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Purpose of lecture

1. Aims: To give a brief outline of mathematical control theory, its
history and context

2. Target audience: students, assuming little background in the discipline

3. Hopefully: interesting, informative, useful for rest of week

Some structure and ideas based on those in Control Engineering the
Hidden Technology, by K. Åström, Lund University.
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What’s in a name?

Control theory

Control engineering

Systems and control theory

Mathematical control theory

Mathematical ...

May have different meanings to experts, but here can all take as
roughly the same.
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Systems and control theory

In an image

Σ

F

disturbance performance

measurement

+

disturbance

control

Control theory (engineering) focusses on the analysis and design
(synthesis) of controllers — feedback, optimal or otherwise — in
causal dynamical systems to achieve a desired outcome.

Systems theory is the mathematical framework for (inter)connecting
dynamical objects.

Combined systems & control theory is the mathematical language for
describing and abstracting feedback.
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Mathematical control theory

For example

ẋ = f (x , u, d1),

z = g(x),

y = h(x),

u̇ = k(y , u, d2),


dj disturbances, x state, u control,

y measurement, z performance.

The field of mathematical control theory concerns itself with the basic theo-
retical principles underlying the analysis of feedback and the design of control
systems. It differs from the more classical study of dynamical systems in
its emphasis on inputs (or controls) and outputs (or measurements). Line-
arized analysis of systems is the basic foundation of most practical control
engineering and has been phenomenally successful.

Foreword by E. Sontag to Stability and Stabilization of Nonlinear Systems by I.

Karafyllis and Z.-P. Jiang, Springer, 2011
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Feedback is everywhere — including biology

Feedback is a central feature of life. The process of feedback governs how
we grow, respond to stress and challenge, and regulate factors such as body
temperature, blood pressure, and cholesterol level. The mechanisms operate
at every level, from the interaction of proteins in cells to the interaction of
organisms in complex ecologies.

The Way Life Works, M. B. Hoagland and B. Dodson, Times Books 1995
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Feedback is everywhere — including evolution

Natural selection

In natural selection, those variations in the genotype that increase an or-
ganisms chances of survival and procreation are preserved and multiplied
from generation to generation at the expense of less advantageous ones.
Evolution often occurs as a consequence of this process.

Encyclopaedia Britannica

The action of [natural selection] is exactly like that of the centrifugal gover-
nor of the steam engine, which checks and corrects any irregularities almost
before they become evident; and in like manner no unbalanced deficiency in
the animal kingdom can ever reach any conspicuous magnitude, because it
would make itself felt at the very first step, by rendering existence difficult
and extinction almost sure soon to follow.

On the Tendency of Varieties to Depart Indefinitely From the Original Type, A. Wallace

1858
SAMBa ITT 10



A very brief history

Roots can be traced back to the industrial
revolution

Centrifugal governor, James Watt 1788

Used extensively in industrial process control,
19th century

Telecommunications, signal processing,
Nyquist, Bode, 1930s

Flight control, 20th century
Quiz: What year did this appear in the New York Times: Robot Piloted

Plane makes Safe Crossing of the Atlantic No hands on controls from

Newfoundland to Oxfordshire: Take-Off, Flight and Landing are fully

Automatic.

Filtering, estimation, prediction, Kalman, 1960s
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Today

EPSRC: Control engineering is critical to the success of numerous
engineering applications and underpins areas including power
electronics, smart grids, wind turbines, aerospace, automotive,
chemical processing, robotics, and manufacturing

According to Åström it is the Hidden Technology

! Widely used

! Very successful

% Seldom talked about

% Except when disaster strikes

Image from Ibex73
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Three examples: 1) PID control

Given reference r , measurement y , we compute input u via

u = kP(y(t)− r) + kI

∫ t

0

(y(s)− r) ds + kD ẏ(t) ,

for parameters kP , kI and kD .

See video here

Some “optimal” results known: minimise∫ ∞
0

〈y(t),Qy(t)〉+ 〈u(t),Ru(t)〉 dt ,

for positive definite R and Q, subject to

ẋ = Ax + Bu, x(0) = x0, y = Cx ,

over all u ∈ L2 such that x(t)→ 0 as t →∞.

Solution is given by u = −R−1BTPx , where P is a certain matrix solution of

ATP + PA + CTQC − PBR−1BTP = 0 .

SAMBa ITT 10
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ẋ = Ax + Bu, x(0) = x0, y = Cx ,

over all u ∈ L2 such that x(t)→ 0 as t →∞.

Solution is given by u = −R−1BTPx , where P is a certain matrix solution of

ATP + PA + CTQC − PBR−1BTP = 0 .

SAMBa ITT 10

https://www.youtube.com/watch?v=4Y7zG48uHRo


Three examples: 1) PID control

Given reference r , measurement y , we compute input u via

u = kP(y(t)− r) + kI

∫ t

0

(y(s)− r) ds + kD ẏ(t) ,
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Three examples: 2) Pontryagin minimum principle

Assume that x is given by

ẋ = f (x , u), x(0) = x0, u(t) ∈ U , t ∈ [0, tf ] , (1)

where tf is the (fixed) final time, U is the set of admissible controls.

Objective is to choose u to minimise

J = Ψ(x(tf )) +

∫ tf

0

L(x(t), u(t)) dt subject to (1).

Key object is the Hamiltonian H given by H(ξ, v , p) := pT f (ξ, v) + L(ξ, v)

Pontryagin’s minimum principle states gives a necessary condition
optimality: an optimal trajectory x∗, u∗ and λ∗ must satisfy

(1) Minimise H: H(x∗, u∗, λ∗) ≤ H(x∗, u, λ∗) for all admissible u
(2) Adjoint equations: λ̇∗ = −(∇H(x∗, u∗, λ∗))T

(3) Boundary conditions: ∂
∂t Ψ(x(tf )) = −H(x∗(tf ), u∗(tf ), λ∗(tf ), tf ) and

∂
∂ξΨ(x(tf )) = λT (tf ).
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Three examples: 3) Filtering, estimation, prediction

Goal: given

ẋ = Ax + Bv , x(0) = x0, z = C1x , y = C2x + Dv ,

determine “optimal” estimate x̂ of x .

Under assumptions, the estimator

x̂ ′ = Ax̂ + L(y − C2x̂), x̂(0) = x̂0, with L = PCT
2 (DDT )−1 ,

and where P = PT is a certain solution of

AP + PAT − PCT
2 (DDT )−1C2P + BBT = 0 ,

minimises
m∑

k=1

(∫ ∞
0

‖z(s)− C1x̂(s)‖2 ds : v = ekδ

)
,

The above estimator is the celebrated Kalman-Bucy filter (1960,61),
originally introduced in a stochastic framework for recursive state estimation
in stochastic systems.
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Research at Bath

Part of the analysis research group

Myself, Mark Opmeer, Hartmut Logemann, and PhD students

Current research includes
B Systems theoretic properties of infinite-dimensional systems

ẋ = Ax + Bu, y = Cx

(abstract Cauchy problem). Also through frequency domain approach

C 3 s 7→ G(s) = C (sI − A)−1B ∈ L(U,Y ) ,

B Stability properties of nonlinear control systems

ẋ = f (x , u)

B Collaborations with engineering
B Applications of systems and control to biology and ecology

Thanks for listening
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