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Abstract

We derive estimates on the magnitude of the interaction between a wide class of analytic

partial differential equations and a high-frequency quasiperiodic oscillator. Assuming high reg-

ularity of initial conditions, the equations are transformed to an uncoupled system of an infinite

dimensional dynamical system and a linear quasiperiodic flow on a torus; up to coupling terms

which are exponentially small in the smallest frequency of the oscillator. The main technique is

based on a careful balance of similar results for ordinary differential equations by Simó, Galerkin

approximations and high regularity of the initial conditions. Similar finite order estimates as-

suming less regularity are also provided. Examples include reaction-diffusion and nonlinear

Schrödinger equations.

MSC Subjects 37L65 (34C29, 35B40 35Q55)

Short Title Exponential Averaging

1 Introduction

Averaging and homogenisation principles are widely used to derive effective models for systems

containing fast scales in their original description. These descriptions are usually ordinary or

partial differential equations with explicit dependencies on fast variables; examples range from

celestial mechanics to elasticity and nonlinear optics. There are two main approaches for the

averaging of multiscale problems. The first one is based on weak convergence methods (see e.g.

[Tar79, Tar86, Bor98, JKO94]); but these methods do not provide directly a quantitative error

estimate for the approximation by the effective system. The other method is based on formal or

rigorous asymptotic expansions in small parameters, e.g. the period of a rapid external excitation

or the length scale of a microstructure. Quantitative estimates can be obtained but the class of

problems is more restrictive than for weak convergence methods: the estimates are often limited

to fast periodic forcing and are still only to a finite order in the small parameter, see e.g. [AKN97,

BLP84, BP89, JKO94, LM88].

When iterating finite order asymptotic procedures to obtain an expansion or a series, one cannot

expect convergence in general – even for analytic ordinary differential equations. But still beyond

a finite asymptotic analysis there are estimates of exponential order giving upper estimates on

the divergence effects for analytic ordinary differential equations. The first results of this type
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were by Nekhoroshev for the perturbation of fully integrable Hamiltonian equations [Nek79] and

by Neishtadt for the periodic forcing of analytic differential equations [Nei84]. The approach by

Neishtadt is to transform the differential equation by some periodic coordinate change such that

the remainder term is small, i.e. an equation like

u̇ = f(u, t/ε) (1.1)

is transformed to

v̇ = f̄(v; ε) + r(v, t/ε, ε), (1.2)

where the remainder is exponentially small in ε on bounded domains for all t:

|r(v, t/ε, ε)| ≤ C exp(−c/ε). (1.3)

Simó [Sim94] extended this to rapid quasiperiodic forcing

u̇ = f(u, θ)

θ̇ =
1
ε
ω, (1.4)

where θ ∈ T = (R/Z)p and where the frequency vector fulfils some Diophantine conditions to

control small denominators that appear in the analysis: There exist some C > 0 and τ > p − 1,

such that |(ω,m)| > C|m|−τ for all m ∈ Zp \ {0}. Diophantine conditions appear in KAM theory

and various other contexts in the dynamical systems literature, for references see e.g. [AKN97].

Then again one can construct for analytic right-hand sides a coordinate change, such that the

remainder term is exponentially small

v̇ = f̄(v; ε) + r(v, θ, ε) (1.5)

θ̇ =
1
ε
ω,

with |r(v, θ, ε)| ≤ C exp(−cε−1/(τ+1)).

Extending such results to partial differential equations poses several obstacles. Consider as an

example some scalar reaction-diffusion equation

ut = uxx + f(u, t/ε) (1.6)

with periodic boundary condition in [0, 1]. Firstly the right-hand side is not continuous or even

bounded on any sensible phase space, whereas analyticity is crucial in all the above results. Further-

more the class of allowed transformation is much smaller, when we want to preserve the semilinear

structure of the equation. Using the regularisation property of (1.6) it was possible to extend

the Neishtadt results to a class of periodically forced parabolic partial differential equations in

[Mat01], who obtained a different exponential estimate of order O(exp(−c/ε1/3)). In [MS03], we
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extended the results to a wider class of evolution equations with a rapid one-degree-of-freedom

forcing. There the attention is restricted to highly regular initial data, instead of using the regu-

larisation properties of (1.6). Again we obtain different exponential estimates and we also provide

lower estimates for an example, showing the different exponential behaviour of ordinary and partial

differential equations. Similar methods of combining averaging techniques with exponentially good

Galerkin approximations were used in different contexts in [Bam05, Mat05, TW07]. For results in

the direction of Nekhoroshev estimates, see e.g. [Bam99, Poe99].

In this paper we give finite order and exponential order averaging results for partial differential

equations under temporal quasi-periodic forcing both for highly regular initial data and for general

initial data of regularising equations. This extends Simó’s result for ordinary differential equations

[Sim94]. Crucial assumptions are Diophantine conditions on the frequency vectors. Similar Dio-

phantine conditions were also used in the spatial homogenisation of semilinear parabolic equation in

[FV01] and for some low order temporal averaging results in [EZ03]. In this paper we use methods

different from [Mat01, MS03] to remove and estimate periodic and quasiperiodic forcings. We also

provide estimates in examples where the rapid dependencies are in the coefficients of the unbounded

differential operators of the partial differential equations. Furthermore we give an explicit example

showing the spatial nonlocality of averaging in partial differential equations.

The paper is organised in the following way. In section 2, we state our main theorems on finite

order and exponential averaging. In section 3 we first explain the general procedure underlying

both proofs before giving the details of each proof separately. A number of examples including reg-

ularising reaction-diffusion equations and nonlinear Schrödinger equations are discussed in section

4.

2 Main results

We state our main results on higher-order and exponential averaging of abstract infinite dimen-

sional evolution equations with fast quasiperiodic forcing. First we introduce the notation used

throughout, then we state the averaging theorems in the case (A) of finite regularity, and case (B)

in the analytic setting.

We consider abstract evolution equations. Let X be a real Banach space, let A be a closed densely

defined, possibly unbounded, operator with domain D(A) generating a strongly continuous semi-

group. We denote by T = (R/Z)p the p-dimensional torus, on which the quasiperiodic motion is

given by a parallel flow. On the phase space X × T we define

d
dt
u = Au+ f(u) + g(u, θ, ε) (2.1)

d

dt
θ =

1
ε
ω
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with initial conditions u(0) = u0; θ(0) = θ0 and u ∈ X, θ ∈ T and ε > 0 the small real parameter.

The regularity assumptions on f : X → X and g : X × T× R → X will be stated below.

A key assumption is that we can approximate the full equation by (not necessarily finite-dimensional)

ordinary differential equations.

Hypothesis 2.1 We assume that there exists a sequence of (Galerkin) projections (PN )N∈N which

satisfy the following requirements:

(i) the sequence of projections converges strongly to the identity on X

lim
N→∞

PNu = u in X for all u ∈ X; (2.2)

(ii) the projections PN commute with A on its domain of definition

PNAu = APNu for all u ∈ D(A); (2.3)

(iii) the operator A is bounded on range PN

|APNu|X ≤ N |PNu|X for all u ∈ X. (2.4)

Remark 2.2 In examples like A = ∆ or A = i∆ with periodic boundary conditions we choose PN

as a projection to Fourier modes.

The next assumption is needed to control small denominators and resonances.

Hypothesis 2.3 (Diophantine condition) Let ω ∈ Rp be such that there exist constants γ > 0 and

τ > p− 1 such that for all m ∈ Zp \ {0}

|(m,ω)| ≥ γ|m|−τ (2.5)

where ( , ) is the inner product on Rp and |m| =
∑p

j=1 |mj | is the norm of m. In the periodic case

p = 1, (2.5) is equivalent to ω 6= 0.

Remark 2.4 The Diophantine condition (2.5) is a generic property for ω ∈ Rp.

Hypothesis 2.5 (Zero mean) For all ε and u ∈ X the quasi-periodic term has zero mean∫
θ∈T

g(u, θ, ε)dθ = 0. (2.6)

As we will not require fixed smoothing assumptions on the equations, we consider spaces of regular

initial data. We could define them as the domains of D(|A|α) or Gevrey spaces like D(exp(σ|A|ν)),
but it may require some work to define |A|, so we assume the existence of maps Λα or Γσ,ν , which

essentially behave like |A|α and exp(σ|A|ν) respectively:
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Hypothesis 2.6 (Higher order approximation) Assume that there exists a closed, densely defined,

boundedly invertible operator Λα for α ≥ 1 with domain of definition

Yα := D(Λα) ⊂ D(A), (2.7)

such that range Rg (PN ) ⊂ Yα, Λα(Rg (PN )) = Rg (PN ) for all N , and ΛαAu = AΛαu, for all

u ∈ Rg (PN ). We equip the spaces Yα with the graph norm

|u|Yα = |u|X + |Λαu|X . (2.8)

We assume that the functions in Yα have higher algebraic order approximations by the Galerkin

projections PN

|Λ−1
α (id− PN )|L(X,X) ≤ C0N

−α, (2.9)

for some N -independent constant C0(α).

Hypothesis 2.7 (Exponential approximation) Assume that there exists a closed, densely defined,

boundedly invertible operator Γσ,ν with domain of definition

Gσ,ν := D(Γσ,ν) ⊂ D(A), (2.10)

such that RgPN ⊂ Gσ,ν , Γσ,ν(RgPN ) = RgPN for all N , and Γσ,νAu = AΓσ,νu, for all u ∈ RgPN .

We equip the Gevrey spaces Gσ,ν with the graph norm

|u|Gσ,ν = |u|X + |Γσ,νu|X . (2.11)

We assume that Gevrey-smooth functions in Gσ,ν are exponentially well approximated by the Galerkin

projections PN

|Γ−1
σ,ν(id− PN )|L(X,X) ≤ C0 exp(−c0/Nν), (2.12)

for N -independent constants C0(σ, ν) and c0(σ, ν).

Remark 2.8 For sectorial operators like the Laplacian A = ∆ on regular domains, the higher

regularity spaces Yα can be defined as a fractional power space, and the Gevrey space by letting

Γσ,ν = exp(σ(−A)ν). In some cases it is then possible to prove high regularity after a short transient

time for a wide class of initial data; see section 4.1. For the nonlinear Schrödinger equation we

can use Γσ,ν = exp(σ|A|ν) with A = i∆ on Hs(R,C).

Next we state precisely the regularity assumptions on the nonlinearities with Y denoting a general

Banach space and BR(Y ) the ball of radius R around 0 in Y .

Hypothesis 2.9 (Finite regularity) The nonlinearities f :Y → Y, g :Y × T × R → Y are C` with

bounded C`-norm on balls BR(Y ) of radius R independent of ε: ‖f‖C`(BR(Y ),Y ) ≤ C(R, `) and

‖g‖C`(BR(Y )×T×[0,ε0],Y ) ≤ C(R, `) for both Y = X and Y = Yα.
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To make analyticity precise we extend our function spaces to complex Banach spaces in the standard

way. For a general Banach space Y we denote by

YC = Y × Y (2.13)

the standard complexification u = u1 + iu2. If Y is a Hilbert space, the norm is given by

|(u1, u2)|2YC
= |u1|2Y + |u2|2Y . For general Banach spaces we use the slightly more complicated

|(u1, u2)|YC = maxz2
1+z2

2=1 |z1u1 + z2u2| to ensure |λ(u1, u2)|YC = |λ||(u1, u2)|YC for λ ∈ C. Com-

plexification of the torus is understood as the quotient of the complexification of the real space Rp

to Cp by real integer translations TC := (C/Z)p.

Analyticity properties of functions are quantified by the help of extensions to the complexified

domain. We therefore introduce a short notation. For any open subset U of a Banach space Y , we

define the open complex δ-extension U + δ for any δ > 0 by

U + δ := {y ∈ YC| inf
u∈U

|u− y|Y < δ}. (2.14)

Smoothness properties of the nonlinearities can now be made precise.

Hypothesis 2.10 (Analyticity of nonlinearities) There is a Gevrey class Y = Gσ,ν with σ, ν > 0

and a constant δ > 0 for the size of the complex extension such that the following properties of the

nonlinearities hold.

The nonlinearities f : (Y + δ) → YC; g : (Y + δ)× (T + δ)× R → YC are analytic and bounded on

bounded subsets when considered on Gevrey spaces, extended in the complex direction. In addition,

all of the above statements are assumed to hold when the space of Gevrey regularity Y = Gσ,p is

replaced by Y = X.

The hypothesis above are required to derive estimates about transformations of equation (2.1). To

deduce results about the semigroup of solutions of equation (2.1) we will assume well-posedness.

Hypothesis 2.11 (Well-posedness on Yα) The operator A generates a strongly continuous semi-

group both on X and Yα.

Hypothesis 2.12 (Well-posedness on Gσ,ν) The operator A generates a strongly continuous semi-

group both on X and Gσ,ν .

Theorem A (Finite regularity) Assume Hypothesis 2.1 on the existence of bounded approxima-

tions, Hypothesis 2.3 on the Diophantine conditions on the frequency vector ω with constants γ

and τ , Hypothesis 2.5 on the zero mean, Hypothesis 2.6 on the higher order approximation and

Hypothesis 2.9 on the regularity for some fixed space Yα and some fixed differentiability level `.
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Then, for any ball of radius R in Yα there exists an ε0 > 0, such that for 0 < ε < ε0 the following

holds.

There exists a C1 transformation u = v+εw(v, θ, ε), which is near identity both in X and Yα, such

that the transformed equation has the form

d
dt
v = Av + f(v) + ḡ(v, ε) + r(v, θ, ε) (2.15)

d

dt
θ =

1
ε
ω

with initial conditions v(0) = u0; θ(0) = θ0 and with ḡ and r both bounded on balls in X; furthermore

|ḡ(v, ε)|X ≤ Cα,l(|v|X)εα/(q(`)+α) (2.16)

|r(v, θ, ε)|X ≤ Cα(|v|Yα)εq(`)α/(q(`)+α), (2.17)

with the exponent given by q(`) =
⌊

`
dτ+p+1e

⌋
(where b cis the integer part and dτ + p + 1e is the

smallest integer larger than τ + p+ 1).

Assume also Hypothesis 2.11 on well-posedness, then the solutions of the truncated equation

d
dt
v̄ = Av̄ + f(v̄) + ḡ(v̄, ε) (2.18)

d

dt
θ =

1
ε
ω

with initial conditions v̄(0) = u0; θ(0) = θ0, remain close to the solutions of the transformed equation

(2.15): Suppose one of the solutions v(t) or v̄(t) of (2.15) resp. (2.18) remains inside the ball

BR(Yα) for 0 ≤ t ≤ T , then there exists a constant C(T,R) such that

|v(t)− v̄(t)|X ≤ C(T,R)εq(`)α/(q(`)+α). (2.19)

Theorem B (Analyticity) Assume Hypothesis 2.1 on the existence of bounded approximations,

Hypothesis 2.3 on the Diophantine conditions on the frequency vector ω with constants γ and τ ,

Hypothesis 2.5 on the zero mean, Hypothesis 2.7 on the exponential approximation and Hypothesis

2.10 on the analytic regularity for some fixed space Gσ,ν .

Then, for any ball of radius R in Gσ,ν there exists an ε0 > 0, such that for 0 < ε < ε0 the following

holds.

There exists a C1 near identity transformation u = v+ εw(v, θ, ε) of both Gσ,ν and X such that the

transformed equation has the form

d
dt
v = Av + f(v) + ḡ(v, ε) + r(v, θ, ε) (2.20)

d

dt
θ =

1
ε
ω
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with initial conditions v(0) = u0; θ(0) = θ0 and with ḡ and r both bounded on balls in X; furthermore

the remainder term is exponentially small on balls of the Gevrey space,

|ḡ(v, ε)|X ≤ C(|v|X)ε(τ+1)/(τ+1+1/ν) (2.21)

|r(v, θ, ε)|X ≤ C(|v|Gσ,ν ) exp(−c/ε1/(τ+1+1/ν)). (2.22)

Assume also Hypothesis 2.12 on well-posedness in X and in the Gevrey class Gσ,ν , then the solutions

of the truncated equation

d
dt
v̄ = Av̄ + f(v̄) + ḡ(v̄, ε) (2.23)

d

dt
θ =

1
ε
ω

with initial condition v̄(0) = u0; θ(0) = θ0 remain close to the solutions of the transformed equation

(2.20): Suppose one of the solutions v(t) or v̄(t) of (2.20), resp. (2.23), remains inside the ball

BR(Gσ,ν) for 0 ≤ t ≤ T , then there exists a constant C(T,R) such that

|v(t)− v̄(t)|X ≤ C(T,R) exp(−c/ε1/(τ+1+1/ν)). (2.24)

Remark 2.13 (i) In partial differential equations with local nonlinearities of the form f(u)(x) =

f(u(x)), both the corrector ḡ and the remainder are in general nonlocal operators, mapping

the phase spaces X, Yα and Gσ,ν into themselves. We show that the use of nonlocal transfor-

mations is already necessary in an example of low order averaging in section 4.3.

(ii) For periodic forcing, p = 1, there is no small denominator problem and it is possible to choose

τ = 0 and still obtain the same estimate. The forcing g then only needs to be continuous in

θ; see [MS03].

(iii) The transformation id + εw is defined iteratively and for fixed ε > 0, it transforms only a

Galerkin approximation space of finite index. Each transformation step in this space corre-

sponds to the formal removing of the θ-dependent term that is of the lowest order in ε.

(iv) When considering an equation with bounded A, this gives an ordinary differential equation on

a possibly infinite dimensional space. Then it is possible with a small variation of the proof to

obtain the results with formally α = ∞ (resp. ν = ∞). In the analytic case we recover Simó’s

result [Sim94] on exponential averaging of quasiperiodic ODE with a remainder estimate of

order exp(−c/ε1/(τ+1)). In the finite regularity case we obtain |r| ≤ Cεq(`) and |ḡ| ≤ Cε.

(v) Lower exponential estimates are an intriguing problem. Some lower estimates in the periodic

case p = 1 can be found in [MS03].

(vi) The remainder term r might not have zero mean; for another variant see remark 3.3.
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3 Approximation and Averaging

The general procedure to prove both theorems is similar. Using Hypothesis 2.1 we will derive

approximations by ordinary differential equations on PNX. In these equations we remove the

quasiperiodic part by a number of near-identity transformations of the approximation space. For-

mally we increase the order in ε of the remaining quasiperiodic terms by one in each transformation,

but in general this process diverges even in the analytic case. Rigorous estimates depend on the

regularity of the right hand side. The magnitude of the contribution by the complement of PNX

is estimated using the higher regularity that we assume on the initial conditions in Hypothesis

2.6 and 2.7. The number of transformations and the approximation space PNX will be chosen

depending on the regularity class (Theorem A; resp. B) and on ε to simultaneously minimise the

two contributions of the quasiperiodic remainder term:

• the remainder of the averaging procedure of the ordinary differential equation

• the remainder due to the Galerkin approximation.

So we will first describe the formal averaging procedure in the approximation space and its extension

to the full space which are common in both proofs. The estimates and the choices of index N and

the number of averaging steps j∗ are then given separately below.

So consider equation (2.1) for (uN , θ) ∈ PNX × T

d
dt
uN = AuN + PNf(uN ) + PNg(uN , θ, ε) (3.1)

d

dt
θ =

1
ε
ω

with projected initial conditions uN (0) = PNu0; θ(0) = θ0. We perform repeated averaging steps,

indexed by j. For j = 0 we let ḡ0(uN , ε) =
∫

T g(uN , θ, ε)dθ = 0 and g̃ = PNg using Hypothesis 2.5.

Suppose that we already performed j transformation steps and we have an equation of the form

d
dt
uN = AuN + PNf(uN ) + ḡj(uN , ε) + g̃j(uN , θ, ε) (3.2)

d

dt
θ =

1
ε
ω,

where
∫

T g̃j(uN , θ, ε)dθ = 0. Then the next transformation is given in terms of the temporal Fourier

expansion of the remainder term. Letting

g̃j(uN , θ, ε) =
∑

m∈Zp

g̃jm(uN , ε) exp(i2π(m, θ)) (3.3)

with g̃j0(uN , ε) = 0 then we transform uN = vN + εwj(vN , θ, ε) with

wj(vN , θ, ε) =
∑

m∈Zp,m6=0

g̃jm(vN , ε)
2πi(m,ω)

exp(i2π(m, θ)) (3.4)
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For notational briefness, we usually suppress arguments, wj = wj(vN , θ, ε). The transformed

equation is given by(
id+ ε

∂

∂vN
wj

)
v̇N + ε

∂

∂θ
wj θ̇ =

d
dt
uN

= AvN + PNf(vN ) + ḡj(vN , ε) + g̃j(vN , θ, ε)

+εAwj + PNf(vN + εwj)− PNf(vN )

+ḡj(vN + εwj , ε)− ḡj(vN , ε)

+g̃j(vN + εwj , θ, ε)− g̃j(vN , θ, ε). (3.5)

Hence on a formal level we remove the largest quasiperiodic term g̃j(vN , θ, ε). The transformed

equation is

d
dt
vN = AvN + PNf(vN ) + ḡj(vN , ε) + rj(vN , θ, ε)

d
dt
θ =

1
ε
ω, (3.6)

where

rj = (id+ ε
∂

∂vN
wj)−1

{
−ε ∂

∂vN
wj(AvN + Pf(vN ) + ḡj(vN , ε))

+εAwj + PNf(vN + εwj)− PNf(vN )

+ḡj(vN + εwj , ε)− ḡj(vN , ε)

+g̃j(vN + εwj , θ, ε)− g̃j(vN , θ, ε)
}
. (3.7)

To derive this we used the identity (id + ε ∂
∂vN

wj)−1 = id − (id + ε ∂
∂vN

wj)−1ε ∂
∂vN

wj . Then (3.6)

can be written in the form

d
dt
vN = AvN + PNf(vN ) + ḡj+1(vN , ε) + g̃j+1(vN , θ, ε)

d
dt
θ =

1
ε
ω (3.8)

with

ḡj+1(vN ) = ḡj(vN ) +
∫

T
rj(vN , θ, ε)dθ (3.9)

g̃j+1(vN ) = rj(vN , θ, ε)−
∫

T
rj(vN , θ, ε)dθ, (3.10)

such that
∫

T g̃j+1(vN , θ, ε)dθ = 0 for all vN and ε.

As an asymptotic expansion for all j ∈ N will not converge in general, we will stop after a certain

number of steps. So after performing j∗ transformations

uN = (id+ εw0) ◦ (id+ εw1) ◦ . . . ◦ (id+ εwj∗−1)vN = (id+ εw)vN , (3.11)
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we obtain a transformation of equation (3.1) to

d
dt
vN = AvN + PNf(vN ) + ḡj∗(vN , ε) + g̃j∗(vN , θ, ε)

d
dt
θ =

1
ε
ω (3.12)

still with projected initial data vN (0) = PNu0; θ(0) = θ0. We extend this to the full space by

u = v + εw(PNv), (3.13)

and noting that the range of w is then still in PNX. Then we obtain

v = (PN .+ εw(PN ., θ, ε))−1(PNu) + (id− PN )u, (3.14)

such that

d
dt
v = (id− PN ){Av + f(v + εw(PNv)) + g(v + εw(PNv), θ, ε)}

+(id+ ε
∂

∂vN
w(PNv))−1PN{A(v + εw(PNv)) + f(v + εw(PNv)) + g(v + εw(PNv), θ, ε)}

= Av + f(v) + ḡj∗(PNv, ε) + g̃j∗(PNv, θ, ε) + r∗(v, θ, ε) (3.15)
d
dt
θ =

1
ε
ω

with initial data v(0) = u0; θ(0) = θ0, and the additional remainder term collects all terms due to

the error of the Galerkin approximation

r∗(v, θ, ε) = (id− PN )
{
f(v + εw(PNv))− f(v) + g(v + εw(PNv), θ, ε)

}
(3.16)

+(id+ ε
∂

∂vN
w(PNv))−1PN

{
f(v + εw(PNv))− f(PNv + εw(PNv))

+g(v + εw(PNv), θ, ε)− g(PNv + εw(PNv), θ, ε)
}
.

Its X-norm can be estimated by expressions of the form C|v̄−PN v̄|X for some bounded v̄ ∈ Gσ,ν or

Yα using the boundedness and the differentiability of f and g on balls. The expression C|v̄−PN v̄|X
can be estimated using the higher regularity in Hypothesis 2.6 and 2.7.

Estimating the right-hand side of (3.15), we can then prove the estimates on v(t) by a Gronwall

argument. The difference y(t) = v(t)− v̄(t) satisfies the equation

d
dt
y(t) = A(t)y + h(t) (3.17)

with A(t) = A+
∫ 1
0 (∂v(f + ḡ)(sv̄ + (1− s)v)ds and h(t) = r(v(t))− r( ¯v(t)). Then estimate (2.19)

follows by the Gronwall lemma, since f , ḡ and r possess bounded derivatives on bounded sets of

Gσ,ν or Yα. We apply the Gronwall lemma in X, because the estimates on r hold in the X-topology.

They do not hold in general in Gσ,ν or Yα.

The general outline so far leads to proofs of theorems A and B by giving rigorous estimates on the

remainder terms g̃j∗(v, θ, ε) and r∗(v, θ, ε).
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3.1 Proof of Theorem A

Before we can estimate the remainder terms, we have to ensure that the formal transformations

are well-defined, i.e. that we can control the small denominator in (3.4) for 1 ≤ j ≤ j∗. We will

choose j∗ ≤ `
dτ+pe independent of ε and N , where dye denotes the smallest integer greater than y.

For integer tuples m ∈ Zp, we denote |m| :=
∑p

k=1 |mk|. Consider the first averaging of (3.1) then

w0(v, θ, ε) =
∑

m∈Zp

gm(v, ε)
2πi(m,ω)

exp(2πi(m, θ)) (3.18)

with gm(v, ε) =
∫

T g(v, θ, ε) exp(2πi(m, θ))dθ. By integration by parts we obtain

gm(v, ε) = −
∫

T
(2πm1)−1∂θ1g(v, θ, ε) exp(2πi(m, θ))dθ. (3.19)

Choose k such that max{|m1|, . . . , |mp|} ≤ |mk|. Repeating the integration by parts ` times with

the component θk of θ = (θ1, . . . , θp) we obtain

|gm(v, ε)| ≤ ‖g‖C`

(2π)`
|m|−`

∞ ≤ ‖g‖C`

(2π)`
p`|m|−` (3.20)

Similarly we can estimate the m-th Fourier mode of any νth order partial derivative, denoted as((
∂
∂θ

)ν
g
)

m
with respect to the components of θ:∣∣∣∣(( ∂

∂θ

)ν

g

)
m

(v)
∣∣∣∣ ≤ ‖g‖C`

(2π)`−ν
|m|−`+ν

∞ ≤ p`−ν

(2π)`−ν
‖g‖C` |m|−`+ν (3.21)

Using the Diophantine condition of Hypothesis 2.3 we see for any νth derivative of w0 with respect

to θ: ∣∣∣∣( ∂

∂θ

)ν

w0(v, θ, ε)
∣∣∣∣ ≤ p`−ν

γ(2π)`−ν+1

∑
m∈Zp

‖g‖C` |m|−`+ν+τ ≤M‖g‖C` <∞ (3.22)

for −`+ τ + ν < −p,with M ≥ 1 only depending on τ . Thus w0 is (`−dτ + pe) times differentiable

with respect to θ, if τ 6∈ N and it is also ` − (τ + p + 1) = ` − dτ + pe times differentiable with

respect to θ, if τ ∈ N. Then g̃1 inherits the differentiability from w0 after a further differentiation,

see (3.7)-(3.10). Hence, both for τ 6∈ N and τ ∈ N, g̃1 is ` − dτ + p + 1e times differentiable and

inductively wj is `− jdτ + p+ 1e-times differentiable.

Assuming boundedness of g in the C` norms as in Hypothesis 2.9 by a constant C(R) on both

spaces Y = X and Y = Yα, there exists ε0 > 0 such that for all 0 < ε < ε0 the first transformation

is well-defined. To estimate remainder term and its derivatives up to differentiability order ν =

`− dτ + p+ 1e, we first use (3.22) and a direct Taylor estimate of (3.7) on PNY for j = 1

‖r1‖BCν(BR(Y )×T,Y ) ≤ 2ε‖ ∂

∂vN
w1AvN +Aw1‖BCν(BR(Y )×T,Y )

+‖PNf(vN + εw1)− PNf(vN ) + ε
∂

∂vN
w1PNf(vN )‖BCν(BR(Y )×T,Y )

+‖g̃1(vN + εw1, θ, ε)− g̃1(vN , θ, ε)‖BCν(BR(Y )×T,Y )

≤ 4εNMC(R) + 4εMC(R)‖PNf‖BCν+1(BR(Y ),Y ) + 2εMC(R)2 (3.23)
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This yields estimates of the remainder terms in (3.9,3.10)

‖g̃1‖BCν(BR(Y )×T,Y ) ≤ ‖r1‖BCν(BR(Y )×T,Y )

≤ 4εNMC(R) + ε(4‖PNf‖BCν+1(BR(Y ),Y ) + 2C(R))MC(R) (3.24)

‖ḡ1‖BCν(BR(Y ),Y ) ≤ 2‖r1‖BCν(BR(Y )×T,Y )

≤ 8εNMC(R) + ε(8‖PNf‖BCν+1(BR(Y ),Y ) + 4C(R))MC(R) (3.25)

We then proceed inductively for N large and for εN small compared to C(R) and for a fixed C

independent of ε and N . Then we obtain after j steps with ν = `− jdτ + p+ 1e

‖g̃j‖BCν(BR(Y )×T,Y ) ≤ εj(4NM + C)jC(R)

‖ḡj‖BCν(BR(Y ),Y ) ≤ 2‖ḡ1‖BC`−dτ+p+1e(BR(Y ),Y ) ≤ 17εNMC(R). (3.26)

So finally we arrive for the remainder term in the Galerkin approximation space with q(`) =⌊
`

dτ+p+1e

⌋
‖g̃j∗‖BC1(BR(Y )×T,Y ) ≤ εq(`)(8MN + C)q(`)C(R) (3.27)

‖ḡj∗‖BC1(BR(Y ),Y ) ≤ 17εNMC(R). (3.28)

As explained above the remainder term due to the Galerkin approximation can be controlled in the

X-norm using hypothesis 2.6 by a term of order N(ε)−α.

Choosing a coupling of ε and N , such that we simultaneously minimise the remainder terms g̃j∗

and N(ε)−α, gives

N(ε) = ε−q(`)/(q(`)+α). (3.29)

Then both remainder terms are of order εαq(`)/(q(`)+α) on bounded sets in Yα with constants uniform

in ε and N(ε) but depending on the size of the bounded set. By (3.26), the estimate on ḡj∗ holds

already for u ∈ X. This proves the estimates for the terms in the transformed equation. With the

general Gronwall argument in (3.17), we also obtain the estimates on the solutions. 2

3.2 Proof of Theorem B

Following the argument above, any fixed number of transformation steps is well-defined in the

analytic setting. The number of steps that we use will depend on ε. To estimate the remainder

term we use the complex extension as in Hypothesis 2.10. In each transformation step we will

estimate ḡj and g̃j on Dj = (BR(Y ) + δj) × (T + δj). The transformations are then constructed

such that (id + εwj)−1 : Dj+1 → Dj . We set δj = δ − jη(ε), where the step size η(ε) in the

reduction of the complex extension is chosen later in (3.52). We also introduce an intermediate

13



domain Dj, 1
2

= (BR(Y ) + δj+ 1
2
)× (T + δj+1). For notational convenience we denote for a function

h and any complex domain D for some given ε

|h|D = sup
(u,θ)∈D

|h(u, θ, ε)|Y (3.30)

and for derivatives ∂h
∂u(u0, θ, ε) ∈ L(Y, Y ) we consider their operator norms∥∥∥∥∂h∂u

∥∥∥∥
D

= sup
(u0,θ)∈D

sup
v∈Y,|v|Y =1

∣∣∣∣∂h∂u(u0, θ, ε)v
∣∣∣∣
Y

. (3.31)

We assume inductively

|ḡj |Dj ≤ b̄j and |g̃j |Dj ≤ b̃j . (3.32)

The bound on the nonlinearity f is denoted as |f |D0 =: b. Then we estimate wj given in (3.4) in

the intermediate domain Dj, 1
2
. Fixing a direction in the complex extension of the torus T with

θ = (θ1, . . . , θp) ∈ T, analyticity gives estimates on the Fourier expansion of g̃j :∫ 1

0
g̃j(v, θ1, . . . , θp) exp(−2πi(m, θ))dθ1 (3.33)

=
∫ i±δj

0
g̃j(v, θ1, . . . , θp) exp(−2πi(m, θ))dθ1 +

∫ 1+i±δj

±iδj

g̃j(v, θ1, . . . , θp) exp(−2πi(m, θ))dθ1

+
∫ 1

1+i±δj

g̃j(v, θ1, . . . , θp) exp(−2πi(m, θ))dθ1.

The first and last integral cancel due to periodicity whereas the middle integral yields for the right

choice of sign an exponential factor exp(−2π|m1|δj). By repeating this in the other directions on

the torus T we obtain for the Fourier coefficients of index m:

|g̃jm|D
j, 12

≤ b̃j
2π

e−2πδj |m|. (3.34)

Then we have on the intermediate domain Dj, 1
2

for the next transformation

|wj |D
j, 12

≤ b̃j
4π2

∑
m∈Zp,m6=0

e−2πδj |m|

|(m,ω)|
e2πδj+1|m|

=
b̃j

4π2

∑
m∈Zp,m6=0

e−2πη(ε)|m|

|(m,ω)|
. (3.35)

Using the Diophantine condition hypothesis 2.3 one can prove the next lemma.

Lemma 3.1 ([Sim94, Lemma 1]) Let ω ∈ Rp satisfy Hypothesis 2.3 with τ > p− 1. Then

sk =
∑

m∈Zp\{0},|m|≤k

|(m,ω)|−1 ≤ Gkτ , (3.36)

where G is a positive constant depending on ω, but independent of k.
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The lemma was stated in [Sim94] and a proof was given in [Sim99]. For the convenience of the

reader, a proof is also given in the appendix. Then we use the Γ-function∑
k∈N

e−2πη(ε)kkτ ≤ 2
∫ ∞

0
e−2πη(ε)kkτdk =

2Γ(τ + 1)
(2πη(ε))τ+1

, (3.37)

to obtain

|wj |D
j, 12

≤ b̃j
2π

∑
k∈N

e−2πη(ε)k(sk − sk−1) =
b̃j
2π

∑
k∈N

sk(e−2πη(ε)k − e−2πη(ε)(k+1))

≤ b̃j
2π

(1− e−2πη(ε))G
∑
k∈N

e−2πη(ε)kkτ ≤ b̃j
K

η(ε)τ
, (3.38)

where K ≥ 1 depends on τ , but it is independent of b̃j and η(ε). The transformation id + εwj

is well-defined, when we can ensure that if v ∈ Dj, 1
2
, then u ∈ Dj . For this, it is enough to have

ε|wj |D
j, 12

< η/2, i.e.

εb̃j
K

η(ε)τ
<
η(ε)
2

(3.39)

by a suitable choice of η(ε) below.

Before giving the crucial inductive estimates on |g̃j+1|Dj+1 and |ḡj+1|Dj+1 we collect some prelimi-

nary estimates. A key ingredient is the Cauchy estimate, which gives estimates of derivatives of a

function by uniform estimates on the function on larger complex domains.

Lemma 3.2 (Cauchy estimate) Let f : Ω ⊂ Y → Y be analytic on a complex Banach space Y.

Then ‖∂f
∂u‖Ω−η ≤ |f |Ω

η in the notation of (3.30) and (3.31).

A similar lemma was also used in [Mat01]. For the convenience of the reader, a new and clearer

proof is given in the appendix.

Hence we obtain ∥∥∥∥ ∂wj

∂vN

∥∥∥∥
Dj+1

≤
2|wj |D

j, 12

η
≤ b̃j

2K
η(ε)τ+1

(3.40)

Then
∥∥∥ε ∂wj

∂vN

∥∥∥
Dj+1

< 1 if (3.39) holds and

∥∥∥∥∥
(
id+ ε

∂wj

∂vN

)−1
∥∥∥∥∥

Dj+1

< 1− b̃j
2Kε

η(ε)τ+1
. (3.41)

Also using the Cauchy estimate and the mean value theorem we obtain

|g̃j(vN + εwj)− g̃j(vN )|Dj+1 ≤ ε

∥∥∥∥ ∂

∂vN
g̃j

∥∥∥∥
Dj+1

|wj |D
j, 12

≤ ε
2|g̃j |D

j, 12

η
|wj |D

j, 12

≤ b̃j b̃j
2Kε

η(ε)τ+1
(3.42)
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and

|(PNf+ḡj)(vN +εwj)−(PNf+ḡj)(vN )|Dj+1 ≤ ε

∥∥∥∥ ∂

∂vN
(PNf + ḡj)

∥∥∥∥
Dj+1

|wj |D
j, 12

≤ (b+b̄j)
2Kε

η(ε)τ+1
b̃j .

(3.43)

Now we are in the position to estimate |g̃j+1|Dj+1 and |ḡj+1|Dj+1 . We estimate the different parts

in (3.7). To simplify notation we let ψ = 2Kε
η(ε)τ+1 . Then

|rj |Dj+1 ≤ (1− ψb̃j)−1((N + b+ b̄j)b̃jψ +Nb̃jψ + bb̃jψ + b̄j b̃jψ + b̃j b̃jψ),

= (1− ψb̃j)−1(2(N + b+ b̄j) + b̃j)b̃jψ. (3.44)

then we obtain |g̃j+1|Dj+1 ≤ b̃j+1 and |ḡj+1|Dj+1 ≤ b̄j+1 with

b̄j+1 = b̄j + (1− ψb̃j)−1(2(N + b+ b̄j) + b̃j)b̃jψ (3.45)

b̃j+1 = 2(1− ψb̃j)−1(2(N + b+ b̄j) + b̃j)b̃jψ (3.46)

Now we will choose ε0, the index of the Galerkin approximation N(ε), the number of averaging

steps j∗ and the step size η(ε) for the Cauchy estimates such that

b̄j ≤ 2b̄0 and b̃j+1 ≤ b̃j ≤ 2b̄0. (3.47)

For j = 0 these inequalities hold by definition. We first perform a single averaging step to obtain

b̄0 = CεN(ε) as in the proof of theorem A and decrease the domain by δ/4. If (3.47) holds, all

transformations are well-defined by (3.39), if we can ensure

ψb̄0 <
1
2

for 0 < ε < ε0. (3.48)

Our choice of parameter will be such that

2(1− ψb̃j)−1(2(N + b+ b̄j) + b̃j)ψ <
1
e
. (3.49)

Then we obtain from (3.45) and (3.46), that

b̃j ≤
(

1
e

)j

2b̄0 (3.50)

b̄j+1 < b̄j +
1
2e
b̃j ≤ b̄0 +

1
2e

(b̃0 + . . .+ b̃j) ≤ b̄0 +
1
2e

j∑
k=0

1
ek

2b̄0

= b̄0(1 +
1

e− 1
) < 2b̄0, (3.51)

i.e. (3.47) will hold. We choose

η(ε) = K̄(εN(ε))1/(1+τ); K̄ = (64eK(b̄0 + 1 + b))1/(1+τ). (3.52)
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Thus (3.48) holds as then ψb̄0 = b̄0
N(ε)32(b̄0+1+b)

< 1
2 for all 0 < ε < ε0 as long N(ε) ≥ 1 and

η(ε) < δ/2. Furthermore (3.49) follows from (3.47), as

2(1− ψb̃j)−1(2(N(ε) + b+ b̄j) + b̃j)ψ ≤ 4
2(N(ε) + b) + 4b̄0

32eN(ε)(b̄0 + 1 + b)

<
8N(ε)

32eN(ε)
+

8b
32eb

+
16b̄0
32eb̄0

=
1
e
. (3.53)

Then the iterative steps are well-defined; all iterative estimates hold and the number of averaging

steps j∗ is chosen such that the complex domain (BR(Y ) + δ/2) × (T + δ/2) is contained in Dj∗ ,

then

j∗ =
⌊

δ

4η(ε)

⌋
>

δ

4K̄(εN(ε))1/(1+τ)
− 1. (3.54)

The final transformed nonlinearities on PN(ε)Y are PN(ε)f(v) + ḡj∗(ε)(v, ε) + g̃j∗(ε)(v, θ, ε) with

|PN(ε)f(.) + ḡj∗(ε)(., ε)|Dj∗ < b+ 2b̄0 (3.55)

and the first desired exponential estimate

|g̃j∗(ε)(., ., ε)|Dj∗ ≤
(

1
e

)j∗

2b̄0 ≤ C exp
(
−c2(εN(ε))1/(1+τ)

)
, (3.56)

all estimates up to here hold both for Y = X and Y = Gσ,ν . Another exponential estimate is

obtained for the remainder terms r∗ in (3.16) using the exponential approximation hypothesis 2.7

for v ∈ Gσ,ν

|r∗(v, θ, ε)|X ≤ C(|v|Gσ,ν ) exp(−c0/(N(ε))ν). (3.57)

Balancing both exponential estimates yields an optimal choice for (εN(ε))1/(1+τ) = (N(ε))−ν , i.e.

N(ε) = ε−1/(1+ν(τ+1)). Then we finally have the exponential estimate for the nonautonomous

remainder r = r∗ + g̃j∗(ε) as in (2.22)

|r(v, θ, ε)|X ≤ C(|v|Gσ,ν ) exp(−c/ε1/(τ+1+1/ν)). (3.58)

For the autonomous correction ḡ = ḡj∗we obtain as in the proof of theorem A

|ḡ|X ≤ CεN(ε) + C(|v|Gσ,ν ) exp(−c/ε1/(τ+1+1/ν)) ≤ Cε(τ+1)/(τ+1+1/ν). (3.59)

We complete the proof of theorem B by using the Gronwall argument to extend the estimates from

the equation to the solutions. 2

Remark 3.3 To enforce the condition
∫

T r = 0, we let

ḡ = ḡj∗ +
∫

T
r∗

r = r∗ + g̃j∗(ε) −
∫

T
r∗

Then we obtain similar estimates as in theorems A and B, except that we have |ḡ(v, ε)|X ≤
C(|v|Y )ε(τ+1)/(τ+1+1/ν) with Y = Yα or Y = Gσ,ν instead of (2.16) or (2.21).
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4 Examples

In this section we give examples of equations that can be written in the form (2.1), such that

theorems A and B can be applied.

4.1 Reaction-Diffusion equation

In reaction-diffusion equations describing a light sensitive Belousov Zhabotinsky reaction, an ex-

ternal forcing can be introduced in the reaction terms for example through light changes, see e.g.

[SaScWu99] and references therein. Such equations with a fast quasiperiodic external forcing and

with species u1, . . . , un have then the form for u = (u1, . . . un)

d
dt
u = diag(d1, . . . , dn)∆u+ f(u, θ) = diag(d1, . . . , dn)∆u+ f̄(u) + g(u, θ) (4.1)

θ̇ =
1
ε
ω (4.2)

(u(0), θ(0)) = (u0, θ0) ∈ Hs(Ω,Rn)× T

with periodic boundary conditions on Ω = [0, L]d. If f : Rn × T → Rn is an entire function

in u and real analytic in θ, then (4.2) has highly regular solutions. Starting with initial data

u0 ∈ X = Hs
per(Ω,Rn), with possibly non-integer s > d/2, the solutions are bounded in Gevrey

spaces after any finite transient. If |u(t)|X < M for 0 ≤ t ≤ T , then solutions become highly regular

|u(t)|Gt,1/2
≤ 2M for 0 ≤ t ≤ t∗

|u(t)|Gt∗,1/2
≤ 2M for t∗ ≤ t ≤ T,

for some t∗ > 0 and with |u|Gσ,1/2
= |u|X + | exp(σ(−∆)1/2)u|X ; for proofs and details see e.g.

[FeTi98, Mat01]. Using a spatial Fourier decomposition of u, the hypothesis 2.1 is fulfilled, the

assumptions 2.3 and 2.5 hold. The exponential approximation property 2.7 holds in Gσ,1/2 with

c0 = σ and for general initial data after a transient, since the Gevrey norm can be expressed

in spatial Fourier modes. For u(x) =
∑

k∈Zd uk exp(2πi(k, x)) ∈ Gσ,1/2 with uk ∈ Cn, we have

|u|2Gσ,1/2
=
∑

k∈Zd |uk|2(1 + exp(σ|k|))2. Then we let PNu =
∑

k∈Zd,4π2|k|2≤N uk exp(2πi(k, x)) and

then

|(id− PN )u|X = |
∑

k∈Zd,|k|>
√

N

uk exp(2πi(k, x))|X ≤ exp(−σN1/2)|u|Gσ,1/2
. (4.3)

The assumption, that f is entire in u and real analytic in θ, gives analyticity of the nonlinearities

in Gσ,1/2 and X; see [Mat01]. Using standard semigroup arguments, D∆ generates a strongly

continuous semigroup in X. The same arguments also apply to Gσ,1/2.

The nonautonomous remainder can then be estimated for Gevrey initial data

|r(u, θ, ε)|X ≤ C(|u|Gσ,1/2
) exp(−c/ε1/(τ+3)) (4.4)
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and the correction term is bounded by Cε(τ+1)/(τ+3). For general initial data u0 ∈ X the exponent

c increases in time as the regularity of the solutions increases

|r(u(t), θ(t), ε)|X ≤ C(|u0|X) exp(−c(t)/ε1/(τ+3)) (4.5)

with c(t) = min(t, t∗, c), where t∗ is the maximal Gevrey exponent. ForHs initial data the estimates

on ḡ have to be modified, in (id− PN )X, we obtain for r∗ in general only boundedness.

If the nonlinearity f possesses only finite differentiability, only finite Sobolev regularity of solutions

can be assumed. Theorem A can be applied with Yα = Hs+2α
per as |u|2Hs+2α =

∑
k∈Zd |uk|2(1 +

|k|s+2α)2 and

|(id− PN )u|X ≤ CN−α|u|Hs+2α (4.6)

for some α depending on the differentiability ` of f . Again a version holds, starting with Hs initial

data and using regularising to higher Sobolev spaces, as well.

For both the analytic and the finite differentiability case, the correction term is given by the iterative

procedure. A good approximation is the correction in the first step

ḡ(u, ε) =
∫

T
Dug(u, θ, ε)w0(PN(ε)v, θ, ε)dθ (4.7)

where w0 is the first transformation as defined in (3.18) and N(ε) was chosen in the proofs as for

the finite regularity case N(ε) = εq(`)/(q(`)+α) and in the analytic setting N(ε) = ε−1/(1+ν(τ+1)).

Another way to create a periodic forcing in the nonlinearity is a time-periodic change of the diffusion

coefficient. As an example we consider a scalar reaction-diffusion equation

d
dt
u = d(tω1/ε)∆u+ f(u). (4.8)

with d(s) = d̄+d̃(s) and
∫ 1
0 d̃(s)ds = 0. We can transform (4.8) into the general form of the theorems

with a rescaling of time τ(t). Let τ(t) =
∫ t
0 d(sω1/ε)/d̄ ds, then τ(lε/ω1) = lε/ω1 for l ∈ Z and

the derivative τ ′(t) = d(tω1/ε)/d̄ is periodic, such that this is a near-identity reparametrisation of

time. In the new time the equation is

d
dτ
u =

du
dt

dt
dτ

=
1

τ ′(t(τ))
du
dt

=
d̄

d(t(τ)ω1/ε)
(d(t(τ)ω1/ε)∆u+ f(u)) = d̄∆u+

d̄

d(t(τ)ω1/ε)
f(u)

The nonlinearity can be understood as a periodic forcing: let L(T ) =
∫ T
0 d(s)/d̄ds, which is clearly

periodic. Then
d̄

d(t(τ)ω1/ε)
f(u) =

d̄

d(L(τω1/ε))
f(u), (4.9)

as

L(τω1/ε) =
∫ ω1τ/ε

0
d(s)/d̄ds =

ω1

ε

∫ τ

0
d(sω1/ε)/d̄ds = t(τ)

ω1

ε
. (4.10)

19



On the one-dimensional torus we add the equation

θ̇ =
1
ε
ω1, (4.11)

such that both equations together have the desired form. Then as above the theory of this paper

or alternatively the theorems of [Mat01] are applicable and there exists an autonomous equation

that is exponentially close to the original system in the analytic framework.

4.2 Nonlinear Schrödinger equations

In fibre optics communications in long cables there are periodically changing dispersion coefficients

and periodically distributed amplification sites. This can be modelled by a nonlinear Schrödinger

equation,

iuz +D(ω1z/ε)utt + C(ω2z/ε)|u|2u = 0. (4.12)

The direction of the evolution is z. The equation describes how a temporal profile u(z, .) – given

as a function of t – is transported along the cable described by the z-direction, see e.g. [NM92].

We use the phase space X = H1(R,C) = H1(R,R2) for u(z, .). The corresponding Gevrey classes

are defined as

Gσ,1/2 =
{
u ∈ H1(R,R2)||u|H1 + | exp(σ|∂tt|1/2)u|H1 <∞

}
. (4.13)

Note that the nonlinearity is entire in u1 = Reu and u2 = Imu. We first construct a linear Floquet-

type transformation to transform (4.12) into the general form of the theorems. The linear equation

can be solved by a spatial Fourier transform. The complex Fourier modes uk exp(ikt) with k ∈ R
and uk ∈ C are eigenfunctions for the linear evolution

d
dz
uk(z) = iD(ω1z/ε)k2uk(z) (4.14)

Then the evolution is given by

uk(z) = uk(0) exp
(∫ z

0
ik2D(sω1/ε)ds

)
= uk(0) exp

(∫ z

0
ik2D̃(sω1/ε)ds

)
exp(ik2d̄z)

with D(s) = D̄ + D̃(s) and
∫ 1
0 D̃(s)ds = 0.

We apply the periodic Floquet-type transformation, Q(z, ε), defined by

vk = Qk(z)uk = exp
(
−
∫ z

0
ik2D̃(sω1/ε)ds

)
uk (4.15)

on each Fourier mode separately. Then we obtain the quasiperiodic equation, whereˆdenotes the

Fourier transform

d
dz
v(z) =

d
dz

(∫
k∈R

Qk(z)uk(z)dk
)
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=
∫

k∈R

(
−ik2D̃(zω1/ε)Qk(z)uk(z) +Qk(z)

d
dz
uk(z)

)
dk

=
∫

k∈R

[
−ik2D̃(zω1/ε)Qk(z)uk(z) + ik2(D̃(zω1/ε) + D̄)Qk(z)uk(z)

+Qk(z)
(

̂(C(ω2z/ε)|u|2u)
)]

dk

= iD̄vtt +Q(z, ε)
(
C(ω2z/ε)|Q−1(z, ε)v|2Q−1(z, ε)v

)
. (4.16)

The transformation Q(., ε) has period ε/ω1. So rewriting Q̃(zω1/ε, ε) = Q(z, ε), where Q̃ is then

1-periodic in its first argument, we obtain the desired form of (2.1):

d
dz
v(z) = iD̄vtt + Q̃(θ1, ε)C(θ2)|Q̃−1(θ1, ε)v|2Q̃−1(θ1, ε)v

θ̇ =
1
ε

(
ω1

ω2

)
. (4.17)

The transformations Q and Q̃ leave each complex Fourier mode invariant and is an isometry on

each mode. Thus Q̃ maps the spaces X and Gσ,1/2 to themselves and furthermore

Q̃(θ1, ε)(C(θ2)|Q̃−1(θ1, ε).|2Q̃−1(θ1, ε).) : Y → Y (4.18)

for Y = X and Y = Gσ,1/2. Then the theorem is applicable when we use a truncation of the Fourier

transform as a Galerkin approximation. The Diophantine conditions on (ω1, ω2) still has to be

assumed. Then an effective autonomous description can be given for regular initial data.

4.3 Nonlocality

We give an example of a linear parabolic partial differential equation with periodic forcing, where

we can see that the transformation has to be nonlocal to remove higher order terms. Consider

ut(x, t) = uxx(x, t) + f(t/ε, x)u(x, t), (4.19)

with u(0, t) = u(1, t) and x ∈ [0, 1]. A specific choice of f will be made later. As the equation is

linear, we can restrict out attention to linear transformations – nonlinear ones will create a larger

error. A general linear, local and near-identity transformation has the form

u(x, t) = v(x, t) + εw(t/ε, x)v(x, t), (4.20)

where w(τ, x) is 1-periodic in τ and in a certain regularity class in X to ensure that Gσ,ν resp. Yα

is mapped to itself. Then the transformed equation is

vt = vxx+
1

1 + εw(t/ε, x)
[ε∂xxw(t/ε, x)v + 2ε∂xw(t/ε, x)vx + f(t/ε, x)(v + εw(t/ε, x)v)− ∂τw(t/ε, x)v]

(4.21)
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Using the periodic boundary conditions and the fact that w is periodic in τ = t/ε, we expand w in

a Fourier series simultaneously in x and τ .

w(τ, x) =
∑

l∈Z,m∈Z
wlm exp(i2π(lτ +mx)) (4.22)

We obtain a relation between the Fourier expansion of f and w, which we have to fulfil to make

the nonautonomous terms small in (4.21). Denoting t/ε by τ , this relation is∣∣∣ 1
1 + εw(τ, x)

[ε∂xxw(τ, x)v + 2ε∂xw(τ, x)vx + f(τ, x)(v + εw(τ, x)v)− ∂τw(τ, x)v]

−
∫ 1

0

1
1 + εw(θ, x)

[ε∂xxw(θ, x)v + 2ε∂xw(θ, x)vx + f(θ, x)(v + θw(τ, x)v)− ∂θw(θ, x)v] dθ
∣∣∣
Hs

∈ O(εν)

with w bounded in Hs. In particular as Hs(S1 × S1) is an algebra for any (possibly non-integer)

s > 1, this is equivalent to

| [ε∂xxw(τ, x)v + 2ε∂xw(τ, x)vx + f(τ, x)(v + εw(τ, x)v)− ∂τw(τ, x)v]

−
∫ 1

0
[ε∂xxw(θ, x)v + 2ε∂xw(θ, x)vx + f(θ, x)(v + θw(τ, x)v)− ∂τw(t/ε, x)v] dθ|Hs ∈ O(εν).

Now letting v = 1, we need in particular in terms of Fourier-modes for l 6= 0,

wlm(−i2πl − ε4π2m2) + flm + ε
∑

l1∈Z,m1∈Z
wl1,m1fl−l1,m−m1 ∈ O(εν). (4.23)

To achieve = 0 there is a unique solution for ε small by the implicit function theorem for f and w

in Hs with s > 1. Then the nonlinearity wf is differentiable again as Hs is an algebra. Thus w

is defined by this relation up to an error O(εν) in ε of some order ν, that we want to achieve. In

particular we have∣∣∣∣wlm − 1
i2πl + ε4π2m2

flm

∣∣∣∣ ≤ ε
|f ||w|

2π
+ O(εν) ≤ ε

|f |2

2π2
+ O(εν) (4.24)

as |w| ≤ |f |/π for ε small enough. If we now derive in the same way another relation for w using

v = vk
1
ks exp(i2πkx), we obtain instead

wlm(−i2πl − ε4π2m2 + ε4π2mk) + flm + ε
∑

l1∈Z,m1∈Z
wl1,m1fl−l1,m−m1 ∈ O(εν), (4.25)

i.e. again by the the implicit function theorem∣∣∣∣wlm − 1
i2πl + ε4π2m2 − ε4π2mk

flm

∣∣∣∣ ≤ ε
|f |2

2π2
+ O(εν) (4.26)

Now we consider the forcing f(τ, x) = exp(2πiτ) exp(2πix). Then we compare the two values for

w11 given by (4.24) and (4.26), which differ for ε small by more than∣∣∣∣ 1
i2π + ε4π2

− 1
i2π + ε4π2 + ε4π2k

∣∣∣∣ ≥ εk

2
. (4.27)

This yields a direct contradiction for some fixed k > |f |2
π2 and any choice of ν ≥ 1, independent of ε

and the choice of function spaces Gσ,ν resp. Yα. Hence we cannot achieve a higher order averaging

result using a local transformation id+ εw.
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A Appendix

We prove lemma 3.1. For τ > p − 1, we can restrict our attention just to points in Zp, which are

close to the hyper-plane ω⊥, as ∑
m∈Zp,|m|≤k,dist(m,ω⊥)≥1

1
|(m,ω)|

≤ Ckp−1 log k. (A.1)

This can be estimated by (G/2)kτ uniformly in k.

To discuss those points in Zp, which are close to ω⊥, first assume that the constant γ in the estimate

|(m,ω)| ≥ γ|m|−τ is sharp, i.e.

γ = inf
m∈Zp\0

{|(m,ω)||m|τ} (A.2)

The key idea is now to classify the m ∈ Zp, |m| ≤ k in how close they are to this worst case estimate

for the small divisor 1/(m,ω). In each case we estimate the number of m and their influence in the

sum. Now fix some ρ > 1 and let

Bs = {m ∈ Zp|γρs ≤ |(m,ω)||m|τ < γρs+1} (A.3)

First consider all those m in B0 with 2k/3 ≤ |m| ≤ k. Then we obtain lower estimates on the

distance of m1,m2 ∈ B0,m1 6= m2 in the following way: As

|(m1 −m2, ω)|kτ ≤ |(m1, ω)|kτ + |(m2, ω)|kτ ≤ (3/2)τ |(m1, ω)||m1|τ + |(m2, ω)||m2|τ ≤ 2(3/2)τγρ

(A.4)

and using the Diophantine estimate on m1 −m2, which could be in B0, we also have

|(m1 −m2, ω)||m1 −m2|τ > γ. (A.5)

Combining these two inequalities yields

|m1 −m2|τ >
2τ

23τρ
kτ or

|m1 −m2| >
2

3 τ
√

2ρ
k

Then the number m ∈ B0 with 2k/3 < |m| < k is bounded by the number of balls of radius

2k/(3 τ
√

2ρ) that can be packed into annulus 2k/3 ≤ |m| ≤ k close to the hyper-plane ω⊥. This is
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bounded by a constant of the form Cρ(p−1)/τ , where C is independent of k, p, ω, τ and γ. Then the

contribution of B0 to the main sum in the lemma can be estimated by∑
2k/3≤|m|<k,m∈B0

1
|(m,ω)|

≤ Cρ(p−1)/τγkτ . (A.6)

Such an analysis is repeated for Bs with s > 0. As above we obtain estimates on the number of m

in Bs with 2k/3 ≤ |m| < k, first we have the lower estimate on their distance

|m1 −m2| >
2

3 τ
√

2ρs+1
k, (A.7)

such that the number of m ∈ Bs is bounded by Cρ(s+1)(p−1)/τ and their overall contribution is

bounded by

Cρ(s+1)(p−1)/τρ−sγkτ (A.8)

Hence the sum of all interesting Bs, i.e. ρs ≤ mτ/γ, is bounded as p− 1 < τ :

Cρ(p−1)/τγkτ
∞∑

s=0

(
ρ

p−1
τ
−1
)s

= Cρ(p−1)/τγkτ (1− ρ
p−1

τ
−1)−1 (A.9)

Then this can be extended from the annulus 2k/3 ≤ |m| ≤ k to the ball |m| ≤ k :∑
|m|<k

1
|(m,ω)|

≤ Cρ(p−1)/τγ(1−ρ
p−1

τ
−1)−1kτ (1+(2/3)τ +(2/3)2τ +(2/3)3τ +. . .) ≤ (G/2)kτ (A.10)

Together with the contribution of the points with distance larger than 1 to the hyper-plane ω⊥, we

obtain the desired estimate.2

Now we prove the Cauchy estimate (lemma 3.2). The lemma is a direct consequence of the Cauchy

formula for vector-valued holomorphic functions of a single complex variable. We want to differen-

tiate in the direction v, letting without restriction ‖v‖Y = 1. For any u ∈ Ω− η we take a circle in

the complex plane defined by u+ zv, z ∈ C, |z| = η. Then we have

f(u) =
1

2πi

∮
u+zv,z∈C,|z|=η

f(u+ zv)
−z

dz (A.11)

So taking a partial derivative in the direction v, we first consider for h ∈ C

f(u+ hv) =
1

2πi

∮
u+hv+zv,z∈C,|z|=η

f(u+ hv + zv)
−z

dz =
1

2πi

∮
u+z̃v,z̃∈C,|z̃−h|=η

f(u+ z̃v)
−z̃ + h

dz̃

=
1

2πi

∮
u+z̃v,z̃∈C,|z̃|=η

f(u+ z̃v)
−z̃ + h

dz̃, (A.12)

where the last equality holds by the Cauchy theorem in C. Thus for the directional derivative in

direction v, we have

Duf(u)v = lim
h→0

1
h

(f(u+ hv)− f(u)) = lim
h→0

1
2πi

∮
u+zv,z∈C,|z|=η

f(u+ zv)
1
h

(
1

−z + h
− 1
−z

)
dz

=
1

2πi

∮
u+zv,z∈C,|z|=η

f(u+ zv)
z2

. (A.13)
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Thus

‖Duf‖Ω−η ≤
1
2π

2πη
|f |Ω
η2

=
|f |Ω
η

(A.14)

and the lemma is proved. 2
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