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Understanding and forecasting 
the weather is essential to the 
future of planet earth and maths 
place a central role in doing this 

Accurate weather forecasting is a mixture of 

•  Careful modelling of the complex physics of the 
ocean and atmosphere 

•  Accurate computations on these models 

•  Systematic collection of data 

•  A fusion of data and computation 

Data assimilation is the optimal way of 
combining a complex model with uncertain data 



Basic Idea of Data Assimilation 

A calculation (eg. NWP) gives a predicted state          
with an estimate of the error  

True state of a system is  

Make a series of observations y of some 
function           of the true state 

Eg. Limited set of temperature 
measurements with error 
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Now combine the prediction with the observations 
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Data: Sources of observation 



Both the prediction and the data have errors. 

Can we optimally estimate the system state which is 
consistent with both the prediction and the data and 
estimate the resulting error? 

NOTE:  In weather prediction we 

have approximately  

10^9    degrees of freedom 

10^6    data points 

So significantly underdetermined problem 

 

 



Assume initially: 

1.  Errors are unbiased Gaussian variables 

2.  Data and prediction errors are uncorrelated 

3.   H(x) is a linear operator 
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Assumptions about the error 

 
Data error:   Gaussian, Covariance R 

Background prediction error:  Gaussian, Covariance B 

Maximum likelihood of data y given truth x is 

BLUE:     Find       which maximises  M 
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M = P(x y) /P(x) = e−J (x )
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So        minimises   J 
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If R and B are known then the best estimate of the analysis is 
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xa = xb + K(y −Hxb ), K = BHT (R + HBHT )−1

A = KRKT + (I −KH)B(I −KH)T

Kalman filter: Continuously 
updates the forecast and its error 
given the incoming data. 

Covariance of the analysis error 

Implementation 1. 



                    Ensemble Kalman Filter EnKF 

 

This is a widely used Monte Carlo method that uses an ensemble 
of forecasts to estimate the terms in the Kalman filter 

 

Idea: Take a large number of initial states       and estimate  the 
resulting background states  
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Implementation 2: 
 
Minimise the functional 

This is implemented as 3D-VAR  (since 1999 in the Met Office) 

      : Background, derived from 6 hour NWP forecast 

      : Analysis 

      :  NWP forecast using         as initial data 
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Corrected 
forecast 

Previous 
forecast 

 4D VAR … Preferred variational method 

Use window of several observations (over 6 hours) 
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Implementation 3. 



4D-VAR idea:   Evolutionary model   M   (nonlinear)  

Unknown initial state    

 

Times                                 Over a time window 

Leads to state estimates  

Data yi over window 

Find      so that the  

estimates fit the data 

Smoothing 
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t = t0,t1,t2,!



€ 

J(x0) =
1
2
x0 − xb( )T B−1 x0 − xb( ) +

1
2

(Hxi − yi)
T R−1(Hxi − yi)

i= 0

N

∑

Minimise 

Subject to the strong model constraint 
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xi+1 = Mi(xi)

At present assume perfect model, but can also deal with 
certain types of model error (both random and systematic) by 
using a weak constraint instead 
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Usually solved by introducing Lagrange multipliers 

And solving the adjoint problems 

0 =∇Ji = H
TR−1(Hxi − yi )+λi−1 −λi M 'i (xi )

0 =∇J0 = B
−1(x0 − xb )+H

TR−1(Hx0 − y0 )−λ0M '0 (x0 )



Estimation of the background and covariance errors 

Good estimates of the covariance matrices R and B are 
important to the effectiveness of 3D-VAR 

 

1.  To get the physics correct 

2.  To avoid spurious correlations between parameters 

3.  To give well conditioned systems  

 

NOTE:  B is a very large matrix, difficult to store and    
very difficult to update. Impractical to calculate using 
the Fokker-Plank equation 



Build meteorology into the calculation of B through  

Control Variable Transformations (CVTs) 

 
IDEA: Choose more ‘natural’ physical variables       which 
have uncorrelated errors so that the transformed 
covariance matrix is  block diagonal or even the identity 

 

Set 
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χ
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δx =Uχ =UpUvUhχ, B =UUT

Reduces the complexity of the system AND gives better 
conditioning for the linear systems 
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Reduces vertical correlations by projecting 
onto empirical orthogonal vertical modes 

Separates physical parameters into 
uncorrelated ones eg. temperature, wind, 
balanced and unbalanced 

Effective, but errors arise due to lack of resolution of 
physical features leading to spurious correlations 

[Cullen] 

Reduces horizontal correlations by 
projecting onto spherical harmonics 



Eg. Problems with stable boundary and inversion 
layers and assimilating radiosonde data 

Poor resolution leads to inaccurate predictions of fog and ice 





Solution one 

Increase global resolution 

 

 

                    VERY EXPENSIVE!!! 

       Solution two  

 

locally redistribute the computational mesh to resolve the features 

Cheap and effective!  [Piccolo, Cullen, B,Browne, Walsh] 
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Monitor function and the Adaptive Grid  
 

Piccolo&Cullen  

QJR Met Soc 2011 
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RMS error: Analysis - Observations 
theta zonal wind 

relative humidity meridional wind 



Used together with Met Office Open Road software to 
advise councils on road gritting over Christmas 



Adaptive mesh implemented operationally since 
November 2010. 

Now extending it to a fully three dimensional implementation 
using optimal transport methods [B,Browne,McRae,Piccolo] 



Dealing with nonlinearity 

Better use of appropriate (eg. Lagrangian) data 

 

Tuning  method to data   [Jones, Stuart, Apte] 

 

Use of particle filters 

and MCMC methods    [Peter Van Leeuwan] 

Lot of research into finding a compromise between 
dealing with the high dimensionality and nonlinearity in 
the system 



Conclusions 

Data assimilation is an optimal way of  

merging models with data 

 

Useful for model tuning, validation,  

evaluation, uncertainty quantification and reduction 

 

Very effective in meteorology 

 

Can be significantly improved with adaptivity 

and OT 


