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Abstract

We consider a branching random walk on the lattice, where the branching rates are
given by an i.i.d. Pareto random potential. We show that the system of particles,
rescaled in an appropriate way, converges in distribution to a scaling limit that is
interesting in its own right. We describe the limit object as a growing collection of
“ilypads” built on a Poisson point process in R?. As an application of our main
theorem, we show that the maximizer of the system displays the ageing property.

2010 Mathematics Subject Classification: Primary 60K37, Secondary 60J80.

Keywords. Branching random walk, random environment, parabolic Anderson model, in-
termittency.

1 Introduction and main results

1.1 Introduction

Consider a branching random walk in random environment defined on Z¢, starting with
a single particle at the origin. Given a collection ¢ = {£(2) : z € Z%} of non-negative
random variables, when at site z each particle branches into two particles at rate £(z).
Besides this, each particle moves independently as a simple random walk in continuous
time on Z4.

This model was introduced in [GM90], and most of the analysis thus far has concentrated
on the expected number of particles. Fix a realisation of the environment £ and write

u(z,t) = ES[#{particles at site z at time ¢}],

where the expectation E¢ is only over the branching and random walk mechansims and
¢ is kept fixed. Then u(z,t) solves the stochastic partial differential equation, known as
the parabolic Anderson model (PAM),
Ou(z,t) = Au(z,t) + £(2)u(z, t), for z € 24t >0,
u(z,0) = Iy, for z € 74



Here, A is the discrete Laplacian defined for any function f : Z¢ — R as

Af(z) =D (fly) - f(2), z€Z,

Y~z
where we write y ~ z if y is a neighbour of z in Z9.

We are particularly interested in the case when the potential is Pareto distributed,
i.e. Prob(¢(z) > ) = 7 for all z > 1 and some « > 0. In this case, the evolution of
the PAM is particularly well understood, including asymptotics for the total mass, one
point localisation and a scaling limit: see [HMS08|, KLMS09, MOS11), (OR16].

In general much less is known about the branching system itself (without taking expec-
tations). Some of the earlier results include [ABMYO00] and [GKS13|, who look at the
asymptotics of the expectation (with respect to &) of higher moments of the number of
particles. The real starting point for this article is our recent article [OR16]. We showed
that—in the Pareto case—the hitting times of sites, the number of particles, and the sup-
port in an appropriately rescaled system are well described by a process defined purely
in terms of the environment ¢ (that is, given &, the process is deterministic), which we
called the lilypad model.

Our central aim in this article is to show that this lilypad process, and therefore the
branching system itself, has a scaling limit. This limit object is entirely new, and inter-
esting in its own right: it is neither deterministic, as for example in [CP07] for another
variant of branching random walk in random environment, nor is it a stochastic (partial)
differential equation. Rather the limit is a system of interacting and growing L' balls
in R?, centred at the points of a Poisson point process. We call this the Poisson lilypad
model, and to avoid confusion we will refer to the lilypad model from [ORI6] as the
discrete lilypad model from now on.

As an application of this characterization, we show that the dominant site in the branch-
ing process—that is, the site that has more particles than any other site—remains con-
stant for long periods of time, in fact for periods that increase linearly as time increases.
This phenomenon is known as ageing, and was demonstrated for the PAM in [MOS11]
in the Pareto case, in [ST14] [FM14] for Weibull potentials and in [BKS16] for potentials
with double exponential tails.

1.2 Definitions and notation

Before we can state our results precisely, we need to develop some machinery. Throughout
this article we write |-| for the L'-norm on R%. B(z, R) = {z € R%: |z — 2| < R} denotes
the open ball of radius R about z in R%, and B(z, R) = {x € R%: |z — z| < R} the closed
ball. For any measure v, we write supp v for the (measure theoretic) support of v.

We take a collection of independent and identically distributed random variables {£(z), z €
7%} satisfying

Prob(é(z) > z) =z~ forall z > 1,
for a parameter o > 0 and any z € Z¢. We will also assume that a > d, which is known
to be necessary for the total mass of the PAM to remain finite [GM90].



For a fixed environment £, we denote by ny the law of the branching simple random walk
in continuous time with binary branching and branching rates {£(z), z € Z9} started
with a single particle at site y. Finally, for any measurable set ' C €2, we define

P, (F x -):/FP?f(-)Prob(dﬁ).

If we start with a single particle at the origin, we omit the subscript y and simply write
P¢ and P instead of Pg and Py.

We define Y (z,t) to be the set of particles at the point z at time ¢, and let N(z,t) =
#Y (2,1).

We introduce a rescaling of time by a parameter 7' > 0, and then also rescale space and
the potential. Setting ¢ = ﬁ, the right scaling factors turn out to be

o(T) = <IO§T>" and 7(T) = <logT>qH

for the potential and space respectively. We then define the rescaled lattice as

Ly ={zeR?: r(T)z € 2%},

and for z € R4, R > 0 define L7 (z, R) = LtNB(z, R). For z € L, the rescaled potential
is given by

and we set &7(2) = 0 for z € R\ Lp.
The branching system

We are interested primarily in three functions:

Hrp(z) =inf{t > 0:Y(r(T)z,tT) # 0},
Mi(z,t) = a(Tl)T log, N (r(T)z, ¢T),
and
Sr(t) = {y € R?: Hp(y) < t},

for = € Ly, t > 0, which we extend to z € R? by linear interpolation. We call these
functions the (rescaled) hitting times, numbers of particles, and support, respectively, of
the branching system.

The scaling limit: the Poisson lilypad model

In order to describe the limits of these functions as T — 0o, we suppose that under P
there is an independent Poisson point process IT on R? x [0, 00) with intensity measure
dz ® ax=@tDdz. We let TI® be the first marginal of II, and write

= Z 5(Zi,€r1(zi))
=1
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where z;, 2 = 1,2, ... are the points in supp II™V.

We define, for z € R% and ¢t > 0,

[oe)
. lyj+1 —yil |y — 2]
h(z) = inf { q +q ,
Y12, Esupp I =0 L7 € (yj+1) & (y1)

m(z,t) = sup  {&u(y)(t —h(y)) —qly — 2|} v 0,
y€Esupp I1(1)

and
s(t) = {y e R : h(y) < t}.
We recall that here and throughout | - | denotes the L'-norm on R<.

We call these functions the hitting times, numbers of particles, and support, respectively,
of the Poisson lilypad process. We will now describe this process in non-rigorous language.
The reader may find our paper easier to understand with this picture in mind, though
in the proofs we will use the mathematical definitions of A, m and s given above.

We imagine that each site y € suppII'Y contains a seed. Once this seed is activated, a
lilypad begins growing outwards from y at speed {r1(y)/q. The seed is activated as soon
as it is touched by another lilypad. Lilypads overlap freely.

Slightly more formally, if y € supp II™, then an L! ball in R? expands from y such that,
time s after it has been activated, the ball has radius &r(y)s/q. The ball is activated
as soon as any other ball, growing from some other point in the Poisson point process,
contains . We note that our lilypads live in L', so they do not quite have the traditional
lilypad shape, but we continue with the picture regardless.

It remains to describe how the process begins. Fix a small radius § > 0, and at time 0
activate all the lilypads within distance & of the origin. Now let § — 0. For any z € R,
the first time that z is hit by a lilypad is obviously increasing as ¢ decreases to 0, and
so it has some (possibly infinite) limit, which is h(z). A simulation of this process in R?
can be seen at http://people.bath.ac.uk/mir20/programs/lilypads_poisson/.

We will see in Lemma that for our particular choice of Poisson point process, h(z)
is both non-zero and finite for all z # 0, so that in particular the system of lilypads
manages to start growing from the origin, and does not explode in finite time.

We then think of s(t) as the set of all points in R? that have been touched by a lilypad by
time t. The quantity m(z,t) is slightly more complicated to interpret, but if we imagine
that the centre of a lilypad is thicker than the edges, then m(z,t) can be thought of as
the thickness of the thickest lilypad that lies above the point z at time ¢t. In particular
m(z,t) is zero if and only if no lilypad has touched z by time ¢ (otherwise said, when
h(z) > t, or when z ¢ s(t)).

Topologies

Write C'(A, B) for the set of continuous functions from A to B. We use the following
topologies:


http://people.bath.ac.uk/mir20/programs/lilypads_poisson/

e For the hitting times: C? := C(R%,[0, 00)), equipped with the topology of uniform
convergence on compacts, i.e. induced by the metric

do(f,9) =Y 27" sw (@) -g@}A1), fgec

n>1 z€[—n,n]

e For the number of particles:
CI = {f € O(R? x [0,00),[0,00)) : f(x,t) = 0 as z — oo Vt € [0,00)},

equipped with the topology induced by the metric

dp(f.9) =Y 27" sw  {If(@,t) —g(@ O} A1), figecyt

n>1 z€R te[0,n]

e For the support: Cr := C([0,00), F(R?)), equipped with the topology induced by
the metric

delf9) = 3227 ( sup {du(F(09)} A1), fig€Cr

n>1 telo,n

where F(Rd) is the space of non-empty compact subsets of R% and d is the Haus-
dorff distance on F(R?).

Finally, we consider (Hp, Mr, St) and (h,m, s) as elements in the product space C*® :=
c4 x Cg“ x Cr equipped with the product topology, which is, for example, induced by
the metric

d"?((H, M, S),(H',M',S")) = dy(H,H") + dp(M, M') + dp (S, 5"),

for any (H, M, S),(H',M',S") € C*%.

1.3 Main results

Our main theorem states that the rescaled branching system (hitting times, number of
particles and support) converges weakly to the Poisson lilypad model. For background
on weak convergence, we refer to [Bil99, [EK86].

Theorem 1.1. The triple (Hp, My, ST) converges weakly in C>*® as T — oo to (h,m, s).
As an application, we show that the maximal site in the branching system—that is, the
site with the most particles at a given time—shows ageing behaviour. Denote by Z™#(¢)

this site: that is,
N(Z™(t),t) > N(z,t) Vz e 74

in case of a tie choose the point with larger potential. Introduce the rescaled version

W(t) := Z™(¢T) /r(T).



Also let w(t) be the maximizer in the Poisson lilypad model,
m(w(t),t) > m(z,t) VzeRY

again in the case of a tie we choose the site with larger potential (although we will show
in Lemma [3.4) that for any ¢ > 0 there is almost surely a unique maximizer for the Poisson
lilypad model).

Theorem 1.2. Ageing. For any 6 > 0,
P(Z™X(T) =Z2"*((14+0)T)) =P(Wr(1) = Wpr(146)) — P(w(l) = w(l +0)).
Moreover, the probability on the right hand side is strictly between 0 and 1.

In the companion paper [ORI17, Thm. 1.1], we show that for any ¢t > 0, as T — oo

N(Z™(¢T), tT)
ZZEZd N(Z7 tT)

Hence, the total mass of the branching process is concentrated in a single point, so the
theorem really describes ageing, i.e. the temporal slow-down, of this maximizer.

The strategy of proof of Theorem relies on our previous result from [ORI16], which
shows that the branching system is well described by a functional purely of the environ-
ment, which we call the discrete lilypad model and recall in Section Then, our main
task is to show that the discrete lilypad model converges to the Poisson lilypad model that
we described above. The underlying reason is that the rescaled environment converges
to a Poisson process; see Section [I.5] for some background. The proof of Theorem is
then an application of the continuous mapping theorem for a suitable continuous approx-
imation of the lilypad models, which we describe in Section [2l This approach allows us
to avoid some of the technicalities involved with a more traditional approach of showing
tightness combined with the convergence of finite dimensional distributions. The proof
of Theorem in Section [3]is then an application of the scaling limit.

— 1, in probability.

Throughout the article, the ideas remain fairly simple, but there are many technicalities
due to the highly sensitive nature of the model. For example, if one site of large potential
is hit slightly earlier or later than it should be, the whole system could be affected
dramatically. We have to keep track of several events that could, feasibly, occur; show
that they have small probability; and show that if these events do not occur then the
system behaves as we claim.

1.4 The discrete lilypad model

In [ORI16], we showed that the branching system is well-approximated by certain func-
tionals of the environment, which we will refer to as the discrete lilypad model. For any

site z € Ly, we set
n
. 1Yj—1 — Yl
hr(z) = inf —_ .

Yo=2,yn=0



We call hp(z) the first hitting time of z in the discrete lilypad model. We think of each
site y as being home to a lilypad, which grows at speed &7(y)/q. Note that hp(0) = 0.
For convenience, we interpolate hp linearly to define the values for z ¢ Lp. The rescaled
number of particles in the discrete lilypad model is defined as

mr(z,t) = SUp {&r(y)(t — hr(y)) —qlz —yl} V0.
yeLr

Also, we define the support of particles at time ¢ in the discrete lilypad model as
sp(t) ={z € R : hp(z) < t}.
We recall here the main result from [ORI16], which can be phrased as:

Theorem 1.3 ([OR16]). For any ts >0, as T — oo,

sup sup |Mp(z,t) — myp(z,t)| = 0  in P-probability.
tgtoo ZELT

Moreover, for any R >0, as T — oo,

sup |Hr(z) —hr(z)| = 0  in P-probability,
ZELT(O,R)

and for any teo > 0, as T — o0,

sup dg(St(t),sr(t)) — 0 in P-probability.
t<too

We reiterate here the general idea behind this article: we know from Theorem that
the branching system is well-approximated (with high probability) by the discrete lilypad
model, which is a deterministic functional of the environment £. We can check that the
distribution of £ (suitably rescaled) converges weakly to that of a Poisson point process;
and this allows us to show that the discrete lilypad model converges weakly to the Poisson
lilypad model.

1.5 Background on point processes

The proof of our main result, Theorem [1.1] is a consequence of the convergence of the
rescaled environment to a Poisson process. In this section we recall some of the standard
definitions concerning point processes.

We consider the point process

I = 25( s £G)

S T e

on R? x (0,00). A classical result in extreme value theory shows that IIz converges in
law to the Poisson point process II on R? x (0, 00) with intensity measure

w(d(z,2)) = dz ® % dz.



In order to formalize this convergence we follow the basic setup from [HMSO08]|, which is
based on [Res08]. Let E be a locally compact space with a countable basis and let &
denote the Borel-o-algebra on E. A Radon measure is a Borel measure that is locally
finite. If in addition u = > ;5 d,, for a countable collection of points {z;,i > 1} C E,
then p is called a point measure. We write M,(E) for the set of all point measures on
E. We equip the set of Radon measures M, (FE) with the vague topology: i.e. p, —
vaguely, if for any continuous function f : E — R with compact support [ fu, — [ fu.
Note that M,(E) is vaguely closed in M, (E) (cf. [Res08, Prop. 3.14]).

In our case we set E = R? x (0, oc], where the topology on (0, oc] is understood such that
closed neighbourhoods of co are compact. Note that II and II are elements of M,(E) for
this choice. Then the above convergence means that IIp = II in the topology on M,(E)
induced by vague convergence. This fact is a direct application of [Res08, Prop. 3.21]
(where R? replaces RT as the index set).

2 Proof of the scaling limit

In this section we prove the main scaling limit, Theorem By our previous result on
the approximation via the discrete model, Theorem [1.3] it suffices to show convergence of
the discrete lilypad model. Our main strategy is to use the continuous mapping theorem
to deduce the convergence of (hy, myp, sy) from the convergence of the point process Ilp
to II. Unfortunately, however, it is not clear that (hp, mr, s7) is a continuous function of
the underlying point process. Our way around this problem is to define an J-approximate
lilypad model for both the discrete space version and the Poisson model. By ignoring
potential values less than d—and, later, restricting in space to B(0,1/0)—we obtain
functionals that only depend on a finite set of points and are therefore continuous.

We can treat both the discrete space and the Poisson case in the same way. Thus, for
v = Ilp, for some T' > 0, or v = II, we write v € M,(E) as

V=) O(kn(=):

i>1

and write v () := v( - x [0,00)) for the first marginal of v. For r > 0, we write
B,(0,r) = supp(v!) N B(0,r) and B,(0,r) = supp(¥™) N B(0,r). Where it is clear
which point process we are referring to, we write {(z) in place of £, (z) for conciseness.
(Of course, we have already defined {£(2) : 2z € Z%} to be a collection of i.i.d. Pareto
random variables; but since we already know from Theorem that the branching
process is well approximated by the discrete lilypad model, which can be described via
the point process Il7, we no longer need this original meaning and £(z) will always refer
to &, (z) for some point process v.)

For a general point process v, we define the hitting times by setting h,(0) = 0 and, for
z € R\ {0},

oo
hu(2) = inf{QZW L0 = 2,0 € suppr® Vi = 1, [i] > 0}
i=1 !
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The number of particles is defined as

my(zt) = s {@)t—h) —aly—2} Vo, zeRLt>0,

yesupp v(1)

and the support is defined as

su(t)y ={z € R? - hy(z) <t}, t>0.

We also define the §-hitting times by setting

n

hy(z) = inf{zqw +q‘%n| :n€Ny,yo=zand y1,...,yn € suppl/(l)}
— Yj

7=1

for any z € R4 (note that we allow n = 0, in which case we do not insist on y, €
supp(r)). Effectively, considering hd(z) rather than h,,(z) gives all lilypads a “minimum
speed” /¢, which helps in showing the continuity of the process as a function of the point
measure v. In analogy with the definitions above, we also define the é-number of particles
and the d-support via

mb(zt) = swp  {ew)(t—h) —dy -2} vo, zeRLEz0,

yEsupp v

and
Sty ={zeR?: ni(2) <t}, t>0.

We write (hg, mJ, s3.) := (hHT,mHT,S(SHT) and (h%,m?, s%) == (h{, md, s%).

The main technical result of this section is the following proposition.

Proposition 2.1. For any e > 0,

(x3) 6 >e) =
lgﬁ)llljgljotipP<d ((hT,mT,sT) (hr,mr, sT)) > 8) 0,

and analogously for the Poisson point process

l(siﬁ)lp(d(xz)’)((hé,mé, %), (h,m, s)) > 5) =0.

The remainder of this section is organised as follows. In Section we give general
criteria on the point process v that ensure that the d-hitting times approximate well the
actual hitting times. Then in Section we show that this result can be transferred
to the number of particles and the support. In Section [2.3] we show that these general
criteria are satisfied by the point processes Il7 and II, and we prove Proposition
Finally, in Section [2.4] we show that the d-processes for Iy converge to the d-processes
for II, and we combine these results to show the statement of the main scaling limit
Theorem [L.1]



2.1 The j-approximation of the hitting times

We now state certain assumptions on the point process v under which h,‘i and h, will be

close when ¢ is small. Let v = d;rTa_

(A1) For all R > Ry, supyep, (o,r) §(y) < 7.

(A2) For all r < rq, for all k& € Ny, there exists Z;, € B,(0,727%) such that £(Z;) >
27k,

We write |(Al)|z, and [(A2)},, to emphasize the dependence of the conditions on the pa-

rameters.

The main result in this subsection states that the hitting times are approximated well
by the d-hitting times, provided v satisfies the above conditions.

Proposition 2.2. Suppose that v satisfies|(Al)r, and|(A2)y, for some Ry and ro. Then
for any € > 0, there exists 6 > 0 (depending only on v, €, Ry and ro) such that

R (2) < hy(z) < hS(2) +¢ VYzeRL

We will also need the following two simple lemmas, which prove upper and lower bounds
on the hitting times.

Lemma 2.3. Suppose that v satisfies |(A2)y, for some ro. Then for any r < rg,

4q7“1_7
hy < —
zerg?éfr) (y> —1-271

and moreover, for any z € R?,

dgri=
hy(2) < —L0

— 1—
=1 _o1 +a(rg 'zl + 7).

Lemma 2.4. Suppose that v satisfies |(A1)r, for some Ry. Then for any R > Ry and
any d > 0,
inf S (y) > min{R'™7, qR/5}.
o (y) = min{ qIR/o}

The lemmas lead easily to two useful corollaries.

Corollary 2.5. Suppose that v satisfies 0 for some Ry. Then for any z € R and
any 0 > 0, there exists R > 0 (depending only on v, Ry and 0) such that the infimum in
the definition of h%(z) can be restricted to points yi,...,y, € B,(0, R).

Corollary 2.6. Suppose that v satisfies O and 0 for some Ry and ro. Then
for all z € R\ {0} and all 6 > 0, we have

0 < h%(2) < hy(z) < .

10



We delay the proofs of the lemmas and corollaries for a moment to concentrate on Propo-
sition

Proof of Proposition[2.9. The fact that hd(z) < h,(z) for all z € R? follows immediately
from the definitions, so we aim to prove that h,(z) < h(2) + €.

Since 7 < 1 we may choose § > 0 small enough so that

1
1—
100" (5r) < (1)
(5/4) >25 and 6 < . (2)

By Corollary there exists R > 0 such that the infimum in the definition of hJ(z) is
taken over points yi,...,y, € B, (0, R); we also note from the definition that necessarily
&(y;) = 6 for each i = 1,...,n (by the triangle inequality, including points that violate
this condition is never optimal). Since the set B(0, R) x [J, 00) is relatively compact in F,
and v is a Radon measure, there are only finitely many such points. Thus the infimum

is actually a minimum, and we can find points yy = z,v1, ...,y such that
N Jyicr—wil | |l
W(z) =S el i gl (3)
N R

Note from the definition of A, that

- ‘yz i—l‘ 4
hy(2) < hy(yn) + E = < hy(yn) + hy(2),
/ qi:1 §(yi) /

so it remains to prove that h,(y,) < e.

By Lemma and the fact that § < rg, together with , we have

h, <e.
ye%é(%fﬁ) () <e

Thus it suffices to prove that |y,| < d.

By |(A2)}, with 7 = 6 < rp and k = 2, we can choose Z € B(0,d/4) such that {(Z) >
(6/4)" > 26 by (2). Suppose that |y,| > 6. Then
2l NZ=yal _ 121 | Z=yal _ 121 2] lynl _36/4  lynl _ |unl

L R e ]y el el 2072 Bl nl
5T i) S5t S Tt o s S

Thus by including Z in the approximating sequence we get a smaller value of hS(z)

than (3)), contradicting the optimality of the sequence yo, . . ., y,. We deduce that |y,| < d
as required. O

We now proceed with the proofs of the lemmas. Lemma follows easily from the

assumption |[(A2)},:

11



Proof of Lemma[2.3 Fix r <o and let Zj, k > 0, be as in[(A2)},,. Then by definition,
for any z € B(0,r), we have

|Z—&ﬂ |Zyl 1—y 1
h(2) < q Z <2 7+ Z oy <A WW'

For the second claim, taking r = rg in the above, we have that for any z,

|z — Zo| < ‘lq?”(l)_7 (|Z’+7“0)
§(Zo) — 1—2071 o

hl/(z) < hI/(ZO) +q

Lemma [2.4] is slightly more fiddly.

Proof of Lemma[2.4). 1t is easy to see from the definition that z — h5( ) is continuous.
Therefore there exists a point Z € 9B(0, R) = {z € R? : |z| = R} that minimizes h,

ho(2) = inf  RS(y).
HOR N 0)
We claim that hl(2) = inf), >R hS(y). Indeed, suppose there exists y ¢ B(0,R) with
h(y) < h3(Z). Then we can choose yo = 2,1, . ..,y With

~ly — gl |yl 1o
qugm +as < my(3).

We may assume without loss of generality that y; € B(0, R) (since clearly hS(y1) < hd(Z),
so we can otherwise use y; in place of y). Therefore there exists a € (0,1) such that
g:=1 +a(y—1y1) € 0B(0,R). Then

hgggq!yl—ﬁuq ij—yj71|+qm_ !yl Iyg y] 1| | |ynl
D=0y 12 e,y T Z

<qz‘y] y] 1| |6| h&()

contradicting the choice of Z. Therefore the claim holds.

If the infimum in the definition of h%(%) uses the point y, then from the definition we
would have hl (%) > hS(y). However, hS(y) > hl(Z) for all y ¢ B(0, R) and therefore the
infimum in the definition of A2 (%) can be restricted to points within B(0, R): that is,

- . - Yji—1—Yj n -
hg(z)Zlnf{quj)]‘+qu(5’ :n € Ng,yo = Z and yl,...,ynGBy(O,R)}.

In particular,

R qR
he > min q y = )
/(%) {maXyeBu(o,R)f(y) o }

and therefore by |(Al)lr,, if R > R then

inf  hS(y) > min{R'~7, qR/5}. O
Joimt o oY) { qR/5}

12



Proof of Corollary[2.5 Fix z € R?. By Lemma we can choose R large enough such
that
inf  hS(y) > hi(2).
ot o (y) > Ry (2)
Therefore the infimum in the definition of h%(z) can be restricted to points within B(0, R).
O

Proof of Corollary[2.6. Take any z € R%\ {0} and § > 0. By Corollary there exists
R > 0 such that the infimum in the definition of h2(2) can be restricted to points within

B(0,R), so
hf, z) > min al=| ,M > 0.
(z) 2 {maXyEBu(O,R) Ey)” 0 }

The fact that h%(z) < h,(z) follows directly from the definitions; and h,(z) < oo by
Lemma 2.3 O

2.2 The j-approximation of the support and number of particles

We recall that

mozt) = s {e@)t—h(y) —aly -2} vo, zeRLt>0

yesupp v
and
sut)={zeR?: h,(2) <t}, t>0,

and that m (z,t) and s3(t) are defined similarly by replacing h, by k2. In this subsection,
we show that under 0 and 0, the §-approximations m‘g and s‘g are close to m,
and s, respectively.

We start by showing that the growth of the support s, is well-controlled. This will be
key to controlling the Hausdorff distance between s, and 2.

Lemma 2.7. Suppose that v satisfies |(Al)r, for some Ry. For any ¢ > 0 and any
to > 0, there exists n € (0,1) (depending only on ~, €, to and Ry) such that

sut+n) S |J Bly.e) VEt<to
yEsy(t)

Proof. By Lemma together with the fact that h,(z) > h(2) for all z, we can choose
R > Ry such that h,(y) >ty + 1 for all y & B(0, R). Then set n = 55 A 3.

Suppose that z € s, (t+n)\s,(t); then h,(2) € (¢,t+n], so we can find yo = z,y1,92... =
0 with h,(2) < ¢>.2, % < t 4 2n. Since h,(y) > to + 1 for all y € B(0, R), we
must have y1,y2,... € B(0, R).

Choose k such that ¢ 7%, lus (zl) il <tandq Yo w > t. Then choose a € [0, 1)
such that

yz 1| Yk — Yr—1]
q Z +aqg———— =1
S §(yr)

13



Setting ¥ = yx + a(yx — yk—1), by the above we have h,(g) < t, so § € s,(t). On the
other hand,

‘ Z yz 1| aq|yk—yk—1!
i=k+1 f(yk)

[o@)
!yi—yi—ﬂ \yk—yk 1| !yz yl 1’
=q) —~——(l—-a)g—F—~— ;
; &(vi) ;

so (since the left-hand side equals ¢ and the first sum on the right-hand side is at most
t + 2n) we must have

oy = gl < |y — vi-1|
A-ae =)™ T2 Ty =

By the triangle inequality, we get

N

-1

5 2
1§ — 2| = ’(1—‘1)(yk—yk71)+ (yi_yi—1>’ < = sup  £(y),
1 9 yeB,(0,R)

-
Il

and by [(Al)[z, and the fact that n < ¢e/(2R7), we have |§ — z| < e. Since § € s,(t) this
completes the proof. ]

We can now apply Proposition [2.2] together with Lemma [2.7]to prove our main result for
this section.

Proposition 2.8. Suppose that v satisfies 0 and O for some Ry and ro. For
any € > 0 and tg > 0, there exists 6 > 0 (depending only on v, €, to, Ry and o) such
that

my(z,t) <ml(z,t) <m,(z,t)+e for all z € RY,

and
dr(s,(t), 55(t)) <

for all t € [0,t9] and z € R4,

Proof. We start by showing the statement about the supports, s, and s°

. By Lemma
v
we can choose 1 > 0 such that

Jt+n) S |J Blye) Vt<t
yEsu(t)

Then by Proposition [2.2] we can choose 6 > 0 such that
R(2) < hy(z) < hS(z) +n Vze R

We get
zes,(t) = h(2)<t = K<t = zes(),

14



and

zesdt) = W<t = hk)<t+n = zes,(t+n),

SO

sty csityc | Bly,e).
yEsu(t)

This implies that dg(s,(t),s3(t)) < € as required.

We now turn our attention to the numbers of particles, m, and m$. By Lemma we
can choose R > Ry such that hl(z) > to for all z ¢ B(0, R) and all § € (0,1]. Then by
Proposition [2.2] we can choose & € (0,1] such that h%(2) < h,(2) < hS(z) +¢/(qR") for
all z € R%. Then, straight from the definitions, we have

my(z,t) < mi(z,t) <my(z,t)+ sup f(y)i
veB,(O.R) 4

for all z € R? and t < ty. By 0 the right-hand side is at most m,(z,t) + €.

Finally, since hl(z) < h,(z) for all z € R? and hJ is increasing as § | 0, the event
{h%(2) < h(z) < h3(2)+¢}, and therefore the events {m, (z,t) < md(z,t) < my(z,t)+e}
and {s,(t) C s3(t) C Uyes, 1) B(y,€)}, are increasing as 6 | 0 for any £ > 0. In particular,
we can choose the same ¢ for both the support and the number of particles. ]

2.3 The j-approximation works

Our aim in this section is to show that the J-approximations converge (in a suitable
sense) as d | 0 to the quantities they are supposed to approximate. In particular we will
prove Proposition We first show that conditions [(Al)|z, and [(A2)},, hold for some
Ry and rg with high probability for both Il and II.

Lemma 2.9. As Ry — oo,
P(II satisfies[(AL)r,) =1 and }nf IP’(HT satisfies A10> — 1,
>e
and as rg — 0,

P(II satisfies[(A2),) =1 and %nf IP’(HT satisfies O) — 1.
>e

Proof. Define the event Ay(v) = {max.cp, (g 2r)€(2) < ¢2*=1)7}. By [OR16, Lemma
2.7(i1)] (with N = 1), there exists a constant C' such that for any T' > e and any k > 0,

P(Ax(I17)¢) < CQdk(qT’(kfl))*a = 027 g—agld—ra)k,
Similarly, by direct calculation, there exists a constant C' such that for any R > 1,

P(Ak(H)C) <1-— 676'2"”(170‘2@*"*“)’C < C2a'yq7a2(d7'ya)k.

15



Note that d — ya < 0, so that in both cases the probabilities are summable over k.
In particular, we can choose K large enough so that the event Nj>x Ak(v) holds with
probability arbitrarily close to 1 (for v = II or for v = IIp and uniformly in 7" > e).

Now on the event Ng>g Ag(v), we can take any R > 2K and choose k such that 2F <
R < 2F+1 Then, we have that

sup £(2) < sup  &(z) < ¢2F < ¢RY,
2€B(0,R) 2€B(0,2++1)

so that the first statement follows.

To show [(A2)},, we define Ay(v) = {3z € B,(0,27%) : £(z) > 277D}, For v = Iy,
we have from [OR16, Lemma 2.7(i)] that there exists ¢ > 0 such that for 7' > e,

P(Ak(HT)C) = IF’( max £(y) < 2—7(k—1)) < 2 egker—d)
yEsuppH(Tl)ﬁB(()VQ—k)

Similarly, by direct calculation, there exists a constant ¢ > 0 such that

P(Ak(ﬂ)c) = P( max E(y) < 2*7(k71)> < efc2—awk(aw—d>'
y€Esupp I(HNB(0,2-F)

Note that ay — d > 0, so for any € > 0 we can choose K such that for all T' > e,
IP’( U Ak(HT)C) <c and IP’( U Ak(H)C) <e.
k>K k>K

The result follows. O

We also note the following easy lemma.

Lemma 2.10. Almost surely, hii(z) € (0,00) and hi, (z) € (0,00) for any z # 0 and
T>e.

Proof. The statement follows by combining Corollary [2.6] with Lemma [2.9 O

The next corollary is the key tool in proving Proposition
Corollary 2.11. For anye >0, T > e and tg > 0,

limgyo P sup, ez [hri(2) — Ay (2)] > £) =0, (4)
limsyo P by, SUp et [min(z, ) = miy(2,6)] > 2) =0, (5)
limg o P<Suptgt0 dp (sm(t), sfy(t)) > 5) =0, (6)
and similarly
lims o lim supy_,c P sUp. ez [hrry (2) = iy, ()] = 2) =0, (7)
limg o lim supp_, ]P’(suptgt0 SUp,epd |Miry (2,1) — m‘sHT(z, t)| > s) =0, (8)
lims o lim supp_, o P( suPy<y, dr (s117(1), 8, (1)) 2 5) = 0. (9)
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Proof. First, since h{;(z) < hyi(z) for all z € R? and § > 0, and h{(z) is increasing as
§ 1 0, the events {h$(2) < h(z) < h¥(2) + ¢} are increasing as & | 0. By Lemma and
Proposition we know that for any € > 0,

%{QP(hH( z) < hn(z) < h{(z) +¢ VzeRY) =

and
lim lim mf]P’(h‘S (2) < hm,(z) < h‘sHT(z) +e VzeRY =

640 T—oo

the first and fourth statements follow. The proofs of the statements for m and s are
almost identical, using Proposition in place of Proposition O

From Corollary we can easily deduce our main technical result Proposition

Proof of Proposition[2.1. We consider first the case of the hitting times. Recall that we
defined, for any f,g € C¢ := C(R%, [0, 0)),

= 22_k< sup  {[f(2) — g(a)|} A 1).

k>1 $€[—k,k]d

For any ¢ > 0, we choose N such that 27V < ¢/2. Then we have

P(dy(hd, hr) > &) < IP’( sup _[n(2) = hr(2)] = £/2)
k=1 2€[—Fk,k]4

N
ZP( sup [ (2) — hr(2)] > £/(2N))

k=1 Ze[fk»k]d
Letting first T" — oo and then § | 0, we obtain by Corollary that

lim lim sup P(dy (k4 hr) > €) = 0.
00 Too

The argument for the numbers of particles and the support of the discrete lilypad model

as well as the analogous statements for the Poisson lilypad model also follow from Corol-

lary in exactly the same way. If we combine these statements, we obtain Proposi-

tion 211 O

2.4 Proof of Theorem [1.1]

We would like to apply the continuous mapping theorem to deduce the weak convergence
of the d-truncated lilypad models. To facilitate this application, we introduce some
slightly different §-approximations: define, for z € R? and ¢ > 0,

R (z) = inf{ZqW +q’%ﬂ| :n € Ng,yo =z and y1,...,yn € B,(0, 1/5)}.
j

J=1
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Note that the only difference from our previous definition A? is that the points yi ..., yn
must now be within the closed ball B(0,1/5). We also define

izt = s {ew)t—hiw) —ay -2} V0, zeR%t>0,
y€B,(0,1/6)

and 3
St)={zeR?: hi(z) <t}, t>0.

We recall that h% is shorthand for h‘SHT, h for h‘SH, and so on; and we similarly write iL(ST
for hY - e for fl% and so on.

The benefit of introducing these new quantities is that applying the continuous mapping
theorem to them is straightforward.

Proposition 2.12. For any 6 >0, as T —
(hy, 5, 8%) = (B°,m°, &°).
Proof. As discussed in Section we know that
IIr = 1L

By the continuous mapping theorem, [Bil68, Theorem 5.1], we only have to show that
each of the maps
74 ~ 6 ~0
ve—h,, vem, V3§,
are continuous as functions from M,(E) (equipped with the vague topology) into the
target spaces equipped with the topologies described before Theorem

We note that the definitions of iLi, m?, and 5% only depend on the point process through
the values in B(0,1/5) x [§, 00), which is a compact set in E. The same is true for m? and
5%, Therefore, we can use Proposition 3.31 in [Res08]: given that v, converges vaguely

to v, we can label atoms of v, and v restricted to any compact set such that the finitely

many atoms converge pointwise. This implies in particular that h,‘in — h?,, min — ﬁli,
and §‘,§n — 3. O
Write

AT = (HTvMTa‘S’T)’ ar = (thmTasT)7 aT - (hTamTa S%) aT - (hTamTasg“)

~§ 76 ~8 =6 0 é 6 0
a _(h7m78)7 a :(h7m78)7 aZ(h,m,s).
We now need to check that EL‘} is close to a5T, and @’ is close to a’.

Lemma 2.13. For any ¢ > 0,

hrnhmsup]P’(d(X?’)(a %) >e)=0 and limP(d*®(a’,a’) >¢) = 0.
010 T—oo 410
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Proof. Fix n > 0; by Lemma we may choose Ry, 79 > 0 such that both IIp (for any
large T') and II satisfy 7, and [(A2))., with probability at least 1 — 7.

By Lemmas and for any point measure v satisfying [(A1l)|z, and [(A2)},,, and any
R >0 and ty > 0, there exists dp > 0 such that for all 6 € (0,dp),

inf h?, > max su hﬁ Z),to ¢
estoass W) {zeB((I)),R) ()10}

Then for all § € (0,0p), z € B(0, R) and t < ty, we have
hy(2) = hy(2), i (z,t) =m)(z,t) and  §)(t) = 5,(t).

From the definition of d*® (choosing R and t( large enough that the distance is guaran-
teed to be small) we get that for all large T,

P(d(”)(&‘%,a‘}) > E) <n and P(d(”’)(a a’) > 5) <n
for all 6 € (0,60). Since n > 0 was arbitrary, this completes the proof. O

We can now combine the various parts of this section to deduce the main scaling limit,
Theorem [1.1]

Proof of Theorem[I.1. By the portmanteau theorem it suffices to show that for any
bounded and Lipschitz-continuous function f : C*® — R, we have that
E[f(Hp, M7, St)] — E[f(h,m,s)] asT — oc. (10)

Suppose that f : C3 — R is bounded by ||f|| and Lipschitz continuous with Lipschitz
constant L, and let € > 0. We have that

[E(f(A7)] = E[f(@)]| < E[|f(Ar) = f(ar)] + E[|f (ar) — f(a7)[] + E[|f(a7) — f(a7)]]
+ [E[f(a])] - E[f@)]| + E[|f@) - f(a’)]] +E[|f(a®) = f(a)]]
< 5Le+2[|f[| P(d <“)(AT,GT) > &) + 2| | P (ar, af) > ¢)
+ 2 fII (@™ (], @) > €) + [E[f(a7)] — E[f(@)]]
+2| [ P9, a°) > €) + 2| f| P(d"? (a’, a) > e).
We now take a limsup as 7" — oo: by Theorem
P(d>*¥(Ar,ar) > ) — 0;

and by Proposition |2.12

Thus
ligljolip E[f(Ar)] - E[f(a)]|

< 5Le + 2|/ f|| limsup P(d*® (ar, af) > &) + 2| f|| limsup P(d*® (a%, a) > )
T—00 T—o0

+2|| f|P(d"9 (@, a’) > &) + 2| fII P(d* (0, a) > e).
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Finally, by Proposition and Lemma taking a limit as d | 0 on the right-hand
side, we get
limsup |E[f(A7)] - E[f(a)]] < 5Le,

T—oo

and since € > 0 was arbitrary the proof is complete. ]

3 Proof of the ageing result

In this section we prove Theorem

Before we start with the main proof, we need to collect several auxiliary lemmas, where
we show that the lilypad models are rather ‘discrete’: once two maximizing points are
close, they are in fact the same.

Lemma 3.1. For anyt >0

lim limsup P(sp(t) € B(0,n)) =0

n—o0 T_y5o

and
lim limsup P(Sr(t) € B(0,n)) = 0.

n—o0 T—00

Proof. Recall that

{or(1) € BO.mY = (B ¢ BO.m) hrly) <} € { it hay) <1,

But combining Lemma[2.4) with Lemma[2.9] tells us that for all ¢, there exists n such that

lim su IP( inf h St) =0.
T—)oop y¢B(0,n) r(9)

This proves the first statement, and then the second follows from Theorem O
Lemma 3.2. We have:

(i) For anyt > 0, lim,,_o P(suppm(-,t) Z B(0,n)) =0).

(i1) For anyt >0, lim. o P({(w(t)) <e)=0.
(iii) For any n € N,e > 0,

léiﬁr)lIP’(Elzl # 290 € Bri(0,n) : |21 — 22| < 0 and {(z1) > €,&(z2) > ¢) =0.

Proof. (i) Follows by combining Lemma with Lemma just as in the proof of
Lemma 3.1

20



(ii) Since w(t) is a local maximum, it satisfies m(w(t),t) = &(w(t))(t—h(w(t))) < {(w(t))t.
Thus by continuity of measures,

leiﬁ)l P¢(w(t)) <e) = Eﬁ)ﬂ?’(m(w(t),t) <et) =P(m(w(t),t) =0) = P(m(x,t) = 0 for all x).

But by Lemma [2.10| we know that the Poisson lilypad model is almost surely non-trivial,
so the latter probability is 0.

(iii) By the standard Palm calculus for Poisson processes we know that, conditionally on
I({(2,y)}) = 1, the process Il — ¢, is again a Poisson process with intensity 7; see
e.g. [Bad07, Theorem 3.1]. Therefore we can write

P(3z1 # 22 € B(0,n) : z3 € B(21,6) and £(21) > €,&(22) > ¢)

— / P(32 € B(21,6) \ {z1} : &(22) > e)m(d(z1,11))
B(0,n)x[e,00)

— / P(II(B(z1,6)) x [e,00) # 0))w(d(z1,91))
B(0,n)x[e,00)

However, we know that
PI(B(21,) % [£,00) #0) = 1 — e X)Ly g
as d | 0. The claim follows by dominated convergence, since 7(B(0,n) X [g,00)) < c0. [

Lemma 3.3. For any 0 < s <t,

léifﬂlimSUPPUWT(t) —Wr(s)| <6 Wr(t) # Wr(s)) =0

0 7500

and
lim P(u(®) — w(s)] < 6 w(t) # w(s)) =

Proof. We begin with the first statement. From Theorem 1.1 in [OR17], we know that for
any t, with probability tending to 1 as T" — oo, the branching random walk is localised
in the maximizer wr(t) of mp(-,t). Therefore it suffices to show the corresponding
statement for wp(t).

Note that for any ¢t > 0 and any n € N,
lim lim supP (& (wr(t)) <€) < lim lim sup P(mp(wp(t),t) < et)
el T 00 el 700

< limsup P(Jwy(t)| > n) + lim lim sup]P’( max my(x,t) < €t>
T—o0 el0 7o z€B(0,n)

(11)
< limsup P(Jwy(t)| > n) + lim]P’( max m(z,t) < 575)
T—00 €l0 x€B(0,n)
= lim sup P(wr(t)] > ),
T—00
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since the limiting model m(-,¢) is almost surely non-trivial by Lemma Also, by
Lemma we have for any t that

n—oo T—00 n—oo T—00

lim limsup P(jwr(t)] > n) < lim limsup P(sp(t) € B(0,n)) =0,

which in particular implies that the left-hand side of is zero. Now, for fixed s and
t, under the assumptions that &(wr(t)) A &(wr(s)) > € and |wr(t)| V |wr(s)| < n, the
event {|wr(t) —wr(s)| < 0; wr(t) # wr(s)} implies that there exist w # w’ € Lp(0,n)
with |w — w'| < § such that &p(w),&p(w') > €. Thus, by the above, we are done if we
can show that for any n € N, e > 0,

lim limsup P(3w # w’ € Ly (0,n) : |w—w'| <6, &r(w), ér(w') >€) = 0.
040 T

However, this follows from an explicit calculation: for some constant C,

PEw #w' € Ly (0,n) : |w—w'| <34, &p(w), Er(w') > €)
< Cr(T)*a(T)**n?6% > = Cnsle >,

and letting T" — oo and then § | 0 completes the proof of the first statement. The second
is almost identical, using Lemma, |3.2 O

We now check that the maximizer for the Poisson lilypad model behaves sensibly. For
x € R4 and 6 > 0, let OB(x,6) = {2z : |z — x| = 6}, the boundary of the ball of radius §
about .

Lemma 3.4. The following are true:

(i) For any t > 0, almost surely, there is a single maximizer in the Poisson model
m(-,t).

(it) For any fived x € R?, § > 0 and t > 0, P*(w(t) € dB(z,6)) = 0.

Proof. (i) The basic idea is the following: if both w and w’ are maximizers, we have
m(w,t) = m(w',t), which means &(w) = &(w')(t — h(w'))/(t — h(w)). Suppose without
loss of generality that h(w) > h(w’). Then from the definition of h, if w # w’, the values
of £(w'), h(w') and h(w) are independent of £(w). So the probability that £(w) takes on
the exact value &(w')(t — h(w’))/(t — h(w)) is zero.

However, since our point process II has infinitely many atoms, we need to be careful.

Fix for a moment z € R4, § > 0 and ¢ > 0, and let II be the point process obtained by
taking II and removing all of the points in B(z,d) X (¢,00) and II be the point process
consisting of only those points of IT in B(z,4) x (¢, 00). Clearly II and II are independent.

Note that for any w € B(z,9), if B(z,0) = {w}, then IT consists of all points in IT
except (w,&(w)); so from the definition of h we have hr(w) = hy(w). Similarly, for any
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other point w’ € R%, if both By(z,8) = {w} and hr(w) > hr(w’) then hp(w') = hy(w').
Therefore

P(3w € supp IV, w’ € supp IV : By(z,0) = {w}, hi(w) > h(w'),
&n(w)(t — hn(w)) = &n(w')(t — hn(w")))
< P(3w € supp Y, o' € supp I : Bg(z,0) = {w},
& (w)(t = hyy(w)) = &g (w)(t = hy(w')))
=0,
since II and II are independent. Returning to our usual notation, this tells us that
P(3w € Bri(z,6), w’ € suppII™ : w # w', h(w) > h(w'), {(w) > ¢,
¢(y) <eVy € Br(z,0) \ {w}, m(w,t) = m(w’,t)) =0
(where no subscript means we are using the point process II).

Now, taking a sum over all z such that z/§ € Z¢ N B(0,n), we deduce that

P(Fw,w’ € Bp(0,n) : w # w', h(w) > h(w'), £(w) > &,

£(y) < e Vy € Brp(w,26) \ {w}, m(w,t) = m(w',t)) = 0.
Taking a limit as § | 0, we get by Lemma (iii) that
P(3w,w" € Bri(0,n) : w# w', h(w) > h(w'), £(w) > &, m(w,t) = m(w',t)) = 0.

Now taking n — oo, by Lemma (i), we have

P(Gw, v € suppTI® : w £ ', h(w) > h(w'), E(w) > &, m(w, t) = m(w/, ) > 0) = 0.
Finally, taking € | 0, by Lemma (ii), we get

P(3w,w" € suppI? : w #w', h(w) > h(w'), m(w,t) = m(w',t) = sup m(x,t)) = 0.
zeZd

This completes the proof of (i).

(ii) We note that by construction the maximizer w(t) is in suppII®. Thus, using

Lemma [3.2{ii),
P(w(t) € 0B(x,0)) = lgiﬁ)lp(w(t) € 0B(x,0),&(w(t)) > )

< limfoup P(w(t) € 0B(x,0),{(w(t)) > €)

< limsup P(II(0B(z, d) X [e,00)) > 1) =0,
el0

since (0B(z,0) x [g,00)) = 0. O
Lemma 3.5. For any 6 > 0,

I(Siﬁ)lPﬂw(l) —w(l+0)] <26, w(l) #w(l+6))=0.
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Proof. Let n € N and € > 0. Then

P(lw(1) —w(140)| <25, w(1) # w(l+0))
< P(lw(1) —w(l 4 6)] < 26,w(1) # w(l +0),&(w(l)) 2 €, {(w(l +0)) =)
+ P(min{(w(1)),{(w(l +0))} <€)
<P(3z1 # 22 € Bri(0,n) : |22 — 21| <26,&(21) > €,&(22) > ¢)
+ P(min{(w(1)), {(w(l +0))} <€) + P(max{|w(1)[,|w(1 + 0)[} = n).

Now, letting ¢ | 0, we obtain from Lemma (iii) that
limsup P(|w(1) — w(l + 0)| < 26, w(1) # w(l + 0))
640
< P(min{¢(w(1)), {(w(1 +0))} < &) + Pmax{|w(1), [w(l + 0)| > n).
Finally, letting ¢ | 0 and n — oo, we obtain the statement from Lemma (i) and
(ii). O
We are now finally ready to prove the ageing result, Theorem [I.2]

Proof of Theorem[1.9. We start with a lower bound. For any 6 > 0,0 > 0, define the
open set

o .__ d+1 . d :
Oy = {f e Cy™  Jy € R® with zeerri%)Ey,é)f(z’ 1) < f(y, 1),

,14+0) < ,1+6)¢.
e o (140 < fly 1+ )}

Since (’)2 is an open set, from the weak convergence M7p = m we know that

lim inf P(Mp € 0)) > P(m € Of). (12)

T—o0

Note that if w(1) = w(1 + 6), then by Lemma (i)7 m € O} for any § > 0; so
P(w(1) = w(l +6)) = P(w(1) = w(l + 0),m € O))
=P(m e O) —P(m € 0),w(1) # w(l +0)).

Note also that on the event {m € O}}, if there are two different maximizers at times
1 and 1 + 6 then they must be within distance . Thus by Lemma lims o P(m €
O3, w(1) # w(1 +6)) = 0, and therefore

P(w(l) = w(l+0)) = %P(m c0p). (13)
Similarly, for any § > 0, [OR17, Theorem 1.1] tells us that as T" — oo there is a unique
maximizer for the branching random walk, so
lim inf P(W7(1) = Wr(1 +6)) = liminf P(Wr(1) = Wr(1+6), My € 03)
—00 —00
> lim inf P(Mr € O)) — limsup P(My € O, Wr(1) # Wr(1 +6)).
—00

T—o0
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By Lemma |3.3

lim lim sup P(M7 € O, Wr(1) # Wr(1+6)) =0
00 T

since on the event { My € O)}, if there are two different maximizers at times 1 and 1+ 6
then they must be within distance d. Therefore

lim inf P(Wr(1) = We(1 + 6)) > lim lim inf P(Mp € O)).
T—00 640 T—oo

Combining this with and , we get

lim inf P(Wr(1) = Wr(1 +0)) > P(w(1) = w(l +6)),

which is the required lower bound.

We now continue with an upper bound. Recall that B(z,) is the closed ball of radius r
about z. For z € R%, § > 0 and # > 0, we consider the set

- d+1 ., _
Co(2,0) = {f €Cy xer%?;fé)f(w, 1) = max f(z,1),

xer%?;é)f(x, 1+0) =max f(z,1+ 9)}-

This set is closed, so since My = m we know that

limsup P(Mr € Cy(z,0)) < P(m € Cy(z,9)). (14)

T—oo

Now let n € N, > 0 and take I'® to be a collection of points such that B(0,nd) =
U.crs B(z,6), but the collection {B(z,6) : z € 9} is disjoint (recall that we are working
with L!-balls so that this is possible). Then

P(Wr(1) = Wr(140)) < > P(My € C(2,0)) + P(Wr(1) ¢ B(0,n6)),

z€l?

and combining with and Lemma we get that for any § > 0,

limsup P(Wr(1) = Wr(1 +6)) < limsup Z P(m € Cy(z,9)). (15)

T— n—00
o0 2€l?

On the other hand, since by Lemma [3.4] the maximizers for the Poisson lilypad model at
times 1 and 1+ @ are almost surely unique and not located on the boundary of any of
the balls B(z,6) for z € T, we have

> P(m e Cy(z,6)) < > P(lw(1) — 2| < 6, |w(l+0) — 2| <)

z€l?, 2€T?,

<P(3z € B(0,nd) : |w(l) — 2| <4, |w(l+6) —z| <9).
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But, for any n,

P(3z € B(0,n9) : |w(l) — z| < 4, |w(l+6) — z| <)

<Pw(l) =w(l+0)) + P(w(l) # w(l+0),|w(l) —w(l+0)| <24§),

and by Lemma [3.5] the limit of the latter probability as ¢ | 0 is zero. Thus

lim i P(m € Cy(z,9)) < P(w(l) =w(l+06)).
lim 171rln_>sol<1jnggs (m € Cy(z,0)) < P(w(l) = w( )

Combining this with , we obtain

limsup P(Wp(1) = Wp(1+0)) < P(w(l) = w(l +6)),

T—o0

which is the required upper bound and completes the proof.

Finally, in order to see that P(w(1) = w(1+46)) € (0, 1), one has to construct two different
scenarios for the Poisson process that hold with positive probability and that imply either
w(l) = w(l+0) or w(l) # w(l+ ). We omit the details here, but refer to Section 8
in [OR16], where we show that the maximizer in the PAM and in the branching random
walk are not always the same using similar ideas. O
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