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Abstract

We consider a branching random walk on the lattice, where the branching rates are
given by an i.i.d. Pareto random potential. We show that the system of particles,
rescaled in an appropriate way, converges in distribution to a scaling limit that is
interesting in its own right. We describe the limit object as a growing collection of
“lilypads” built on a Poisson point process in Rd. As an application of our main
theorem, we show that the maximizer of the system displays the ageing property.
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1 Introduction and main results

1.1 Introduction

Consider a branching random walk in random environment defined on Zd, starting with
a single particle at the origin. Given a collection ξ = {ξ(z) : z ∈ Zd} of non-negative
random variables, when at site z each particle branches into two particles at rate ξ(z).
Besides this, each particle moves independently as a simple random walk in continuous
time on Zd.
This model was introduced in [GM90], and most of the analysis thus far has concentrated
on the expected number of particles. Fix a realisation of the environment ξ and write

u(z, t) = Eξ[#{particles at site z at time t}],

where the expectation Eξ is only over the branching and random walk mechansims and
ξ is kept fixed. Then u(z, t) solves the stochastic partial differential equation, known as
the parabolic Anderson model (PAM),

∂tu(z, t) = ∆u(z, t) + ξ(z)u(z, t), for z ∈ Zd, t ≥ 0,

u(z, 0) = 1l{z=0} for z ∈ Zd.
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Here, ∆ is the discrete Laplacian defined for any function f : Zd → R as

∆f(z) =
∑
y∼z

(f(y)− f(z)), z ∈ Zd,

where we write y ∼ z if y is a neighbour of z in Zd.
We are particularly interested in the case when the potential is Pareto distributed,
i.e. Prob(ξ(z) > x) = x−α for all x ≥ 1 and some α > 0. In this case, the evolution of
the PAM is particularly well understood, including asymptotics for the total mass, one
point localisation and a scaling limit: see [HMS08, KLMS09, MOS11, OR16].

In general much less is known about the branching system itself (without taking expec-
tations). Some of the earlier results include [ABMY00] and [GKS13], who look at the
asymptotics of the expectation (with respect to ξ) of higher moments of the number of
particles. The real starting point for this article is our recent article [OR16]. We showed
that—in the Pareto case—the hitting times of sites, the number of particles, and the sup-
port in an appropriately rescaled system are well described by a process defined purely
in terms of the environment ξ (that is, given ξ, the process is deterministic), which we
called the lilypad model.

Our central aim in this article is to show that this lilypad process, and therefore the
branching system itself, has a scaling limit. This limit object is entirely new, and inter-
esting in its own right: it is neither deterministic, as for example in [CP07] for another
variant of branching random walk in random environment, nor is it a stochastic (partial)
differential equation. Rather the limit is a system of interacting and growing L1 balls
in Rd, centred at the points of a Poisson point process. We call this the Poisson lilypad
model, and to avoid confusion we will refer to the lilypad model from [OR16] as the
discrete lilypad model from now on.

As an application of this characterization, we show that the dominant site in the branch-
ing process—that is, the site that has more particles than any other site—remains con-
stant for long periods of time, in fact for periods that increase linearly as time increases.
This phenomenon is known as ageing, and was demonstrated for the PAM in [MOS11]
in the Pareto case, in [ST14, FM14] for Weibull potentials and in [BKS16] for potentials
with double exponential tails.

1.2 Definitions and notation

Before we can state our results precisely, we need to develop some machinery. Throughout
this article we write | · | for the L1-norm on Rd. B(z,R) = {x ∈ Rd : |x−z| < R} denotes
the open ball of radius R about z in Rd, and B(z,R) = {x ∈ Rd : |x− z| ≤ R} the closed
ball. For any measure ν, we write supp ν for the (measure theoretic) support of ν.

We take a collection of independent and identically distributed random variables {ξ(z), z ∈
Zd} satisfying

Prob(ξ(z) > x) = x−α for all x ≥ 1,

for a parameter α > 0 and any z ∈ Zd. We will also assume that α > d, which is known
to be necessary for the total mass of the PAM to remain finite [GM90].
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For a fixed environment ξ, we denote by P ξy the law of the branching simple random walk
in continuous time with binary branching and branching rates {ξ(z) , z ∈ Zd} started
with a single particle at site y. Finally, for any measurable set F ⊂ Ω, we define

Py(F × ·) =

∫
F
P ξy (·) Prob(dξ).

If we start with a single particle at the origin, we omit the subscript y and simply write
P ξ and P instead of P ξ0 and P0.

We define Y (z, t) to be the set of particles at the point z at time t, and let N(z, t) =
#Y (z, t).

We introduce a rescaling of time by a parameter T > 0, and then also rescale space and
the potential. Setting q = d

α−d , the right scaling factors turn out to be

a(T ) =

(
T

log T

)q
and r(T ) =

(
T

log T

)q+1

for the potential and space respectively. We then define the rescaled lattice as

LT = {z ∈ Rd : r(T )z ∈ Zd},

and for z ∈ Rd, R ≥ 0 define LT (z,R) = LT ∩B(z,R). For z ∈ LT , the rescaled potential
is given by

ξT (z) =
ξ(r(T )z)

a(T )
,

and we set ξT (z) = 0 for z ∈ Rd \ LT .

The branching system

We are interested primarily in three functions:

HT (z) = inf{t ≥ 0 : Y (r(T )z, tT ) 6= ∅},

MT (z, t) =
1

a(T )T
log+N(r(T )z, tT ),

and
ST (t) = {y ∈ Rd : HT (y) ≤ t},

for z ∈ LT , t ≥ 0, which we extend to z ∈ Rd by linear interpolation. We call these
functions the (rescaled) hitting times, numbers of particles, and support, respectively, of
the branching system.

The scaling limit: the Poisson lilypad model

In order to describe the limits of these functions as T → ∞, we suppose that under P
there is an independent Poisson point process Π on Rd × [0,∞) with intensity measure
dz ⊗ αx−(α+1)dx. We let Π(1) be the first marginal of Π, and write

Π =

∞∑
i=1

δ(zi,ξΠ(zi))
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where zi, i = 1, 2, . . . are the points in supp Π(1).

We define, for z ∈ Rd and t ≥ 0,

h(z) = inf
y1,y2,...∈supp Π(1),yn→0

{ ∞∑
j=1

q
|yj+1 − yj |
ξΠ(yj+1)

+ q
|y1 − z|
ξΠ(y1)

}
,

m(z, t) = sup
y∈supp Π(1)

{
ξΠ(y)(t− h(y))− q|y − z|

}
∨ 0,

and
s(t) = {y ∈ Rd : h(y) ≤ t}.

We recall that here and throughout | · | denotes the L1-norm on Rd.
We call these functions the hitting times, numbers of particles, and support, respectively,
of the Poisson lilypad process. We will now describe this process in non-rigorous language.
The reader may find our paper easier to understand with this picture in mind, though
in the proofs we will use the mathematical definitions of h, m and s given above.

We imagine that each site y ∈ supp Π(1) contains a seed. Once this seed is activated, a
lilypad begins growing outwards from y at speed ξΠ(y)/q. The seed is activated as soon
as it is touched by another lilypad. Lilypads overlap freely.

Slightly more formally, if y ∈ supp Π(1), then an L1 ball in Rd expands from y such that,
time s after it has been activated, the ball has radius ξΠ(y)s/q. The ball is activated
as soon as any other ball, growing from some other point in the Poisson point process,
contains y. We note that our lilypads live in L1, so they do not quite have the traditional
lilypad shape, but we continue with the picture regardless.

It remains to describe how the process begins. Fix a small radius δ > 0, and at time 0
activate all the lilypads within distance δ of the origin. Now let δ → 0. For any z ∈ Rd,
the first time that z is hit by a lilypad is obviously increasing as δ decreases to 0, and
so it has some (possibly infinite) limit, which is h(z). A simulation of this process in R2

can be seen at http://people.bath.ac.uk/mir20/programs/lilypads_poisson/.

We will see in Lemma 2.10 that for our particular choice of Poisson point process, h(z)
is both non-zero and finite for all z 6= 0, so that in particular the system of lilypads
manages to start growing from the origin, and does not explode in finite time.

We then think of s(t) as the set of all points in Rd that have been touched by a lilypad by
time t. The quantity m(z, t) is slightly more complicated to interpret, but if we imagine
that the centre of a lilypad is thicker than the edges, then m(z, t) can be thought of as
the thickness of the thickest lilypad that lies above the point z at time t. In particular
m(z, t) is zero if and only if no lilypad has touched z by time t (otherwise said, when
h(z) ≥ t, or when z 6∈ s(t)).
Topologies

Write C(A,B) for the set of continuous functions from A to B. We use the following
topologies:
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• For the hitting times: Cd := C(Rd, [0,∞)), equipped with the topology of uniform
convergence on compacts, i.e. induced by the metric

dU (f, g) =
∑
n≥1

2−n
(

sup
x∈[−n,n]d

{|f(x)− g(x)|} ∧ 1
)
, f, g ∈ Cd.

• For the number of particles:

Cd+1
0 := {f ∈ C(Rd × [0,∞), [0,∞)) : f(x, t)→ 0 as x→∞ ∀t ∈ [0,∞)},

equipped with the topology induced by the metric

dP (f, g) =
∑
n≥1

2−n
(

sup
x∈Rd,t∈[0,n]

{|f(x, t)− g(x, t)|} ∧ 1
)
, f, g ∈ Cd+1

0 .

• For the support: CF := C([0,∞), F (Rd)), equipped with the topology induced by
the metric

dF (f, g) =
∑
n≥1

2−n
(

sup
t∈[0,n]

{dH(f(t), g(t))} ∧ 1
)
, f, g ∈ CF ,

where F (Rd) is the space of non-empty compact subsets of Rd and dH is the Haus-
dorff distance on F (Rd).

Finally, we consider (HT ,MT , ST ) and (h,m, s) as elements in the product space C(×3) :=
Cd × Cd+1

0 × CF equipped with the product topology, which is, for example, induced by
the metric

d(×3)((H,M,S), (H ′,M ′, S′)) = dU (H,H ′) + dP (M,M ′) + dF (S, S′),

for any (H,M,S), (H ′,M ′, S′) ∈ C(×3).

1.3 Main results

Our main theorem states that the rescaled branching system (hitting times, number of
particles and support) converges weakly to the Poisson lilypad model. For background
on weak convergence, we refer to [Bil99, EK86].

Theorem 1.1. The triple (HT ,MT , ST ) converges weakly in C(×3) as T →∞ to (h,m, s).

As an application, we show that the maximal site in the branching system—that is, the
site with the most particles at a given time—shows ageing behaviour. Denote by Zmax(t)
this site: that is,

N(Zmax(t), t) ≥ N(z, t) ∀z ∈ Zd;

in case of a tie choose the point with larger potential. Introduce the rescaled version

WT (t) := Zmax(tT )/r(T ).
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Also let w(t) be the maximizer in the Poisson lilypad model,

m(w(t), t) ≥ m(z, t) ∀z ∈ Rd;

again in the case of a tie we choose the site with larger potential (although we will show
in Lemma 3.4 that for any t ≥ 0 there is almost surely a unique maximizer for the Poisson
lilypad model).

Theorem 1.2. Ageing. For any θ > 0,

P(Zmax(T ) = Zmax((1 + θ)T )) = P(WT (1) = WT (1 + θ))→ P(w(1) = w(1 + θ)).

Moreover, the probability on the right hand side is strictly between 0 and 1.

In the companion paper [OR17, Thm. 1.1], we show that for any t > 0, as T →∞

N(Zmax(tT ), tT )∑
z∈Zd N(z, tT )

→ 1, in probability.

Hence, the total mass of the branching process is concentrated in a single point, so the
theorem really describes ageing, i.e. the temporal slow-down, of this maximizer.

The strategy of proof of Theorem 1.1 relies on our previous result from [OR16], which
shows that the branching system is well described by a functional purely of the environ-
ment, which we call the discrete lilypad model and recall in Section 1.4. Then, our main
task is to show that the discrete lilypad model converges to the Poisson lilypad model that
we described above. The underlying reason is that the rescaled environment converges
to a Poisson process; see Section 1.5 for some background. The proof of Theorem 1.1 is
then an application of the continuous mapping theorem for a suitable continuous approx-
imation of the lilypad models, which we describe in Section 2. This approach allows us
to avoid some of the technicalities involved with a more traditional approach of showing
tightness combined with the convergence of finite dimensional distributions. The proof
of Theorem 1.2 in Section 3 is then an application of the scaling limit.

Throughout the article, the ideas remain fairly simple, but there are many technicalities
due to the highly sensitive nature of the model. For example, if one site of large potential
is hit slightly earlier or later than it should be, the whole system could be affected
dramatically. We have to keep track of several events that could, feasibly, occur; show
that they have small probability; and show that if these events do not occur then the
system behaves as we claim.

1.4 The discrete lilypad model

In [OR16], we showed that the branching system is well-approximated by certain func-
tionals of the environment, which we will refer to as the discrete lilypad model. For any
site z ∈ LT , we set

hT (z) = inf
y0,...,yn∈LT :
y0=z,yn=0

(
n∑
j=1

q
|yj−1 − yj |
ξT (yj)

)
.
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We call hT (z) the first hitting time of z in the discrete lilypad model. We think of each
site y as being home to a lilypad, which grows at speed ξT (y)/q. Note that hT (0) = 0.
For convenience, we interpolate hT linearly to define the values for z /∈ LT . The rescaled
number of particles in the discrete lilypad model is defined as

mT (z, t) = sup
y∈LT
{ξT (y)(t− hT (y))− q|z − y|} ∨ 0.

Also, we define the support of particles at time t in the discrete lilypad model as

sT (t) = {z ∈ Rd : hT (z) ≤ t}.

We recall here the main result from [OR16], which can be phrased as:

Theorem 1.3 ([OR16]). For any t∞ > 0, as T →∞,

sup
t≤t∞

sup
z∈LT

|MT (z, t)−mT (z, t)| → 0 in P-probability.

Moreover, for any R > 0, as T →∞,

sup
z∈LT (0,R)

|HT (z)− hT (z)| → 0 in P-probability,

and for any t∞ > 0, as T →∞,

sup
t≤t∞

dH(ST (t), sT (t))→ 0 in P-probability.

We reiterate here the general idea behind this article: we know from Theorem 1.3 that
the branching system is well-approximated (with high probability) by the discrete lilypad
model, which is a deterministic functional of the environment ξ. We can check that the
distribution of ξ (suitably rescaled) converges weakly to that of a Poisson point process;
and this allows us to show that the discrete lilypad model converges weakly to the Poisson
lilypad model.

1.5 Background on point processes

The proof of our main result, Theorem 1.1, is a consequence of the convergence of the
rescaled environment to a Poisson process. In this section we recall some of the standard
definitions concerning point processes.

We consider the point process

ΠT :=
∑
z∈Zd

δ
( z
r(T )

,
ξ(z)
a(T )

)
.

on Rd × (0,∞). A classical result in extreme value theory shows that ΠT converges in
law to the Poisson point process Π on Rd × (0,∞) with intensity measure

π(d(z, x)) = dz ⊗ α

xα+1
dx.
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In order to formalize this convergence we follow the basic setup from [HMS08], which is
based on [Res08]. Let E be a locally compact space with a countable basis and let E
denote the Borel-σ-algebra on E. A Radon measure is a Borel measure that is locally
finite. If in addition µ =

∑
i≥1 δxi for a countable collection of points {xi, i ≥ 1} ⊂ E,

then µ is called a point measure. We write Mp(E) for the set of all point measures on
E. We equip the set of Radon measures M+(E) with the vague topology: i.e. µn → µ
vaguely, if for any continuous function f : E → R with compact support

∫
fµn →

∫
fµ.

Note that Mp(E) is vaguely closed in M+(E) (cf. [Res08, Prop. 3.14]).

In our case we set E = Rd× (0,∞], where the topology on (0,∞] is understood such that
closed neighbourhoods of∞ are compact. Note that ΠT and Π are elements of Mp(E) for
this choice. Then the above convergence means that ΠT ⇒ Π in the topology on Mp(E)
induced by vague convergence. This fact is a direct application of [Res08, Prop. 3.21]
(where Rd replaces R+ as the index set).

2 Proof of the scaling limit

In this section we prove the main scaling limit, Theorem 1.1. By our previous result on
the approximation via the discrete model, Theorem 1.3, it suffices to show convergence of
the discrete lilypad model. Our main strategy is to use the continuous mapping theorem
to deduce the convergence of (hT ,mT , sT ) from the convergence of the point process ΠT

to Π. Unfortunately, however, it is not clear that (hT ,mT , sT ) is a continuous function of
the underlying point process. Our way around this problem is to define an δ-approximate
lilypad model for both the discrete space version and the Poisson model. By ignoring
potential values less than δ—and, later, restricting in space to B(0, 1/δ)—we obtain
functionals that only depend on a finite set of points and are therefore continuous.

We can treat both the discrete space and the Poisson case in the same way. Thus, for
ν = ΠT , for some T > 0, or ν = Π, we write ν ∈Mp(E) as

ν =
∑
i≥1

δ(zi,ξν(zi)),

and write ν(1)(·) := ν( · × [0,∞)) for the first marginal of ν. For r > 0, we write
Bν(0, r) = supp(ν(1)) ∩ B(0, r) and Bν(0, r) = supp(ν(1)) ∩ B(0, r). Where it is clear
which point process we are referring to, we write ξ(z) in place of ξν(z) for conciseness.
(Of course, we have already defined {ξ(z) : z ∈ Zd} to be a collection of i.i.d. Pareto
random variables; but since we already know from Theorem 1.3 that the branching
process is well approximated by the discrete lilypad model, which can be described via
the point process ΠT , we no longer need this original meaning and ξ(z) will always refer
to ξν(z) for some point process ν.)

For a general point process ν, we define the hitting times by setting hν(0) = 0 and, for
z ∈ Rd \ {0},

hν(z) = inf
{
q

∞∑
i=1

|yi − yi−1|
ξ(yi)

: y0 = z, yi ∈ supp ν(1) ∀i ≥ 1 , |yi| → 0
}
.
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The number of particles is defined as

mν(z, t) = sup
y∈supp ν(1)

{
ξ(y)(t− hν(y))− q|y − z|

}
∨ 0, z ∈ Rd, t ≥ 0,

and the support is defined as

sν(t) = {z ∈ Rd : hν(z) ≤ t}, t ≥ 0.

We also define the δ-hitting times by setting

hδν(z) = inf
{ n∑
j=1

q
|yj−1 − yj |
ξ(yj)

+ q
|yn|
δ

: n ∈ N0, y0 = z and y1, . . . , yn ∈ supp ν(1)

}
for any z ∈ Rd (note that we allow n = 0, in which case we do not insist on yn ∈
supp(ν(1))). Effectively, considering hδν(z) rather than hν(z) gives all lilypads a “minimum
speed” δ/q, which helps in showing the continuity of the process as a function of the point
measure ν. In analogy with the definitions above, we also define the δ-number of particles
and the δ-support via

mδ
ν(z, t) = sup

y∈supp ν(1)

{
ξ(y)(t− hδν(y))− q|y − z|

}
∨ 0, z ∈ Rd, t ≥ 0,

and
sδν(t) = {z ∈ Rd : hδν(z) ≤ t}, t ≥ 0.

We write (hδT ,m
δ
T , s

δ
T ) := (hδΠT ,m

δ
ΠT
, sδΠT ) and (hδ,mδ, sδ) := (hδΠ,m

δ
Π, s

δ
Π).

The main technical result of this section is the following proposition.

Proposition 2.1. For any ε > 0,

lim
δ↓0

lim sup
T→∞

P
(
d(×3)

(
(hδT ,m

δ
T , s

δ
T ), (hT ,mT , sT )

)
≥ ε
)

= 0,

and analogously for the Poisson point process

lim
δ↓0

P
(
d(×3)

(
(hδ,mδ, sδ), (h,m, s)

)
≥ ε
)

= 0.

The remainder of this section is organised as follows. In Section 2.1, we give general
criteria on the point process ν that ensure that the δ-hitting times approximate well the
actual hitting times. Then in Section 2.2 we show that this result can be transferred
to the number of particles and the support. In Section 2.3 we show that these general
criteria are satisfied by the point processes ΠT and Π, and we prove Proposition 2.1.
Finally, in Section 2.4, we show that the δ-processes for ΠT converge to the δ-processes
for Π, and we combine these results to show the statement of the main scaling limit
Theorem 1.1.
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2.1 The δ-approximation of the hitting times

We now state certain assumptions on the point process ν under which hδν and hν will be
close when δ is small. Let γ = d+α

2α .

(A1) For all R ≥ R0, supy∈Bν(0,R) ξ(y) ≤ qRγ .

(A2) For all r ≤ r0, for all k ∈ N0, there exists Zk ∈ Bν(0, r2−k) such that ξ(Zk) ≥
rγ2−kγ .

We write (A1)R0 and (A2)r0 to emphasize the dependence of the conditions on the pa-
rameters.

The main result in this subsection states that the hitting times are approximated well
by the δ-hitting times, provided ν satisfies the above conditions.

Proposition 2.2. Suppose that ν satisfies (A1)R0 and (A2)r0 for some R0 and r0. Then
for any ε > 0, there exists δ > 0 (depending only on γ, ε, R0 and r0) such that

hδν(z) ≤ hν(z) ≤ hδν(z) + ε ∀z ∈ Rd.

We will also need the following two simple lemmas, which prove upper and lower bounds
on the hitting times.

Lemma 2.3. Suppose that ν satisfies (A2)r0 for some r0. Then for any r ≤ r0,

max
z∈B(0,r)

hν(y) ≤ 4qr1−γ

1− 2γ−1

and moreover, for any z ∈ Rd,

hν(z) ≤ 4qr1−γ
0

1− 2γ−1
+ q(r−γ0 |z|+ r1−γ

0 ).

Lemma 2.4. Suppose that ν satisfies (A1)R0 for some R0. Then for any R ≥ R0 and
any δ > 0,

inf
y 6∈B(0,R)

hδν(y) ≥ min{R1−γ , qR/δ}.

The lemmas lead easily to two useful corollaries.

Corollary 2.5. Suppose that ν satisfies (A1)R0 for some R0. Then for any z ∈ Rd and
any δ > 0, there exists R > 0 (depending only on γ, R0 and δ) such that the infimum in
the definition of hδν(z) can be restricted to points y1, . . . , yn ∈ Bν(0, R).

Corollary 2.6. Suppose that ν satisfies (A1)R0 and (A2)r0 for some R0 and r0. Then
for all z ∈ Rd \ {0} and all δ > 0, we have

0 < hδν(z) ≤ hν(z) <∞.
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We delay the proofs of the lemmas and corollaries for a moment to concentrate on Propo-
sition 2.2.

Proof of Proposition 2.2. The fact that hδν(z) ≤ hν(z) for all z ∈ Rd follows immediately
from the definitions, so we aim to prove that hν(z) ≤ hδν(z) + ε.

Since γ < 1 we may choose δ > 0 small enough so that

4qδ1−γ
( 1

1− 2γ−1

)
≤ ε, (1)

(δ/4)γ ≥ 2δ and δ ≤ r0. (2)

By Corollary 2.5, there exists R > 0 such that the infimum in the definition of hδν(z) is
taken over points y1, . . . , yn ∈ Bν(0, R); we also note from the definition that necessarily
ξ(yi) ≥ δ for each i = 1, . . . , n (by the triangle inequality, including points that violate
this condition is never optimal). Since the set B(0, R)× [δ,∞) is relatively compact in E,
and ν is a Radon measure, there are only finitely many such points. Thus the infimum
is actually a minimum, and we can find points y0 = z, y1, . . . , yn such that

hδν(z) =
n∑
i=1

q
|yi−1 − yi|
ξ(yi)

+ q
|yn|
δ
. (3)

Note from the definition of hν that

hν(z) ≤ hν(yn) + q
n∑
i=1

|yi − yi−1|
ξ(yi)

≤ hν(yn) + hδν(z),

so it remains to prove that hν(yn) ≤ ε.
By Lemma 2.3 and the fact that δ ≤ r0, together with (1), we have

max
y∈B(0,δ)

hν(y) ≤ ε.

Thus it suffices to prove that |yn| < δ.

By (A2)r0 with r = δ ≤ r0 and k = 2, we can choose Z ∈ B(0, δ/4) such that ξ(Z) ≥
(δ/4)γ ≥ 2δ by (2). Suppose that |yn| ≥ δ. Then

|Z|
δ

+
|Z − yn|
ξ(Z)

≤ |Z|
δ

+
|Z − yn|

2δ
≤ |Z|

δ
+
|Z|
2δ

+
|yn|
2δ
≤ 3

2

δ/4

δ
+
|yn|
2δ

<
|yn|
δ
.

Thus by including Z in the approximating sequence we get a smaller value of hδν(z)
than (3), contradicting the optimality of the sequence y0, . . . , yn. We deduce that |yn| < δ
as required.

We now proceed with the proofs of the lemmas. Lemma 2.3 follows easily from the
assumption (A2)r0 :

11



Proof of Lemma 2.3. Fix r ≤ r0 and let Zk, k ≥ 0, be as in (A2)r0 . Then by definition,
for any z ∈ B(0, r), we have

hν(z) ≤ q |z − Z0|
ξ(Z0)

+ q
∞∑
j=1

|Zj−1 − Zj |
ξ(Zj)

≤ 2q
r

rγ
+ q

∞∑
j=1

2r2−(j−1)

rγ2−γj
≤ 4qr1−γ 1

1− 2γ−1
.

For the second claim, taking r = r0 in the above, we have that for any z,

hν(z) ≤ hν(Z0) + q
|z − Z0|
ξ(Z0)

≤ 4qr1−γ
0

1− 2γ−1
+
q(|z|+ r0)

rγ0
.

Lemma 2.4 is slightly more fiddly.

Proof of Lemma 2.4. It is easy to see from the definition that z 7→ hδν(z) is continuous.
Therefore there exists a point z̃ ∈ ∂B(0, R) = {z ∈ Rd : |z| = R} that minimizes hδν , i.e.

hδν(z̃) = inf
y∈∂B(0,R)

hδν(y).

We claim that hδν(z̃) = inf |y|≥R h
δ
ν(y). Indeed, suppose there exists y 6∈ B(0, R) with

hδν(y) < hδν(z̃). Then we can choose y0 = z, y1, . . . , yn with

q
n∑
j=1

|yj − yj−1|
ξ(yj)

+ q
|yn|
δ

< hδν(z̃).

We may assume without loss of generality that y1 ∈ B(0, R) (since clearly hδν(y1) < hδν(z̃),
so we can otherwise use y1 in place of y). Therefore there exists a ∈ (0, 1) such that
ỹ := y1 + a(y − y1) ∈ ∂B(0, R). Then

hδν(ỹ) ≤ q |y1 − ỹ|
ξ(y1)

+ q

n∑
j=2

|yj − yj−1|
ξ(yj)

+ q
|yn|
δ

= qa
|y1 − y|
ξ(y1)

+ q

n∑
j=2

|yj − yj−1|
ξ(yj)

+ q
|yn|
δ

< q
n∑
j=1

|yj − yj−1|
ξ(yj)

+ q
|yn|
δ

= hδν(z̃),

contradicting the choice of z̃. Therefore the claim holds.

If the infimum in the definition of hδν(z̃) uses the point y, then from the definition we
would have hδν(z̃) ≥ hδν(y). However, hδν(y) > hδν(z̃) for all y 6∈ B(0, R) and therefore the
infimum in the definition of hδν(z̃) can be restricted to points within B(0, R): that is,

hδν(z̃) = inf
{
q

n∑
j=1

|yj−1 − yj |
ξ(yj)

+ q
|yn|
δ

: n ∈ N0, y0 = z̃ and y1, . . . , yn ∈ Bν(0, R)
}
.

In particular,

hδν(z̃) ≥ min
{ qR

maxy∈Bν(0,R) ξ(y)
,
qR

δ

}
,

and therefore by (A1)R0 , if R ≥ R0 then

inf
y 6∈B(0,R)

hδν(y) ≥ min{R1−γ , qR/δ}.

12



Proof of Corollary 2.5. Fix z ∈ Rd. By Lemma 2.4, we can choose R large enough such
that

inf
y 6∈B(0,R)

hδν(y) > hδν(z).

Therefore the infimum in the definition of hδν(z) can be restricted to points within B(0, R).

Proof of Corollary 2.6. Take any z ∈ Rd \ {0} and δ > 0. By Corollary 2.5, there exists
R > 0 such that the infimum in the definition of hδν(z) can be restricted to points within
B(0, R), so

hδν(z) ≥ min
{ q|z|

maxy∈Bν(0,R) ξ(y)
,
q|z|
δ

}
> 0.

The fact that hδν(z) ≤ hν(z) follows directly from the definitions; and hν(z) < ∞ by
Lemma 2.3.

2.2 The δ-approximation of the support and number of particles

We recall that

mν(z, t) = sup
y∈supp ν(1)

{
ξ(y)(t− hν(y))− q|y − z|

}
∨ 0, z ∈ Rd, t ≥ 0

and
sν(t) = {z ∈ Rd : hν(z) ≤ t}, t ≥ 0,

and that mδ
ν(z, t) and sδν(t) are defined similarly by replacing hν by hδν . In this subsection,

we show that under (A1)R0 and (A2)r0 , the δ-approximations mδ
ν and sδν are close to mν

and sν respectively.

We start by showing that the growth of the support sν is well-controlled. This will be
key to controlling the Hausdorff distance between sν and sδν .

Lemma 2.7. Suppose that ν satisfies (A1)R0 for some R0. For any ε > 0 and any
t0 > 0, there exists η ∈ (0, 1) (depending only on γ, ε, t0 and R0) such that

sν(t+ η) ⊆
⋃

y∈sν(t)

B(y, ε) ∀t ≤ t0.

Proof. By Lemma 2.4, together with the fact that hν(z) ≥ hδν(z) for all z, we can choose
R ≥ R0 such that hν(y) > t0 + 1 for all y 6∈ B(0, R). Then set η = ε

2Rγ ∧
1
2 .

Suppose that z ∈ sν(t+η)\sν(t); then hν(z) ∈ (t, t+η], so we can find y0 = z, y1, y2 . . .→
0 with hν(z) ≤ q

∑∞
i=1

|yi−yi−1|
ξ(yi)

≤ t + 2η. Since hν(y) > t0 + 1 for all y 6∈ B(0, R), we

must have y1, y2, . . . ∈ B(0, R).

Choose k such that q
∑∞

i=k+1
|yi−yi−1|
ξ(yi)

≤ t and q
∑∞

i=k
|yi−yi−1|
ξ(yi)

> t. Then choose a ∈ [0, 1)
such that

q

∞∑
i=k+1

|yi − yi−1|
ξ(yi)

+ aq
|yk − yk−1|
ξ(yk)

= t.

13



Setting ỹ = yk + a(yk − yk−1), by the above we have hν(ỹ) ≤ t, so ỹ ∈ sν(t). On the
other hand,

q
∞∑

i=k+1

|yi − yi−1|
ξ(yi)

+ aq
|yk − yk−1|
ξ(yk)

= q

∞∑
i=1

|yi − yi−1|
ξ(yi)

− (1− a)q
|yk − yk−1|
ξ(yk)

− q
k−1∑
i=1

|yi − yi−1|
ξ(yi)

,

so (since the left-hand side equals t and the first sum on the right-hand side is at most
t+ 2η) we must have

(1− a)q
|yk − yk−1|
ξ(yk)

+ q

k−1∑
i=1

|yi − yi−1|
ξ(yi)

≤ 2η.

By the triangle inequality, we get

|ỹ − z| =
∣∣∣(1− a)(yk − yk−1) +

k−1∑
i=1

(yi − yi−1)
∣∣∣ ≤ 2η

q
sup

y∈Bν(0,R)
ξ(y),

and by (A1)R0 and the fact that η ≤ ε/(2Rγ), we have |ỹ − z| ≤ ε. Since ỹ ∈ sν(t) this
completes the proof.

We can now apply Proposition 2.2 together with Lemma 2.7 to prove our main result for
this section.

Proposition 2.8. Suppose that ν satisfies (A1)R0 and (A2)r0 for some R0 and r0. For
any ε > 0 and t0 > 0, there exists δ > 0 (depending only on γ, ε, t0, R0 and r0) such
that

mν(z, t) ≤ mδ
ν(z, t) ≤ mν(z, t) + ε for all z ∈ Rd,

and
dH(sν(t), sδν(t)) ≤ ε

for all t ∈ [0, t0] and z ∈ Rd.

Proof. We start by showing the statement about the supports, sν and sδν . By Lemma
2.7 we can choose η > 0 such that

sν(t+ η) ⊆
⋃

y∈sν(t)

B(y, ε) ∀t ≤ t0.

Then by Proposition 2.2 we can choose δ > 0 such that

hδν(z) ≤ hν(z) ≤ hδν(z) + η ∀z ∈ Rd.

We get
z ∈ sν(t) ⇒ hν(z) ≤ t ⇒ hδν(z) ≤ t ⇒ z ∈ sδν(t),
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and
z ∈ sδν(t) ⇒ hδν(z) ≤ t ⇒ hν(z) ≤ t+ η ⇒ z ∈ sν(t+ η),

so
sν(t) ⊂ sδν(t) ⊂

⋃
y∈sν(t)

B(y, ε).

This implies that dH(sν(t), sδν(t)) ≤ ε as required.

We now turn our attention to the numbers of particles, mν and mδ
ν . By Lemma 2.4 we

can choose R > R0 such that hδν(z) > t0 for all z 6∈ B(0, R) and all δ ∈ (0, 1]. Then by
Proposition 2.2 we can choose δ ∈ (0, 1] such that hδν(z) ≤ hν(z) ≤ hδν(z) + ε/(qRγ) for
all z ∈ Rd. Then, straight from the definitions, we have

mν(z, t) ≤ mδ
ν(z, t) ≤ mν(z, t) + sup

y∈Bν(0,R)
ξ(y)

ε

qRγ

for all z ∈ Rd and t ≤ t0. By (A1)R0 the right-hand side is at most mν(z, t) + ε.

Finally, since hδν(z) ≤ hν(z) for all z ∈ Rd and hδν is increasing as δ ↓ 0, the event
{hδν(z) ≤ h(z) ≤ hδν(z)+ε}, and therefore the events {mν(z, t) ≤ mδ

ν(z, t) ≤ mν(z, t)+ε}
and {sν(t) ⊂ sδν(t) ⊂

⋃
y∈sν(t)B(y, ε)}, are increasing as δ ↓ 0 for any ε > 0. In particular,

we can choose the same δ for both the support and the number of particles.

2.3 The δ-approximation works

Our aim in this section is to show that the δ-approximations converge (in a suitable
sense) as δ ↓ 0 to the quantities they are supposed to approximate. In particular we will
prove Proposition 2.1. We first show that conditions (A1)R0 and (A2)r0 hold for some
R0 and r0 with high probability for both ΠT and Π.

Lemma 2.9. As R0 →∞,

P
(
Π satisfies (A1)R0)→ 1 and inf

T>e
P
(

ΠT satisfies (A1)R0

)
→ 1,

and as r0 → 0,

P
(
Π satisfies (A2)r0)→ 1 and inf

T>e
P
(

ΠT satisfies (A2)r0

)
→ 1.

Proof. Define the event Ak(ν) = {maxz∈Bν(0,2k) ξ(z) ≤ q2(k−1)γ}. By [OR16, Lemma
2.7(ii)] (with N = 1), there exists a constant C such that for any T > e and any k ≥ 0,

P(Ak(ΠT )c) ≤ C2dk(q2γ(k−1))−α = C2αγq−α2(d−γα)k.

Similarly, by direct calculation, there exists a constant C such that for any R ≥ 1,

P(Ak(Π)c) ≤ 1− e−C2αγq−α2(d−γα)k ≤ C2αγq−α2(d−γα)k.
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Note that d − γα < 0, so that in both cases the probabilities are summable over k.
In particular, we can choose K large enough so that the event ∩k≥KAk(ν) holds with
probability arbitrarily close to 1 (for ν = Π or for ν = ΠT and uniformly in T > e).

Now on the event ∩k≥KAk(ν), we can take any R ≥ 2K and choose k such that 2k ≤
R ≤ 2k+1. Then, we have that

sup
z∈B(0,R)

ξ(z) ≤ sup
z∈B(0,2k+1)

ξ(z) ≤ q2kγ ≤ qRγ ,

so that the first statement follows.

To show (A2)r0 , we define Ãk(ν) = {∃z ∈ Bν(0, 2−k) : ξ(z) ≥ 2−γ(k−1)}. For ν = ΠT ,
we have from [OR16, Lemma 2.7(i)] that there exists c > 0 such that for T > e,

P(Ãk(ΠT )c) = P
(

max
y∈supp Π

(1)
T ∩B(0,2−k)

ξ(y) ≤ 2−γ(k−1)
)
≤ e−c2−αγ2k(αγ−d)

.

Similarly, by direct calculation, there exists a constant c > 0 such that

P(Ãk(Π)c) = P
(

max
y∈supp Π(1)∩B(0,2−k)

ξ(y) ≤ 2−γ(k−1)
)
≤ e−c2−αγ2k(αγ−d)

.

Note that αγ − d > 0, so for any ε > 0 we can choose K such that for all T > e,

P
( ⋃
k≥K

Ãk(ΠT )c
)
≤ ε and P

( ⋃
k≥K

Ãk(Π)c
)
≤ ε.

The result follows.

We also note the following easy lemma.

Lemma 2.10. Almost surely, hΠ(z) ∈ (0,∞) and hΠT (z) ∈ (0,∞) for any z 6= 0 and
T > e.

Proof. The statement follows by combining Corollary 2.6 with Lemma 2.9.

The next corollary is the key tool in proving Proposition 2.1.

Corollary 2.11. For any ε > 0, T > e and t0 > 0,

limδ↓0 P
(

supz∈Rd |hΠ(z)− hδΠ(z)| ≥ ε
)

= 0, (4)

limδ↓0 P
(

supt≤t0 supz∈Rd |mΠ(z, t)−mδ
Π(z, t)| ≥ ε

)
= 0, (5)

limδ↓0 P
(

supt≤t0 dH(sΠ(t), sδΠ(t)) ≥ ε
)

= 0, (6)

and similarly

limδ↓0 lim supT→∞ P
(

supz∈Rd |hΠT (z)− hδΠT (z)| ≥ ε
)

= 0, (7)

limδ↓0 lim supT→∞ P
(

supt≤t0 supz∈Rd |mΠT (z, t)−mδ
ΠT

(z, t)| ≥ ε
)

= 0, (8)

limδ↓0 lim supT→∞ P
(

supt≤t0 dH(sΠT (t), sδΠT (t)) ≥ ε
)

= 0. (9)
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Proof. First, since hδΠ(z) ≤ hΠ(z) for all z ∈ Rd and δ > 0, and hδΠ(z) is increasing as
δ ↓ 0, the events {hδΠ(z) ≤ h(z) ≤ hδΠ(z) + ε} are increasing as δ ↓ 0. By Lemma 2.9 and
Proposition 2.2, we know that for any ε > 0,

lim
δ↓0

P(hδΠ(z) ≤ hΠ(z) ≤ hδΠ(z) + ε ∀z ∈ Rd) = 1

and
lim
δ↓0

lim inf
T→∞

P(hδΠT (z) ≤ hΠT (z) ≤ hδΠT (z) + ε ∀z ∈ Rd) = 1;

the first and fourth statements follow. The proofs of the statements for m and s are
almost identical, using Proposition 2.8 in place of Proposition 2.2.

From Corollary 2.11, we can easily deduce our main technical result Proposition 2.1.

Proof of Proposition 2.1. We consider first the case of the hitting times. Recall that we
defined, for any f, g ∈ Cd := C(Rd, [0,∞)),

dU (f, g) =
∑
k≥1

2−k
(

sup
x∈[−k,k]d

{
|f(x)− g(x)|

}
∧ 1
)
.

For any ε > 0, we choose N such that 2−N ≤ ε/2. Then we have

P
(
dU (hδT , hT ) ≥ ε

)
≤ P

( N∑
k=1

sup
z∈[−k,k]d

|hδT (z)− hT (z)| ≥ ε/2
)

≤
N∑
k=1

P
(

sup
z∈[−k,k]d

|hδT (z)− hT (z)| ≥ ε/(2N)
)

Letting first T →∞ and then δ ↓ 0, we obtain by Corollary 2.11 that

lim
δ↓0

lim sup
T→∞

P
(
dU (hδT , hT ) ≥ ε

)
= 0.

The argument for the numbers of particles and the support of the discrete lilypad model
as well as the analogous statements for the Poisson lilypad model also follow from Corol-
lary 2.11 in exactly the same way. If we combine these statements, we obtain Proposi-
tion 2.1.

2.4 Proof of Theorem 1.1

We would like to apply the continuous mapping theorem to deduce the weak convergence
of the δ-truncated lilypad models. To facilitate this application, we introduce some
slightly different δ-approximations: define, for z ∈ Rd and δ > 0,

h̃δν(z) = inf
{ n∑
j=1

q
|yj−1 − yj |
ξ(yj)

+ q
|yn|
δ

: n ∈ N0, y0 = z and y1, . . . , yn ∈ Bν(0, 1/δ)
}
.
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Note that the only difference from our previous definition hδν is that the points y1 . . . , yn
must now be within the closed ball B(0, 1/δ). We also define

m̃δ
ν(z, t) = sup

y∈Bν(0,1/δ)

{
ξ(y)(t− h̃δν(y))− q|y − z|

}
∨ 0, z ∈ Rd, t ≥ 0,

and
s̃δν(t) = {z ∈ Rd : h̃δν(z) ≤ t}, t ≥ 0.

We recall that hδT is shorthand for hδΠT , hδ for hδΠ, and so on; and we similarly write h̃δT
for h̃δΠT , h̃δ for h̃δΠ and so on.

The benefit of introducing these new quantities is that applying the continuous mapping
theorem to them is straightforward.

Proposition 2.12. For any δ > 0, as T →∞

(h̃δT , m̃
δ
T , s̃

δ
T )⇒ (h̃δ, m̃δ, s̃δ).

Proof. As discussed in Section 1.5, we know that

ΠT ⇒ Π.

By the continuous mapping theorem, [Bil68, Theorem 5.1], we only have to show that
each of the maps

ν 7→ h̃δν , ν 7→ m̃δ
ν , ν 7→ s̃δν ,

are continuous as functions from Mp(E) (equipped with the vague topology) into the
target spaces equipped with the topologies described before Theorem 1.1.

We note that the definitions of h̃δν , m̃δ
ν , and s̃δν only depend on the point process through

the values in B(0, 1/δ)× [δ,∞), which is a compact set in E. The same is true for m̃δ
ν and

s̃δν . Therefore, we can use Proposition 3.31 in [Res08]: given that νn converges vaguely
to ν, we can label atoms of νn and ν restricted to any compact set such that the finitely
many atoms converge pointwise. This implies in particular that h̃δνn → h̃δν , m̃δ

νn → m̃δ
ν ,

and s̃δνn → s̃δν .

Write

AT = (HT ,MT , ST ), aT = (hT ,mT , sT ), aδT = (hδT ,m
δ
T , s

δ
T ), ãδT = (h̃δT , m̃

δ
T , s̃

δ
T ),

ãδ = (h̃δ, m̃δ, s̃δ), aδ = (hδ,mδ, sδ), a = (h,m, s).

We now need to check that ãδT is close to aδT , and ãδ is close to aδ.

Lemma 2.13. For any ε > 0,

lim
δ↓0

lim sup
T→∞

P(d(×3)(ãδT , a
δ
T ) > ε) = 0 and lim

δ↓0
P(d(×3)(ãδ, aδ) > ε) = 0.
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Proof. Fix η > 0; by Lemma 2.9 we may choose R0, r0 > 0 such that both ΠT (for any
large T ) and Π satisfy (A1)R0 and (A2)r0 with probability at least 1− η.

By Lemmas 2.3 and 2.4, for any point measure ν satisfying (A1)R0 and (A2)r0 , and any
R > 0 and t0 > 0, there exists δ0 > 0 such that for all δ ∈ (0, δ0),

inf
y 6∈B(0,1/δ)

hδν(y) > max
{

sup
z∈B(0,R)

hδν(z), t0

}
.

Then for all δ ∈ (0, δ0), z ∈ B(0, R) and t ≤ t0, we have

h̃δν(z) = hδν(z), m̃δ
ν(z, t) = mδ

ν(z, t) and s̃δν(t) = sδν(t).

From the definition of d(×3) (choosing R and t0 large enough that the distance is guaran-
teed to be small) we get that for all large T ,

P
(
d(×3)(ãδT , a

δ
T ) > ε

)
≤ η and P

(
d(×3)(ãδ, aδ) > ε

)
≤ η

for all δ ∈ (0, δ0). Since η > 0 was arbitrary, this completes the proof.

We can now combine the various parts of this section to deduce the main scaling limit,
Theorem 1.1.

Proof of Theorem 1.1. By the portmanteau theorem it suffices to show that for any
bounded and Lipschitz-continuous function f : C(×3) → R, we have that

E[f(HT ,MT , ST )]→ E[f(h,m, s)] as T →∞. (10)

Suppose that f : C3 → R is bounded by ‖f‖ and Lipschitz continuous with Lipschitz
constant L, and let ε > 0. We have that∣∣E[f(AT )]− E[f(a)]

∣∣ ≤ E
[
|f(AT )− f(aT )|

]
+ E

[
|f(aT )− f(aδT )|

]
+ E

[
|f(aδT )− f(ãδT )|

]
+
∣∣E[f(ãδT )]− E[f(ãδ)]

∣∣+ E
[
|f(ãδ)− f(aδ)|

]
+ E

[
|f(aδ)− f(a)|

]
≤ 5Lε+ 2‖f‖P(d(×3)(AT , aT ) > ε) + 2‖f‖P(d(×3)(aT , a

δ
T ) > ε)

+ 2‖f‖P(d(×3)(aδT , ã
δ
T ) > ε) +

∣∣E[f(ãδT )]− E[f(ãδ)]
∣∣

+ 2‖f‖P(d(×3)(ãδ, aδ) > ε) + 2‖f‖P(d(×3)(aδ, a) > ε).

We now take a lim sup as T →∞: by Theorem 1.3,

P(d(×3)(AT , aT ) > ε)→ 0;

and by Proposition 2.12, ∣∣E[f(ãδT )]− E[f(ãδ)]
∣∣→ 0.

Thus

lim sup
T→∞

∣∣E[f(AT )]− E[f(a)]
∣∣

≤ 5Lε+ 2‖f‖ lim sup
T→∞

P(d(×3)(aT , a
δ
T ) > ε) + 2‖f‖ lim sup

T→∞
P(d(×3)(aδT , ã

δ
T ) > ε)

+ 2‖f‖P(d(×3)(ãδ, aδ) > ε) + 2‖f‖P(d(×3)(aδ, a) > ε).
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Finally, by Proposition 2.1 and Lemma 2.13, taking a limit as δ ↓ 0 on the right-hand
side, we get

lim sup
T→∞

∣∣E[f(AT )]− E[f(a)]
∣∣ ≤ 5Lε,

and since ε > 0 was arbitrary the proof is complete.

3 Proof of the ageing result

In this section we prove Theorem 1.2.

Before we start with the main proof, we need to collect several auxiliary lemmas, where
we show that the lilypad models are rather ‘discrete’: once two maximizing points are
close, they are in fact the same.

Lemma 3.1. For any t > 0

lim
n→∞

lim sup
T→∞

P(sT (t) 6⊆ B(0, n)) = 0

and
lim
n→∞

lim sup
T→∞

P(ST (t) 6⊆ B(0, n)) = 0.

Proof. Recall that

{sT (t) 6⊆ B(0, n)} = {∃y 6∈ B(0, n) : hT (y) ≤ t} ⊆
{

inf
y 6∈B(0,n)

hT (y) ≤ t
}
.

But combining Lemma 2.4 with Lemma 2.9 tells us that for all t, there exists n such that

lim sup
T→∞

P
(

inf
y 6∈B(0,n)

hT (y) ≤ t
)

= 0.

This proves the first statement, and then the second follows from Theorem 1.3.

Lemma 3.2. We have:

(i) For any t > 0, limn→∞ P(suppm(·, t) 6⊆ B(0, n)) = 0).

(ii) For any t > 0, limε↓0 P(ξ(w(t)) ≤ ε) = 0.

(iii) For any n ∈ N, ε > 0,

lim
δ↓0

P(∃z1 6= z2 ∈ BΠ(0, n) : |z1 − z2| < δ and ξ(z1) ≥ ε, ξ(z2) ≥ ε) = 0.

Proof. (i) Follows by combining Lemma 2.4 with Lemma 2.9, just as in the proof of
Lemma 3.1.
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(ii) Since w(t) is a local maximum, it satisfiesm(w(t), t) = ξ(w(t))(t−h(w(t))) ≤ ξ(w(t))t.
Thus by continuity of measures,

lim
ε↓0

P(ξ(w(t)) ≤ ε) = lim
ε↓0

P(m(w(t), t) ≤ εt) = P(m(w(t), t) = 0) = P(m(x, t) = 0 for all x).

But by Lemma 2.10 we know that the Poisson lilypad model is almost surely non-trivial,
so the latter probability is 0.

(iii) By the standard Palm calculus for Poisson processes we know that, conditionally on
Π({(z, y)}) = 1, the process Π − δ(z,y) is again a Poisson process with intensity π; see
e.g. [Bad07, Theorem 3.1]. Therefore we can write

P(∃z1 6= z2 ∈ B(0, n) : z2 ∈ B(z1, δ) and ξ(z1) ≥ ε, ξ(z2) ≥ ε)

=

∫
B(0,n)×[ε,∞)

P(∃z2 ∈ B(z1, δ) \ {z1} : ξ(z2) ≥ ε)π(d(z1, y1))

=

∫
B(0,n)×[ε,∞)

P(Π(B(z1, δ))× [ε,∞) 6= 0))π(d(z1, y1))

However, we know that

P(Π(B(z1, δ))× [ε,∞) 6= 0) = 1− e−π(B(z1,δ))×[ε,∞) → 0,

as δ ↓ 0. The claim follows by dominated convergence, since π(B(0, n)× [ε,∞)) <∞.

Lemma 3.3. For any 0 ≤ s < t,

lim
δ↓0

lim sup
T→∞

P(|WT (t)−WT (s)| < δ;WT (t) 6= WT (s)) = 0

and
lim
δ↓0

P(|w(t)− w(s)| < δ;w(t) 6= w(s)) = 0.

Proof. We begin with the first statement. From Theorem 1.1 in [OR17], we know that for
any t, with probability tending to 1 as T → ∞, the branching random walk is localised
in the maximizer wT (t) of mT (·, t). Therefore it suffices to show the corresponding
statement for wT (t).

Note that for any t > 0 and any n ∈ N,

lim
ε↓0

lim sup
T→∞

P(ξ(wT (t)) ≤ ε) ≤ lim
ε↓0

lim sup
T→∞

P(mT (wT (t), t) ≤ εt)

≤ lim sup
T→∞

P(|wT (t)| ≥ n) + lim
ε↓0

lim sup
T→∞

P
(

max
x∈B(0,n)

mT (x, t) ≤ εt
)

≤ lim sup
T→∞

P(|wT (t)| ≥ n) + lim
ε↓0

P
(

max
x∈B(0,n)

m(x, t) ≤ εt
)

= lim sup
T→∞

P(|wT (t)| ≥ n),

(11)
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since the limiting model m(·, t) is almost surely non-trivial by Lemma 2.10. Also, by
Lemma 3.1, we have for any t that

lim
n→∞

lim sup
T→∞

P(|wT (t)| ≥ n) ≤ lim
n→∞

lim sup
T→∞

P(sT (t) 6⊆ B(0, n)) = 0,

which in particular implies that the left-hand side of (11) is zero. Now, for fixed s and
t, under the assumptions that ξ(wT (t)) ∧ ξ(wT (s)) > ε and |wT (t)| ∨ |wT (s)| < n, the
event {|wT (t) − wT (s)| < δ; wT (t) 6= wT (s)} implies that there exist w 6= w′ ∈ LT (0, n)
with |w − w′| ≤ δ such that ξT (w), ξT (w′) ≥ ε. Thus, by the above, we are done if we
can show that for any n ∈ N, ε > 0,

lim
δ↓0

lim sup
T→∞

P(∃w 6= w′ ∈ LT (0, n) : |w − w′| ≤ δ, ξT (w), ξT (w′) ≥ ε) = 0.

However, this follows from an explicit calculation: for some constant C,

P(∃w 6= w′ ∈ LT (0, n) : |w − w′| ≤ δ, ξT (w), ξT (w′) ≥ ε)
≤ Cr(T )2da(T )−2αndδdε−2α = Cndδdε−2α,

and letting T →∞ and then δ ↓ 0 completes the proof of the first statement. The second
is almost identical, using Lemma 3.2.

We now check that the maximizer for the Poisson lilypad model behaves sensibly. For
x ∈ Rd and δ > 0, let ∂B(x, δ) = {z : |z − x| = δ}, the boundary of the ball of radius δ
about x.

Lemma 3.4. The following are true:

(i) For any t ≥ 0, almost surely, there is a single maximizer in the Poisson model
m(·, t).

(ii) For any fixed x ∈ Rd, δ > 0 and t > 0, P ξ
(
w(t) ∈ ∂B(x, δ)

)
= 0.

Proof. (i) The basic idea is the following: if both w and w′ are maximizers, we have
m(w, t) = m(w′, t), which means ξ(w) = ξ(w′)(t − h(w′))/(t − h(w)). Suppose without
loss of generality that h(w) ≥ h(w′). Then from the definition of h, if w 6= w′, the values
of ξ(w′), h(w′) and h(w) are independent of ξ(w). So the probability that ξ(w) takes on
the exact value ξ(w′)(t− h(w′))/(t− h(w)) is zero.

However, since our point process Π has infinitely many atoms, we need to be careful.

Fix for a moment z ∈ Rd, δ > 0 and ε > 0, and let Π̂ be the point process obtained by
taking Π and removing all of the points in B(z, δ) × (ε,∞) and Π̃ be the point process
consisting of only those points of Π in B(z, δ)×(ε,∞). Clearly Π̂ and Π̃ are independent.

Note that for any w ∈ B(z, δ), if BΠ̃(z, δ) = {w}, then Π̂ consists of all points in Π
except (w, ξ(w)); so from the definition of h we have hΠ(w) = hΠ̂(w). Similarly, for any
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other point w′ ∈ Rd, if both BΠ̃(z, δ) = {w} and hΠ(w) ≥ hΠ(w′) then hΠ(w′) = hΠ̂(w′).
Therefore

P
(
∃w ∈ supp Π̃(1), w′ ∈ supp Π̂(1) : BΠ̃(z, δ) = {w}, hΠ(w) ≥ hΠ(w′),

ξΠ(w)(t− hΠ(w)) = ξΠ(w′)(t− hΠ(w′))
)

≤ P
(
∃w ∈ supp Π̃(1), w′ ∈ supp Π̂(1) : BΠ̃(z, δ) = {w},

ξΠ̃(w)(t− hΠ̂(w)) = ξΠ̂(w′)(t− hΠ̂(w′))
)

= 0,

since Π̂ and Π̃ are independent. Returning to our usual notation, this tells us that

P
(
∃w ∈ BΠ(z, δ), w′ ∈ supp Π(1) : w 6= w′, h(w) ≥ h(w′), ξ(w) > ε,

ξ(y) ≤ ε ∀y ∈ BΠ(z, δ) \ {w}, m(w, t) = m(w′, t)
)

= 0

(where no subscript means we are using the point process Π).

Now, taking a sum over all z such that z/δ ∈ Zd ∩B(0, n), we deduce that

P(∃w,w′ ∈ BΠ(0, n) : w 6= w′, h(w) ≥ h(w′), ξ(w) > ε,

ξ(y) ≤ ε ∀y ∈ BΠ(w, 2δ) \ {w}, m(w, t) = m(w′, t)) = 0.

Taking a limit as δ ↓ 0, we get by Lemma 3.2 (iii) that

P(∃w,w′ ∈ BΠ(0, n) : w 6= w′, h(w) ≥ h(w′), ξ(w) > ε, m(w, t) = m(w′, t)) = 0.

Now taking n→∞, by Lemma 3.2 (i), we have

P(∃w,w′ ∈ supp Π(1) : w 6= w′, h(w) ≥ h(w′), ξ(w) > ε, m(w, t) = m(w′, t) > 0) = 0.

Finally, taking ε ↓ 0, by Lemma 3.2 (ii), we get

P(∃w,w′ ∈ supp Π(1) : w 6= w′, h(w) ≥ h(w′), m(w, t) = m(w′, t) = sup
x∈Zd

m(x, t)) = 0.

This completes the proof of (i).

(ii) We note that by construction the maximizer w(t) is in supp Π(1). Thus, using
Lemma 3.2(ii),

P(w(t) ∈ ∂B(x, δ)) = lim
ε↓0

P(w(t) ∈ ∂B(x, δ), ξ(w(t)) ≥ ε)

≤ lim sup
ε↓0

P(w(t) ∈ ∂B(x, δ), ξ(w(t)) ≥ ε)

≤ lim sup
ε↓0

P(Π(∂B(x, δ)× [ε,∞)) ≥ 1) = 0,

since π(∂B(x, δ)× [ε,∞)) = 0.

Lemma 3.5. For any θ > 0,

lim
δ↓0

P
(
|w(1)− w(1 + θ)| ≤ 2δ, w(1) 6= w(1 + θ)

)
= 0.
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Proof. Let n ∈ N and ε > 0. Then

P(|w(1)− w(1 + θ)| ≤ 2δ, w(1) 6= w(1 + θ))

≤ P(|w(1)− w(1 + θ)| ≤ 2δ, w(1) 6= w(1 + θ), ξ(w(1)) ≥ ε, ξ(w(1 + θ)) ≥ ε)
+ P(min{ξ(w(1)), ξ(w(1 + θ))} ≤ ε)

≤ P(∃z1 6= z2 ∈ BΠ(0, n) : |z2 − z1| ≤ 2δ, ξ(z1) ≥ ε, ξ(z2) ≥ ε)
+ P(min{ξ(w(1)), ξ(w(1 + θ))} ≤ ε) + P(max{|w(1)|, |w(1 + θ)|} ≥ n).

Now, letting δ ↓ 0, we obtain from Lemma 3.2(iii) that

lim sup
δ↓0

P(|w(1)− w(1 + θ)| ≤ 2δ, w(1) 6= w(1 + θ))

≤ P(min{ξ(w(1)), ξ(w(1 + θ))} ≤ ε) + P(max{|w(1), |w(1 + θ)| ≥ n).

Finally, letting ε ↓ 0 and n → ∞, we obtain the statement from Lemma 3.2 (i) and
(ii).

We are now finally ready to prove the ageing result, Theorem 1.2.

Proof of Theorem 1.2. We start with a lower bound. For any θ > 0, δ > 0, define the
open set

Oδθ :=
{
f ∈ Cd+1

0 : ∃y ∈ Rd with max
z∈Rd\B(y,δ)

f(z, 1) < f(y, 1),

max
z∈Rd\B(y,δ)

f(z, 1 + θ) < f(y, 1 + θ)
}
.

Since Oδθ is an open set, from the weak convergence MT ⇒ m we know that

lim inf
T→∞

P(MT ∈ Oδθ) ≥ P(m ∈ Oδθ). (12)

Note that if w(1) = w(1 + θ), then by Lemma 3.4(i), m ∈ Oδθ for any δ > 0; so

P(w(1) = w(1 + θ)) = P(w(1) = w(1 + θ),m ∈ Oδθ)
= P(m ∈ Oδθ)− P(m ∈ Oδθ, w(1) 6= w(1 + θ)).

Note also that on the event {m ∈ Oδθ}, if there are two different maximizers at times
1 and 1 + θ then they must be within distance δ. Thus by Lemma 3.3, limδ↓0 P(m ∈
Oδθ, w(1) 6= w(1 + θ)) = 0, and therefore

P(w(1) = w(1 + θ)) = lim
δ↓0

P(m ∈ Oδθ). (13)

Similarly, for any δ > 0, [OR17, Theorem 1.1] tells us that as T → ∞ there is a unique
maximizer for the branching random walk, so

lim inf
T→∞

P(WT (1) = WT (1 + θ)) = lim inf
T→∞

P(WT (1) = WT (1 + θ),MT ∈ Oδθ)

≥ lim inf
T→∞

P(MT ∈ Oδθ)− lim sup
T→∞

P(MT ∈ Oδθ,WT (1) 6= WT (1 + θ)).
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By Lemma 3.3,

lim
δ↓0

lim sup
T→∞

P(MT ∈ Oδθ,WT (1) 6= WT (1 + θ)) = 0

since on the event {MT ∈ Oδθ}, if there are two different maximizers at times 1 and 1 + θ
then they must be within distance δ. Therefore

lim inf
T→∞

P(WT (1) = WT (1 + θ)) ≥ lim
δ↓0

lim inf
T→∞

P(MT ∈ Oδθ).

Combining this with (12) and (13), we get

lim inf
T→∞

P(WT (1) = WT (1 + θ)) ≥ P(w(1) = w(1 + θ)),

which is the required lower bound.

We now continue with an upper bound. Recall that B(z, r) is the closed ball of radius r
about z. For z ∈ Rd, δ > 0 and θ > 0, we consider the set

Cθ(z, δ) :=
{
f ∈ Cd+1

0 : max
x∈B(z,δ)

f(x, 1) = max
x∈R

f(x, 1),

max
x∈B(z,δ)

f(x, 1 + θ) = max
x∈R

f(x, 1 + θ)
}
.

This set is closed, so since MT ⇒ m we know that

lim sup
T→∞

P(MT ∈ Cθ(z, δ)) ≤ P(m ∈ Cθ(z, δ)). (14)

Now let n ∈ N, δ > 0 and take Γδn to be a collection of points such that B(0, nδ) =⋃
z∈Γδn

B(z, δ), but the collection {B(z, δ) : z ∈ Γδn} is disjoint (recall that we are working

with L1-balls so that this is possible). Then

P(WT (1) = WT (1 + θ)) ≤
∑
z∈Γδn

P(MT ∈ Cθ(z, δ)) + P(WT (1) /∈ B(0, nδ)),

and combining with (14) and Lemma 3.1 we get that for any δ > 0,

lim sup
T→∞

P(WT (1) = WT (1 + θ)) ≤ lim sup
n→∞

∑
z∈Γδn

P(m ∈ Cθ(z, δ)). (15)

On the other hand, since by Lemma 3.4 the maximizers for the Poisson lilypad model at
times 1 and 1 + θ are almost surely unique and not located on the boundary of any of
the balls B(z, δ) for z ∈ Γδn, we have∑

z∈Γδn

P(m ∈ Cθ(z, δ)) ≤
∑
z∈Γδn

P(|w(1)− z| ≤ δ, |w(1 + θ)− z| ≤ δ)

≤ P(∃z ∈ B(0, nδ) : |w(1)− z| ≤ δ, |w(1 + θ)− z| ≤ δ).
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But, for any n,

P(∃z ∈ B(0, nδ) : |w(1)− z| ≤ δ, |w(1 + θ)− z| ≤ δ)
≤ P(w(1) = w(1 + θ)) + P(w(1) 6= w(1 + θ), |w(1)− w(1 + θ)| ≤ 2δ),

and by Lemma 3.5, the limit of the latter probability as δ ↓ 0 is zero. Thus

lim
δ↓0

lim sup
n→∞

∑
z∈Γδn

P(m ∈ Cθ(z, δ)) ≤ P(w(1) = w(1 + θ)).

Combining this with (15), we obtain

lim sup
T→∞

P(WT (1) = WT (1 + θ)) ≤ P(w(1) = w(1 + θ)),

which is the required upper bound and completes the proof.

Finally, in order to see that P(w(1) = w(1+θ)) ∈ (0, 1), one has to construct two different
scenarios for the Poisson process that hold with positive probability and that imply either
w(1) = w(1 + θ) or w(1) 6= w(1 + θ). We omit the details here, but refer to Section 8
in [OR16], where we show that the maximizer in the PAM and in the branching random
walk are not always the same using similar ideas.
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