $\omega_h \in \mathbb{R}$ s.t. $\exists 0 \neq u_h \in \Sigma_h \subset \Sigma$

\[
(\text{rot} u_h, \text{rot} v_h) = \omega_h^2 (u_h, v_h) \quad \forall v_h \in \Sigma_h,
\]

where $\text{rot}(v_1, v_2) = (v_2)_x - (v_1)_y$,

$\Sigma = \{ v \in L^2(\Omega)^2 : \text{rot} v \in L^2(\Omega), v \cdot t = 0 \text{ on } \partial \Omega \}$ and t is the counterclockwise oriented tangent unit vector to the boundary

- FEM discretisation
- size $n = 3229$, null-space dimension $n_c = 1036$
- solver: right preconditioned GMRES
- preconditioner $K_1 = A_1 - \sigma M$ with $A_1 = 0$ and $\sigma = 0.8$
- inner tolerance 10^{-8} for the solve of the inner system
Results

<table>
<thead>
<tr>
<th>j</th>
<th>$\frac{(A - \sigma M)^{-1}Mx = \eta x}{K_1}$</th>
<th>$\frac{(A - \sigma M)^{-1}Mz = \eta z}{P_D}$</th>
<th>P_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.02426393067395</td>
<td>0.02426393067727</td>
<td>0.02426393066981</td>
</tr>
<tr>
<td>6</td>
<td>0.02898748221567</td>
<td>0.02898746782699</td>
<td>0.02898748572682</td>
</tr>
<tr>
<td>8</td>
<td>0.01156203523797</td>
<td>0.01156203705189</td>
<td>0.01156203467534</td>
</tr>
<tr>
<td>10</td>
<td>0.00000041284501</td>
<td>0.00000041284501</td>
<td>0.00000041283893</td>
</tr>
<tr>
<td>12</td>
<td>0.000000000158821</td>
<td>0.000000000158844</td>
<td>0.000000000158891</td>
</tr>
<tr>
<td>14</td>
<td>0.000000000158802</td>
<td>0.000000000158827</td>
<td>0.000000000158882</td>
</tr>
</tbody>
</table>

Table: Relative eigenvalue residual norm $\frac{Ax_j - \lambda_j Mx_j}{\lambda_j}$ of approximate smallest eigenpair in the inexact SI-Lanczos method applied to different formulations and different preconditioners.
Outline

Introduction
The Lanczos method
Motivation

The SI-Lanczos process on the constraint problem
Shift-and-Invert Lanczos
Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system
Block definite preconditioning
Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions
Conclusions

- different formulations for constraint eigenvalue problem (especially augmented formulation)
- augmented schemes are equivalent to original formulation if inexact SI-Lanczos is used (for natural choices of the preconditioner for the inner system)
- dependent on the fact that the constraint matrix C is a basis for the null-space of the problem
- approximation space is maintained M-orthogonal to the null-space without explicit orthogonalisation (constraint $C^T M x = 0$ automatically satisfied)
- inner accuracy influences the performance of the method
different formulations for constraint eigenvalue problem (especially augmented formulation)

augmented schemes are equivalent to original formulation if inexact SI-Lanczos is used (for natural choices of the preconditioner for the inner system)

dependent on the fact that the constraint matrix C is a basis for the null-space of the problem

approximation space is maintained M-orthogonal to the null-space without explicit orthogonalisation (constraint $C^T M x = 0$ automatically satisfied)

inner accuracy influences the performance of the method
Conclusions

- different formulations for constraint eigenvalue problem (especially augmented formulation)
- augmented schemes are equivalent to original formulation if inexact SI-Lanczos is used (for natural choices of the preconditioner for the inner system)
- dependent on the fact that the constraint matrix C is a basis for the null-space of the problem
- approximation space is maintained M-orthogonal to the null-space without explicit orthogonalisation (constraint $C^T M x = 0$ automatically satisfied)
- inner accuracy influences the performance of the method