## Regularising Inverse Imaging Problems using Generative Machine Learning Models

Margaret Duff, Neill D F Campbell, Matthias J Ehrhardt







Engineering and Physical Sciences Research Council



### Overview

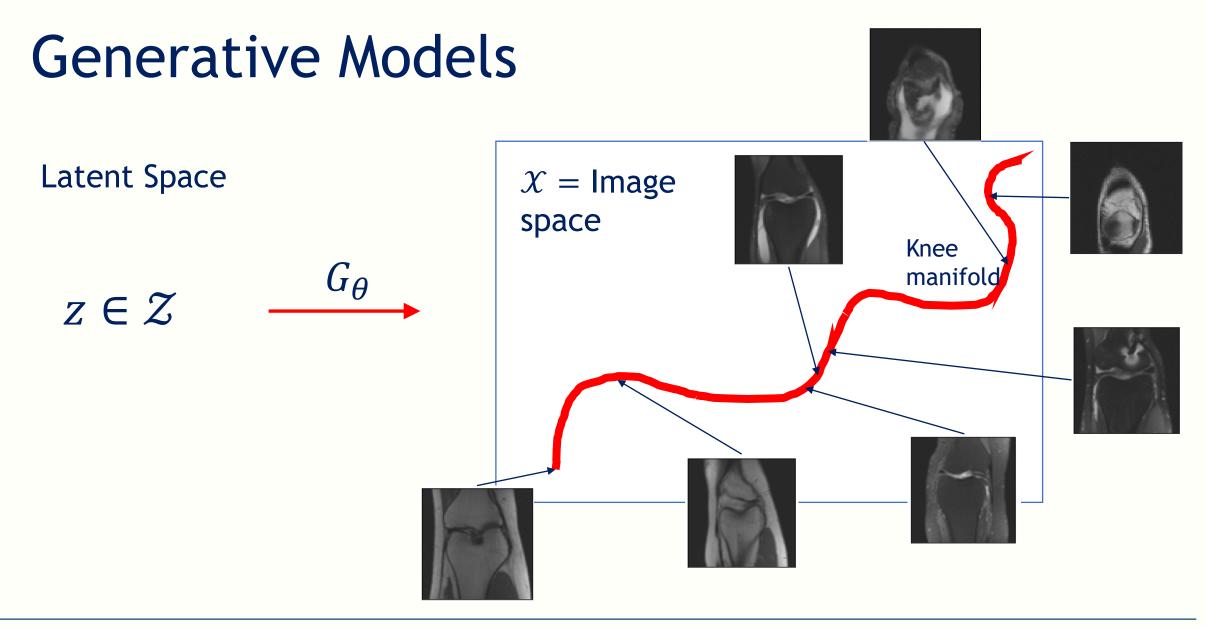
• Inverse problem

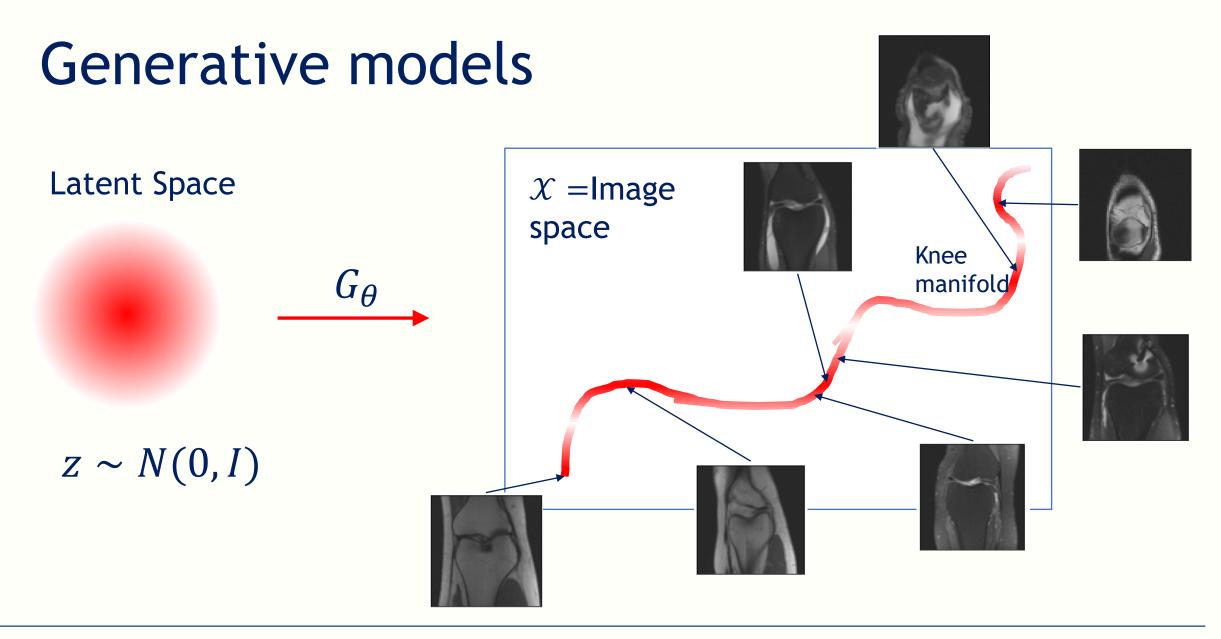
 $y \approx Ax$ where  $x \in \mathcal{X}, y \in \mathcal{Y}$ .

• Variational approach: solve

 $\arg\min_{x\in\mathcal{X}} \|y - Ax\|_2^2 + \lambda \mathcal{R}_G(x)$ where  $G: \mathcal{Z} \to \mathcal{X}$ , a generative model.

• Penalise images far from the range of the generative model.



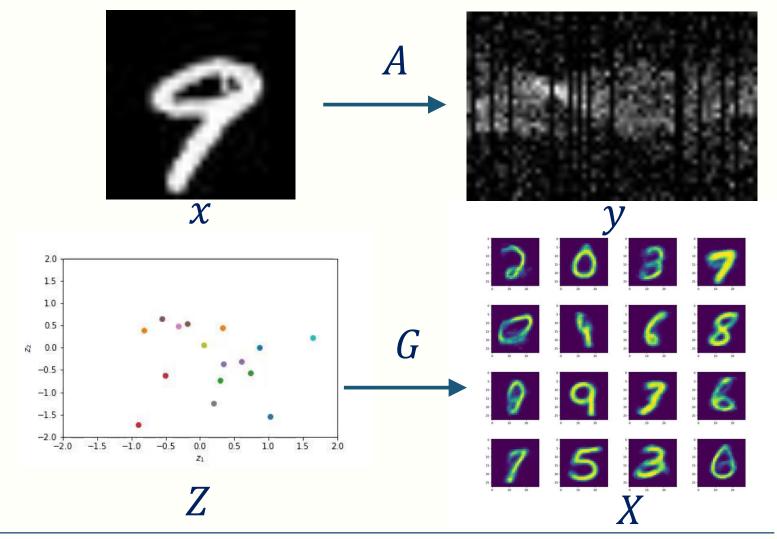


### Tomography example: MNIST

 $A: X \to Y$ Original Problem: Find x s.t.  $y = Ax + \epsilon$ 

Generative model  $G: Z \to X$ 

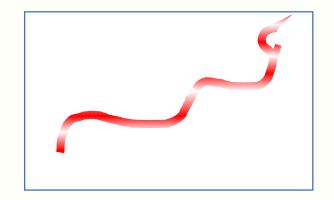
New Problem: Find z s.t.  $y = A(G(z)) + \epsilon$ x = G(z)



### Incorporating the generator

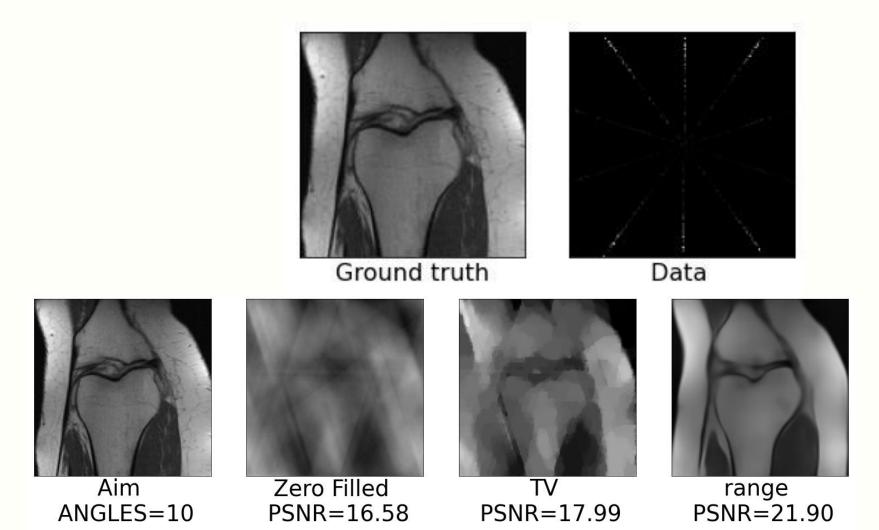
Image in the range of the generator

$$\mathcal{R}_G(x) = \min_{z \in \mathcal{Z}} \iota_{\{0\}}(G(z) - x) + \|z\|_2^2$$



Bora et al. "Compressed sensing using generative models". ICML 2017.

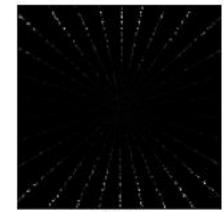
### NYU FastMRI dataset



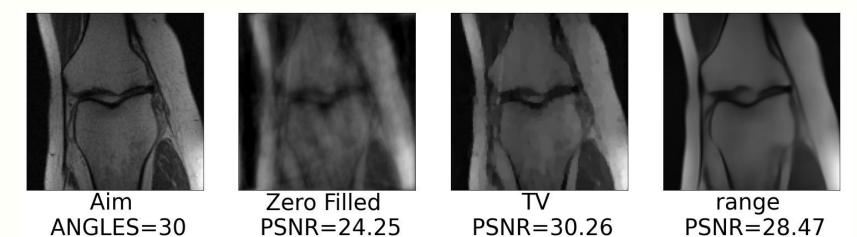
### NYU FastMRI dataset



Ground truth



Data



### Incorporating the generator

Image in the range of the generator

$$\mathcal{R}_G(x) = \min_{z \in \mathcal{Z}} \iota_{\{0\}}(G(z) - x) + \|z\|_2^2$$

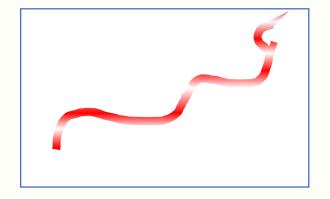
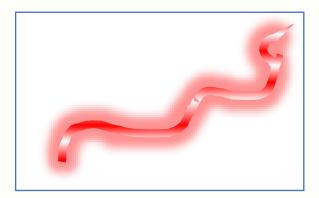
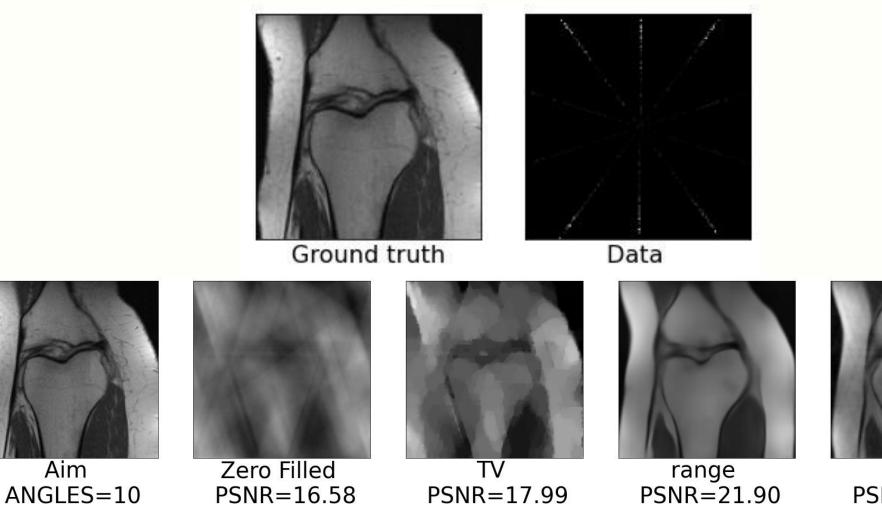


Image close to the range of the generator

$$\mathcal{R}_G(x) = \min_{z \in \mathcal{Z}} \|G(z) - x\|_2^2 + \mu \|z\|_2^2$$



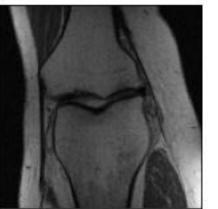
### NYU FastMRI dataset



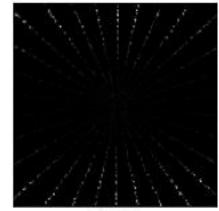


soft PSNR=23.31

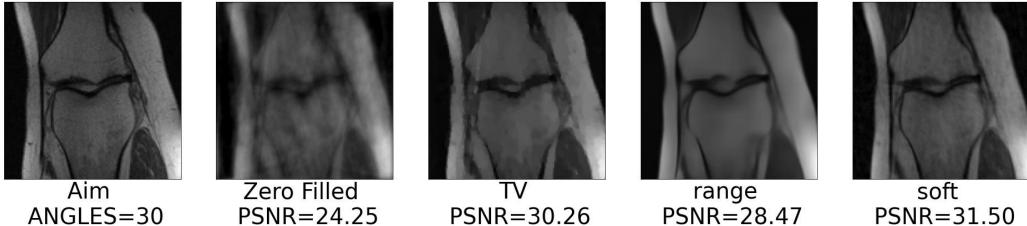
### NYU FastMRI dataset



Ground truth

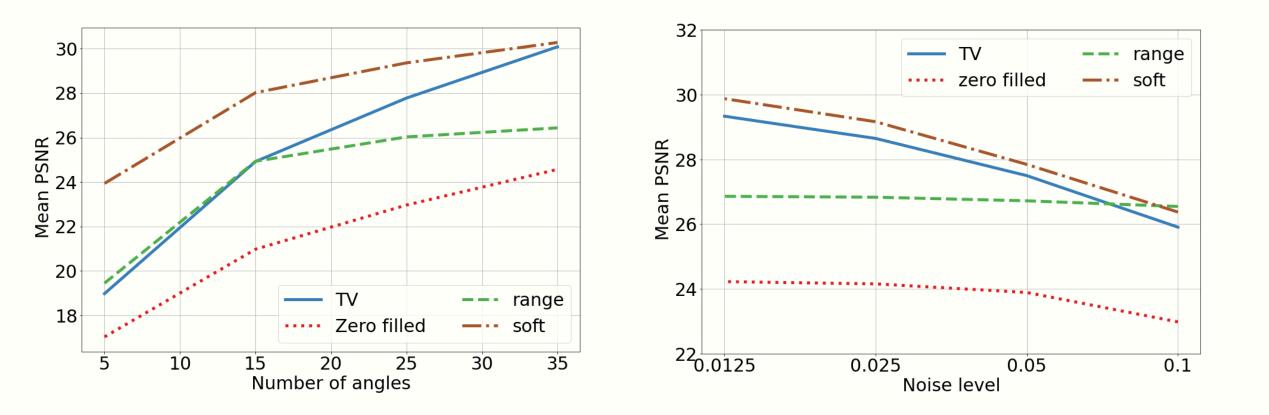


Data



PSNR=31.50

### Method comparison



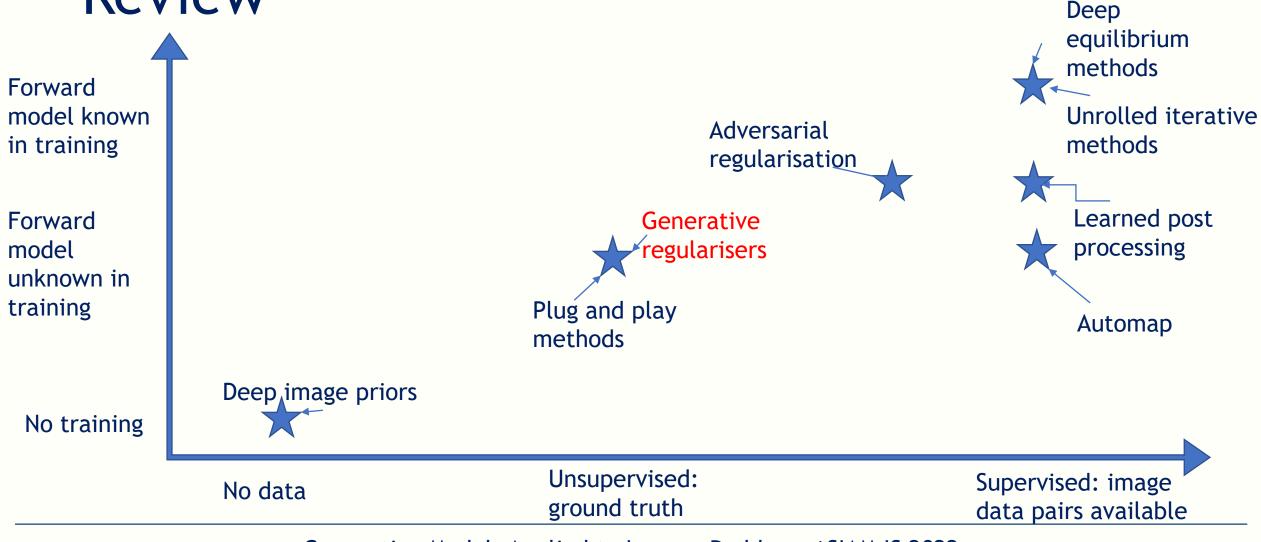
### The Benefits of Generative Regularisers

• Don't require supervised (paired) training data

• Flexible to changes in the forward problem

• Some degree of mathematical insight and control.

### Deep Learning and Inverse Problems: Review



## What properties do we need for the generator?

# What properties do we need for the generator?

Generator properties

- Generator produces all 'feasible' images
- Generator produces no 'unfeasible' images
- The generated probability distribution matches the training data distribution

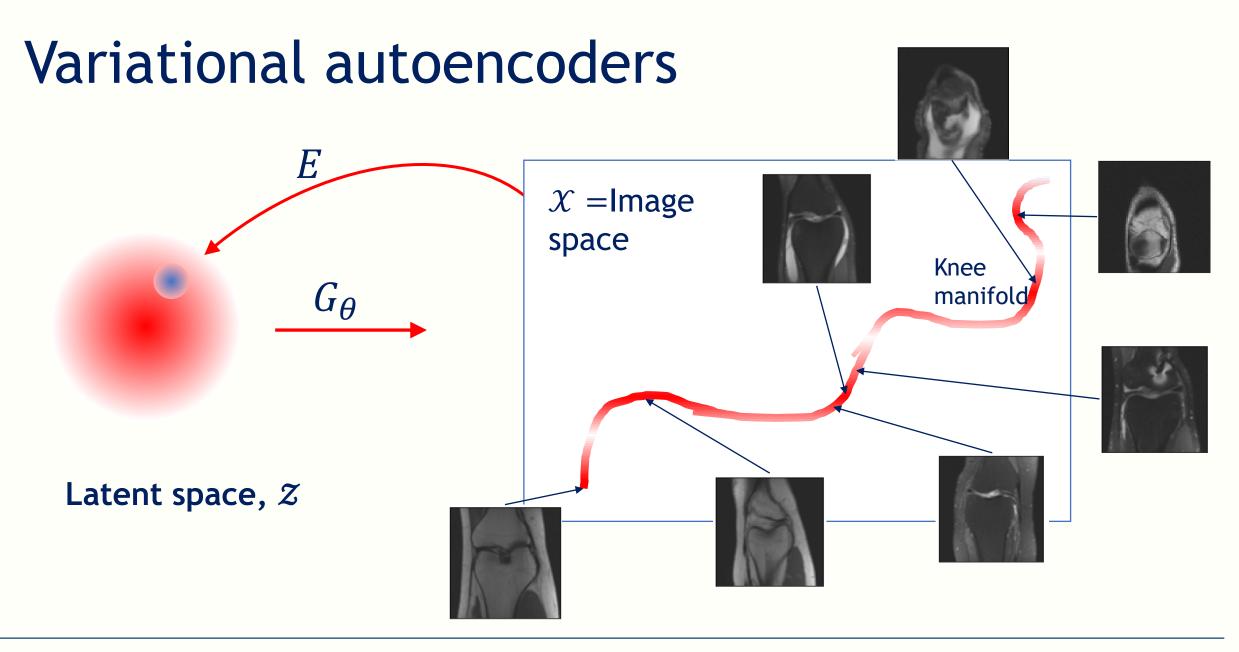
# What properties do we need for the generator?

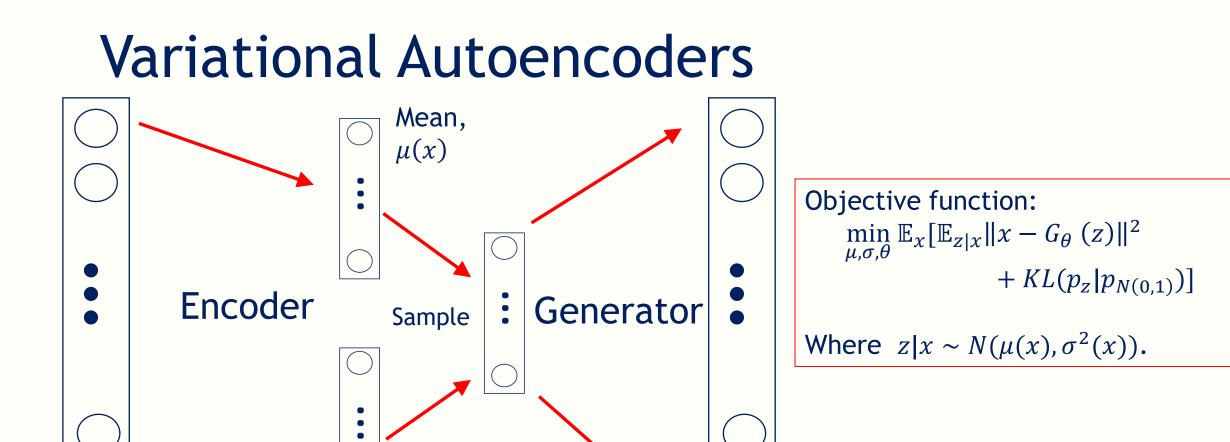
**Generator properties** 

- Generator produces all 'feasible' images
- Generator produces no 'unfeasible' images
- The generated probability distribution matches the training data distribution

Latent space properties

- Smoothness of the generator with respect to z
- The area of the latent space that maps to feasible images is known





 $z \sim N(\mu(x), \sigma^2(x))$ 

Variance

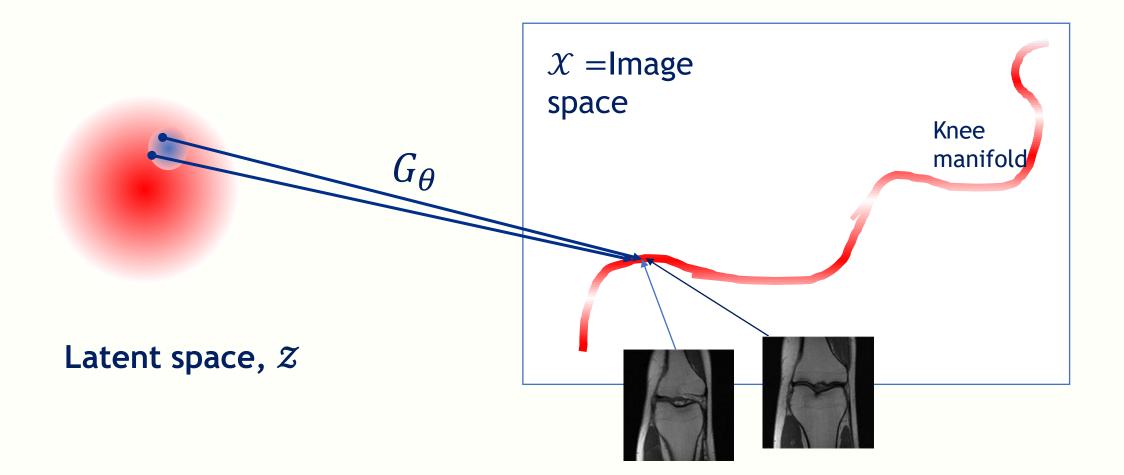
X

 $\sigma(x)$ 

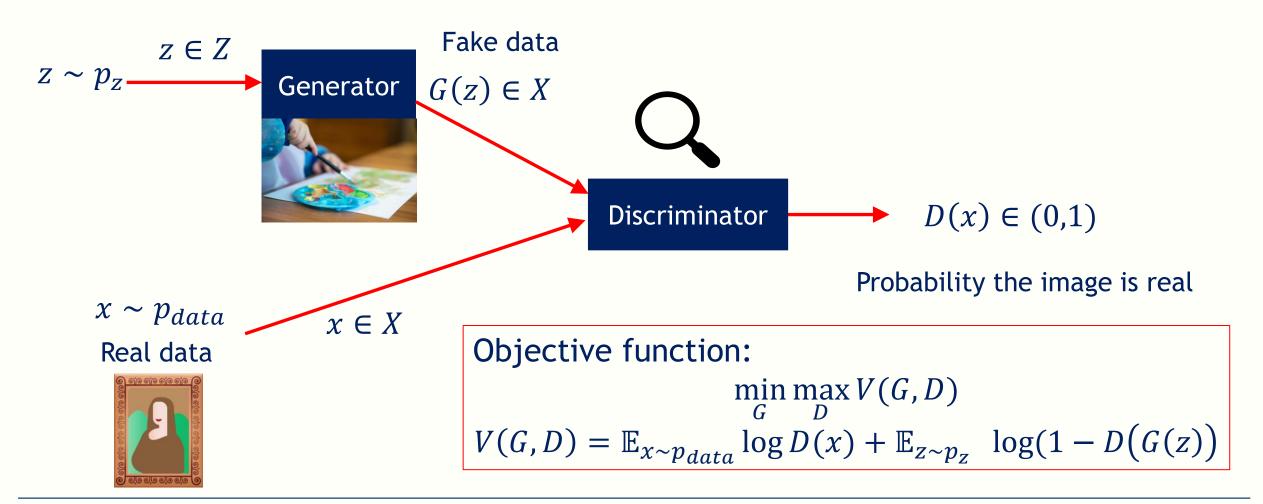
#### Generative Models Applied to Inverse Problems | SIAM IS 2022

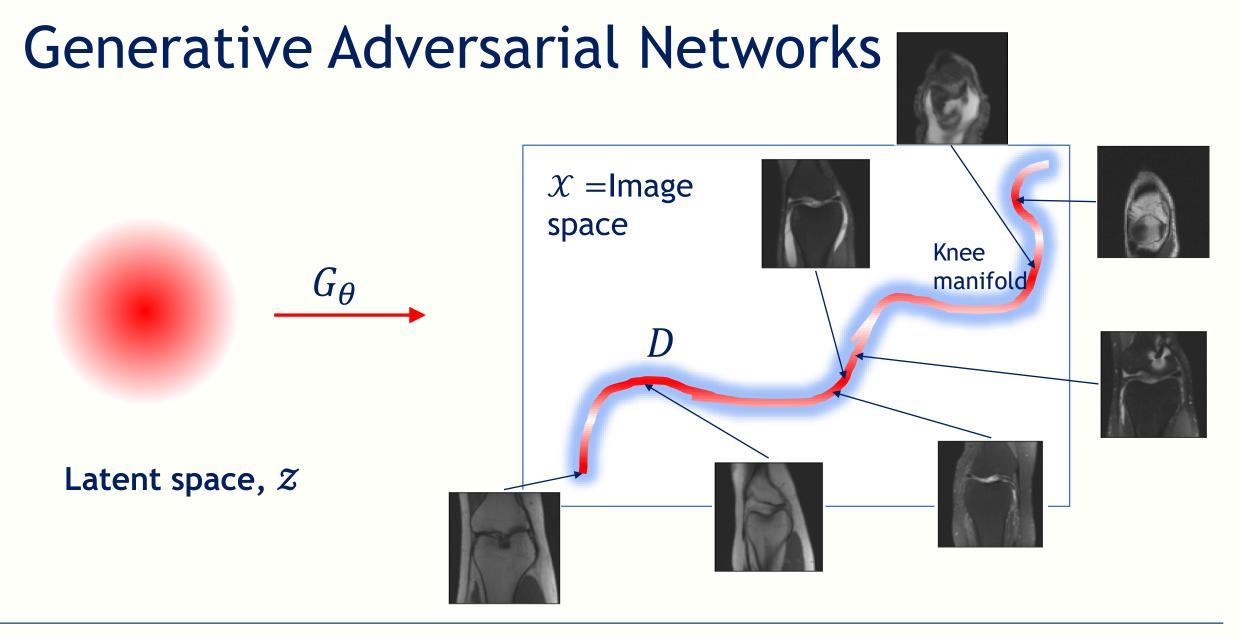
 $G_{\theta}(z)$ 

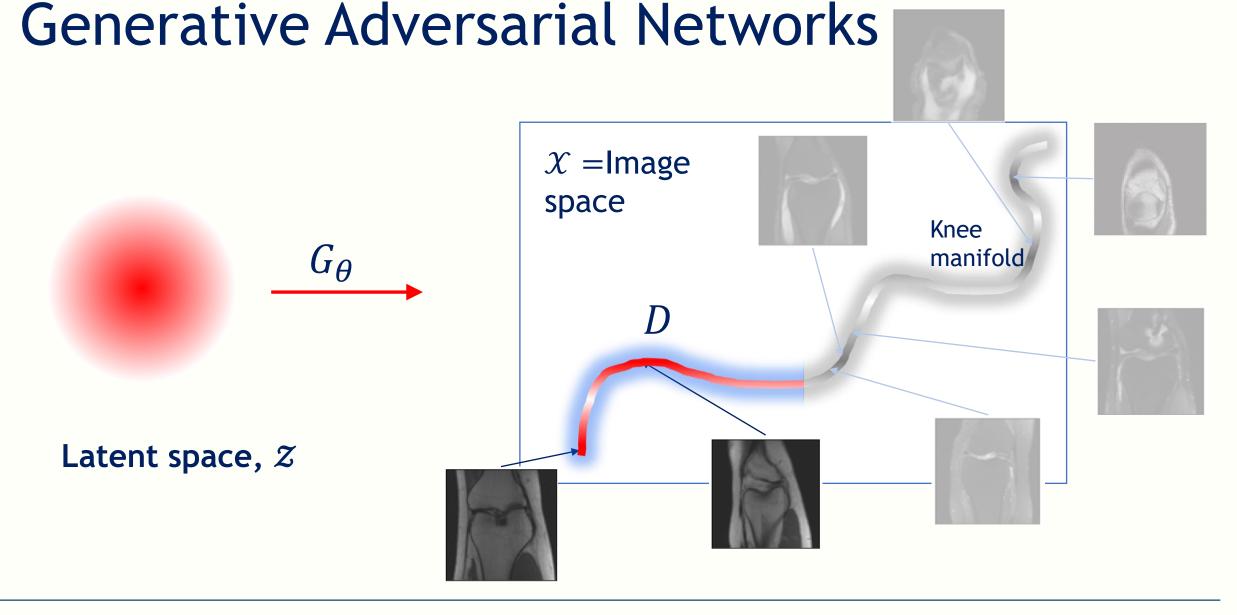
### Variational autoencoders



### Generative Adversarial Networks (GANs)

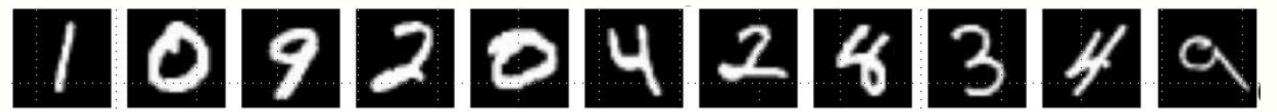




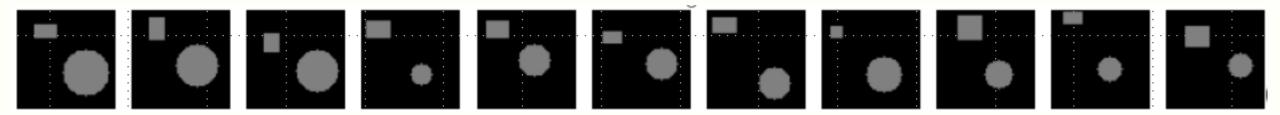


### Generative model comparisons

- Datasets:
  - MNIST

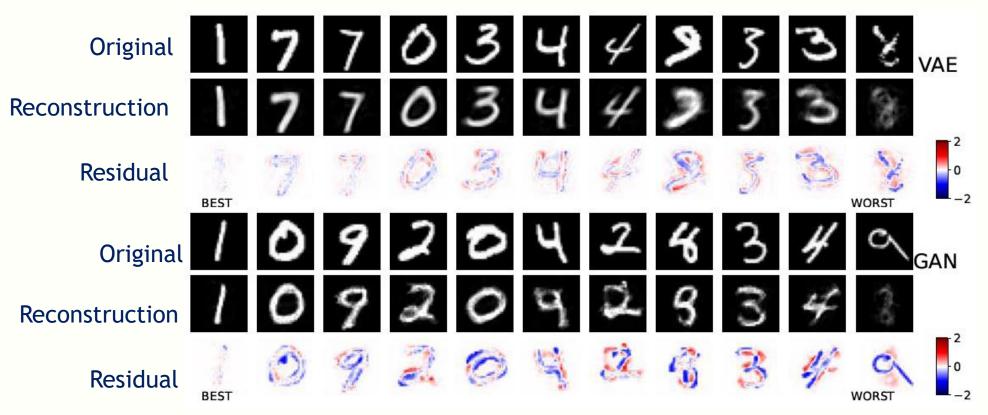


• Squares and circles



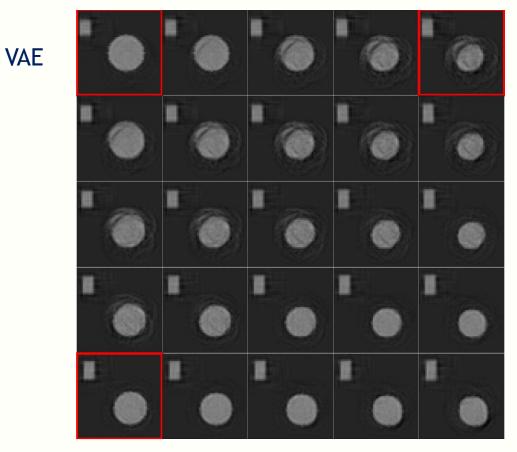
### Generative model comparisons

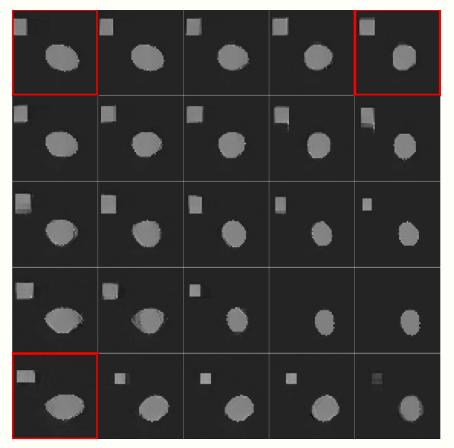
- Generator produces all 'feasible' images
- Generator produces no 'unfeasible' images



### Generative model comparisons

• Smoothness of the generator with respect to z





GAN

### VAE and GAN Comparison

|                                 | Variational Autoencoder                        | Generative Adversarial Network |
|---------------------------------|------------------------------------------------|--------------------------------|
| Generate all 'feasible' images  |                                                | Susceptible to mode collapse   |
| Generate no 'unfeasible' images | Can produce blurry images                      |                                |
| Smoothness with respect to z    | Depends on the network<br>Encoder distribution | Depends on the network         |
| Known latent space distribution | Only the prior is known                        | Only the prior is known        |

## Takeaway points

 $A: X \to Y$ Original Problem: Find x s.t.  $y \approx Ax$ 

Generative model  $G: Z \to X$ 

New Problem:

$$\arg\min_{x\in\mathcal{X}} \|y - Ax\|_2^2 + \lambda \mathcal{R}_G(x)$$

- Generative models can be used as priors for inverse problems
  - Penalise images far from the range of a generative model
- Requires generative models that produce more than a few good images.

https://arxiv.org/abs/2107.11191