1 Introduction and Notation

- Eigenvalue Problem: \(Ax = \lambda x \), \(A \in \mathbb{C}^{N \times N} \), \(x \in \mathbb{C}^N \)
- Now \(\lambda \in \mathbb{R} \) since \(A = A^T \).
- Vector \(q_i \) is orthonormal if
 1. \(q_i^T q_i = 1 \),
 2. \(Q^T = Q^{-1} \), \(Q = [q_1, \ldots, q_N] \),
 3. \(||q_i||_2 = 1 \),
 4. \(q_i^T q_j = 0 \) for \(i \neq j \),

2 A Reminder of the Power Method

- We recall the Power Method is used to find the eigenvector associated with the maximum eigenvalue.
- Simply \(x^{k+1} = cAx^k \), where \(c \) is a normalisation constant to prevent large \(x^{k+1} \).
- As \(k \to \infty \), \(x^{k+1} \to v_1 \), the eigenvector associated with eigenvalue \(\lambda_1 \) where \(\lambda_1 > \lambda_2 \geq \lambda_3 \ldots \lambda_N \).
- We obtain the maximum eigenvalue by the Rayleigh Quotient
 \[
 R(A, x^k) = \frac{(x^k)^T Ax^k}{||x^k||_2^2}
 \]
- Why don’t we just use the QR method? Well if \(A \) is sparse, then applying an iteration of the QR approach does not maintain sparsity of the new matrix. INEFFICIENT.
- Note: We only find ONE eigenvector and eigenvalue. What if we want more?

3 The Idea Behind Lanczos Method

- Lets follow the Power Method, but save each iteration, such that we obtain
 \(v, A v, A^2 v, \ldots, A^{k-1} v \)
- These vectors form the Krylov Space
 \[
 K_k(Av) = \text{span} \{v, Av, A^2 v, \ldots, A^{k-1} v\}
 \]
- So after \(n \) iterations
 \(v, Av, \ldots, A^{n-1} v \)
 are linearly independent and \(x \) can be formed from the space.
- By the Power Method, the n-th iteration tends to an eigenvector hence the sequence becomes linearly dependent but we want a sequence of linearly independent vectors.
- Hence we orthogonalise the vectors, this is the basis of Lanczos Method
4 Lanczos Method

- Assume we have orthonormal vectors q_1, q_2, \ldots, q_N

- Simply let $Q = [q_1, q_2, \ldots, q_k]$ hence
 $$Q^TQ = I$$

- We want to change A to a tridiagonal matrix T, and apply a similarly transformation:
 $$Q^T AQ = T \text{ or } AQ = QT$$

- So we define T to be
 $$T_{k+1,k} = \begin{bmatrix}
 \alpha_1 & \beta_1 & 0 & \ldots & \ldots & 0 \\
 \beta_1 & \alpha_2 & \beta_2 & 0 & \ldots & 0 \\
 0 & \beta_2 & \alpha_3 & \beta_3 & 0 & \ldots \\
 \vdots & 0 & \ldots & \ldots & \ldots & \vdots \\
 \vdots & \vdots & \ldots & \ldots & \ldots & \beta_{k-1} \\
 0 & \ldots & \ldots & 0 & \beta_{k-1} & \alpha_k \\
 0 & \ldots & \ldots & 0 & 0 & \beta_k
 \end{bmatrix} \in \mathbb{C}^{k+1,k}$$

- After k steps we have $AQ_k = Q_{k+1}T_{k+1,k}$ for $A \in \mathbb{C}^{N,N}$, $Q_k \in \mathbb{C}^{N,k}$, $Q_{k+1} \in \mathbb{C}^{N,k+1}$, $T_{k+1,k} \in \mathbb{C}^{k+1,k}$.

- We observe that
 $$AQ_k = Q_{k+1}T_{k+1,k} = Q_kT_{k,k} + \beta_k q_{k+1}e_k^T$$

- Now $AQ = QT$ hence
 $$A[q_1, q_2, \ldots, q_k] = [q_1, q_2, \ldots, q_k]T_k$$

- The first column of the left hand side matrix is given by
 $$Aq_1 = \alpha_1 q_1 + \beta_1 q_2$$

- The ith term by
 $$Aq_i = \beta_{i-1} q_{i-1} + \alpha_i q_i + \beta_i q_{i+1}, \quad i = 2, \ldots$$

- We wish to find the alphas and betas so multiply q_i^T by q_i^T so that
 $$q_i^T Aq_i = q_i^T \beta_{i-1} q_{i-1} + q_i^T \alpha_i q_i + q_i^T \beta_i q_{i+1}$$
 $$= \beta_{i-1} q_i^T q_{i-1} + \alpha_i q_i^T q_i + \beta_i q_i^T q_{i+1}$$
 $$= \alpha_i q_i^T q_i$$

- We obtain β_i by rearranging β_i from the recurrence formula
 $$r_i = \beta_i q_{i+1} = Aq_i - \alpha_i q_i - \beta_{i-1} q_{i-1}$$

- We assume $\beta_i \neq 0$ and so $\beta_i = ||r_i||_2$.

- We may now determine the next orthonormal vector
 $$q_{i+1} = \frac{r_i}{\beta_i}.$$
5 A Little Proof - Omit from Seminar

Lemma: All vectors q_{i+1} generated by the 3-term are orthogonal to all q_k for $k < i$

Proof

- We assume $q_{i+1}^T q_i = 0 = q_{i+1}^T q_{i-1}$ and by induction step $q_i^T q_k$ for $k < i$.
- We prove $q_{i+1}^T q_k$ for $k < i$.
- Multiply \dagger by q_k for $k \leq i - 2$ and we show q_k, q_i are A orthogonal. Hence

$$q_k^T A q_i = (q_k^T A^T) q_i = (AQ_k)^T q_i$$
$$= (Q_k^T q_{k-1} + \alpha_i q_k + \beta_i q_k) q_i$$
$$= \beta_i q_{k-1}^T q_i + \alpha_i q_k^T q_i + \beta_i q_k^T q_i$$
$$= 0 + 0 + 0 = 0$$

- Now multiply \dagger by q_k so that

$$q_k^T A q_i = \beta_i q_{i-1}^T q_i + \alpha_i q_k^T q_i + \beta_i q_k^T q_{i+1}$$

Rearranging we obtain

$$\beta_i q_{i-1}^T q_{i+1} = q_k^T A q_i - \beta_i q_i^T q_{i-1} - \alpha_i q_k^T q_k = 0$$

6 The Lanczos Algorithm

Initialise: choose $r = q_0$ and let $\beta_0 = ||q_0||_2$

Begin Loop: for $j = 1, \ldots$

- $q_j = \frac{r}{\beta_j}$
- $r = Aq_j$
- $r = r - q_{j-1} \beta_{j-1}$
- $\alpha_j = q_j^T r$

Orthogonalise if necessary

$\beta_j = ||r||_2$

Compute approximate eigenvalues of T_j

Test Convergence (see remarks)

End Loop

7 Remarks 1: Finding the Eigenvalues and Eigenvectors

- So how do we find the eigenvalues and eigenvectors?
- If $\beta_k = 0$ then
 1. We diagonalise the matrix T_k using simple QR method to find the exact eigenvalues.

$$T_k = S_k \text{diag}(\lambda_1, \ldots, \lambda_k) S_k^T$$

where the matrix S_k is orthonormal $S_k S_k^T = I$.
2. The exact eigenvectors are given correspondingly in the columns of the matrix Y where

$$S_k^T Q_k^T A Q_k S_k = \text{diag} (\lambda_1, \ldots, \lambda_k)$$

so that $Y = Q_k S_k$.

3. We converge to the k largest eigenvalues. The proof is very difficult and is omitted.

- Now β_k is never really zero. Hence we only converge to the eigenvalue.
 - After k steps we have $A Q_k = Q_k T_{k,k} + \beta_k q_{k+1} e_k^T$
 - For β_k small we obtain approximations to the eigenvalues $\theta_i \approx \lambda_i$ by
 $$T_k = S_k \text{diag} (\theta_1, \ldots, \theta_k) S_k^T$$

- We multiply $A Q_k$ by S_k from above so that

$$A Q_k S_k = Q_k T_{k,k} S_k + \beta_k q_{k+1} e_k^T S_k$$

$$A Y_k = Y_k \text{diag} (\theta_1, \ldots, \theta_k) + \beta_k q_{k+1} e_k^T S_k$$

$$A y_j = y_j \theta_j + \beta_k q_{k+1} S_{kj}$$

$$\therefore ||A y_j - \theta_j y_j|| = ||\beta_k|| S_{kj}$$

- So if $\beta_k \to 0$ we prove $\theta_j \to \lambda_j$.
- Otherwise $||\beta_k|| S_{kj}$ needs to be small to have a good approximation, hence convergence criterion

$$||\beta_k|| S_{kj} < \epsilon$$

8 Remarks 2: Difficulties with Lanzcos Method

- In practice, the problem is that the orthogonality is not preserved.
- As soon as one eigenvalue converges all the basis vectors q_i pick up perturbations biased toward the direction of the corresponding eigenvector and orthogonality is lost.
- A “ghost” copy of the eigenvalue will appear again in the tridiagonal matrix T.
- To counter this we fully re-orthonormalize the sequence by using Gram-Schmidt or even QR.
- However, either approach would be expense if the dimension if the Krylov space is large.
- So instead a selective re-orthonormalization is pursued. More specifically, the practical approach is to orthonormalize half-way i.e., within half machine-recision $\sqrt{\epsilon M}$.
- If the eigenvalues of A are not well separated, then we can use a shift and employ the matrix

$$(A - \sigma I)^{-1}$$

following the shifted inverted power method to generate the appropriate Krylov subspaces.