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1 IntrodutionIn this note we analyse some aspets of the Hamiltonian dynamis of an elasti 2Dlattie of partiles interating via interatomi potentials. As in the reent elastostatiinvestigation [FT01℄, we onsider a ubi lattie where the partiles have equal massand only nearest and next nearest neighbours interat. The assoiated Hamiltoniandynamial system, obtained by inluding the kineti energy of the partiles, is anatural 2D analogon of the 1D Fermi-Pasta-Ulam lattie introdued in [FPU55℄. (Itannot be simpli�ed into a nearest-neighbour model, whih would have no shearresistane and would hene be inapable of apturing 2D elastiity.)Our interest here is the existene of solitary waves moving through the 2D lat-tie. We prove the existene of small-amplitude supersoni longitudinal solitarywaves moving along the (1; 0) diretion, and determine expliitly their asymptotipro�le in the near-soni regime. These results hold for generi potentials, but mostinterestingly, the solitary waves even exist when the potentials are harmoni, i.e.when the interpartile fores are linear with respet to partile distane.Note that in this ase the Hamiltonian equations of motion are still nonlinear,due to the frame-indi�erene of the interatomi fores. (In ontinuum elastiity the-ory the analogous nonlinearity has been termed `geometri', to distinguish it fromnon-universal nonlinearities due to spei� modelling assumptions.) This geomet-ri nonlinearity and the ensuing solitary waves are a genuinely 2D phenomenon:in 1D hains with harmoni springs no solitary waves exist [FW94, Se.7℄. Physi-ally this means that the 2D waves are reated purely by the oupling between theneighbouring harmoni hains.These waves are always found to be extension waves, universally with respetto the hoie of equilibrium lengths and spring onstants for the nearest-neighbour�Permanent address: Freie Universit�at Berlin, Institut f�ur Mathematik I, Arnimallee 2-6, 14195Berlin, Germany, matthies�math.fu-berlin.de 1



Figure 1: Partile positions for the solitary wave in the lattie with linear springs.The parameter values used here are K1 = 5, K2 = a1 = a2=p2 = 1, ( � s)=s =1=24. The solitary wave is always an extension wave and the site of the mostextended ell moves along the (1; 0) diretion.and diagonal springs. This is related to the somewhat ounterintuitive fat thatthe e�etive oupling between horizontal neighbours whih ensues from the vertialinterations is found to be always hardening with respet to extension, and softeningwith respet to ompression. (Intuitively, one might have expeted that hardeningor softening would depend on whether in the ubi equilibrium state of the lattie,the diagonal springs are under ompression or under tension.)Furthermore we show that no transversal solitary waves � and indeed no non-longitudinal solitary waves � exist whih propagate in the (1; 0) diretion.The (1; 0) diretion has been hosen here beause it leads to the smallest num-ber of delays in the ensuing system of di�erential-di�erene equations (namely oneforward-delay and one bakward-delay). The interesting issue of wave propagationin general diretions lies beyond the sope of this note. In the simpler ase of di�u-sive evolution of passive salars on 2D latties, there has been muh reent progresson this issue, see e.g. [CM-PS98, CM-PV99, M-P99℄. In these studies, one is dealingwith disrete analoga of salar semi-linear reation-di�usion equations, where theoupling between the disrete sites is linear and maximum priniples hold. By on-trast, the elasti lattie studied here is a disrete analogon of a system of quasi-linearonservation laws, where the oupling between sites is neessarily nonlinear due togeometri reasons. Whether some of the tehniques of [CM-PS98, CM-PV99, M-P99℄an be arried over to suh systems remains to be seen.The existene proof for the longitudinal waves proeeds by redution to an ef-fetive 1D Hamiltonian of Fermi-Pasta-Ulam type (whih aounts exatly for thevertial oupling), and use of reent work on 1D Fermi-Pasta-Ulam latties. Speif-ially we will use the results of [FP99℄, beause they deliver not just existene butalso the asymptoti pro�le shape; other methods to prove existene of travellingwaves are given in [FW94, IK99, I00℄. By ontrast we have to use the 2D strutureof the problem for our non-existene proof. In partiular we show that a redution2



to an e�etive 1D Hamiltonian is impossible for non-longitudinal waves.2 Model and Equations of MotionThe partiles in our in�nite lattie are indexed by (i; j) 2 ZZ 2. The position of the(i; j)th partile at time t is denoted by r�ir�j !+ qi;j(t) 2 IR2:Here r� > 0 is a referene lattie parameter, whih will from Setion 3 onwards behosen so that the state qi;j = 0 (i; j 2 ZZ ) is an equilibrium, in whih ase the qi;jare the out-of-equilibrium displaements of the partiles.With the usual notation pi;j(t) for the momentum of the (i; j)th partile, thedynamis is desribed by the in�nite-dimensional HamiltonianH = Xi;j2 ZZ �12 jpi;j j2 + V1(jr�e1 + qi+1;j � qi;jj) + V1(jr�e2 + qi;j+1 � qi;jj)+V2(jr�(e1 + e2) + qi+1;j+1 � qi;jj) + V2(jr�(e1 � e2) + qi+1;j � qi;j+1j)�:(2.1)Here j � j denotes the Eulidean norm on IR2, e1 and e2 are the lattie basis vetors(1; 0) and (0; 1), V1 is the potential for the horizontal and vertial interations andV2 orresponds to the diagonal interations. In this setion V1, V2 an be arbitrarydi�erentiable funtions from (0;1)! IR; prototypial are the harmoni potentialsV1(r) = K12 (r � a1)2 (2.2)V2(r) = K22 (r � a2)2; (2.3)in whih ase there is a unique equilibrium lattie parameter, given byr� = K1a1 +p2K2a2K1 + 2K2 ; (2.4)f. [FT01℄.The equation of motion for eah partile ontains eight foring terms, due (inorder of appearane) to its nearest neighbours on the right, left, top and bottomand its next nearest neighbours on the top right, bottom left, bottom right and topleft: Abbreviating f(z) := V 01(jzj) zjzj , g(z) := V 02(jzj) zjzj ,_qi;j = pi;j�qi;j = _pi;j = � ��qi;jH (2.5)= �f�f(r�e1 + qi+1;j � qi;j) + f(r�e1 + qi;j � qi�1;j)�f(r�e2 + qi;j+1 � qi;j) + f(r�e2 + qi;j � qi;j�1)�g(r�(e1 + e2) + qi+1;j+1 � qi;j) + g(r�(e1 + e2) + qi;j � qi�1;j�1)�g(r�(e1 � e2) + qi+1;j�1 � qi;j) + g(r�(e1 � e2) + qi;j � qi�1;j+1)g :3



Spring 1

Spring 2

i,j i+1,j

i+1,j+1
     i,j+1

e1

e2

Figure 2: Unit ell of the lattie3 Solitary wavesWe are looking for travelling waves, i.e. we seek solutions of the typeqi;j(t) = ~q(k �  ij !� t); (3.1)where k 2 IR2 (jkj = 1) is the diretion of propagation of the wave and  its speed.We onsider here the speial ase where k is parallel to the lattie vetors e1 or e2.For k = e1 the travelling wave ansatz simpli�es to qi;j(t) = ~q(i� t) (independentlyof j) and the equations of motion (2.5) redue to the following system of di�erential-di�erene equations for the pro�le ~q(x), x = i = t (note that two of the eight foringterms anel, namely those due to the top and the bottom neighbour):2~q00(x) = � f�f(r�e1 + ~q(x+ 1)� ~q(x)) + f(r�e1 + ~q(x)� ~q(x� 1)) (3.2)�g(r�(e1 + e2) + ~q(x+ 1)� ~q(x)) + g(r�(e1 + e2) + ~q(x)� ~q(x� 1))�g(r�(e1 � e2) + ~q(x+ 1)� ~q(x)) + g(r�(e1 � e2) + ~q(x)� ~q(x� 1))g :So we have here one forward and one bakward delay. Travelling waves with arbitraryk will give di�erential-di�erene equations with up to 4 forward and 4 bakwarddelays, as there are 8 di�erent partiles with whih a given partile interats and allan be at di�erent positions of the wave.Speial ases of ~q are unidiretional waves where the partiles move in a singlediretion, i.e. ~q(x) = dq(x), where q is salar and d 2 IR2 is the amplitude diretor.Pure longitudinal waves (d jj k) and transversal waves (d � k = 0) are examples ofthese.By a solitary wave (of speed ) we mean a nononstant solution ~q 2 C2(IR; IR2)to the travelling wave equation (3.2) for whih the relative displaement (or elastistrain) ~r(x) := ~q(x+1)� ~q(x) tends to zero as x! �1, in the sense that ~r belongsto the Sobolev spae H1(IR) of square-integrable funtions with square-integrable4



derivative. (In fat the waves onstruted below satisfy ~r(x) ! 0 exponentiallyfast, while our nonexistene results even rule out solitary waves satisfying the aboveweak loalization ondition.)The following theorem holds for generi nonlinear springs, but for simpliitywe will now put our emphasis on harmoni springs, where the overall potential isanharmoni due to the geometry.In the theorem, a ertain role is played by the longitudinal speed of sound of thelattie in (1; 0) diretion, whih an be alulated to bes = s2K1a1 +p2K2a22r� : (3.3)(See Setion 4 for the dispersion relation of the 2D lattie, its interesting diretion-dependene, and possible impliations for stability issues.)Theorem 1 Assume that the interation potentials and the lattie parameter aregiven by (2.2), (2.3), (2.4). Let s be as de�ned in (3.3), and reall that e1 denotesthe lattie basis vetor (1; 0). Then the following results hold.i. (Existene and asymptoti pro�le of longitudinal waves)a) For all supersoni wavespeeds  > s whih are suÆiently lose to s,there exists a unique longitudinal single-pulse solitary wave ~q(x) = e1q(x), qsalar, propagating in e1 diretion. Here unique means unique up to the trivialinvarianes of the travelling wave equation under spatial translation and ad-ditive onstants, and single-pulse means that the derivative of the assoiatedrelative displaement pro�le r(x) = q(x + 1) � q(x) vanishes only at onepoint.b) The above wave has the following properties: it is an extension wave (i.e.~r(x) > 0 for all x 2 IR), for any hoie of the spring onstants K1 > 0,K2 > 0 and spring equilibrium lengths a1 > 0, a2 > 0; r is even with respetto reetion at the point x0 where r is maximal; r tends to zero exponentiallyas x ! �1 in the sense that eb0()jx�x0jr(x) onverges to a �nite nonzerolimit as x ! �1, where b0() is the unique positive root of the equation=s = (sinh b02 )= b02 .) In the regime of lose-to-soni wavespeed, the pro�le r has the follow-ing asymptoti shape: Abbreviating " := p24( � s)=s, r has harateristiwidth of order 1=" and height of order "2 (i.e. it is a small-amplitude longwave): more preisely there exist onstants C > 0 and "0 > 0 suh that for all" � "0  1"2 r � :"�� �H1 � C"2; (3.4)where � is the KdV soliton pro�le�(x) = (2p2K1a1 + 2K2a2)r�3K2a2 �12seh(12x)�2: (3.5)5



ii. (Nonexistene of other unidiretional waves) There exists a universal onstantÆ > 0 suh that for no wavespeed  2 IR and no amplitude diretor d 6= e1 dothere exist any unidiretional solitary waves with amplitude maxx2IR j~r(x)j < Æpropagating in e1 diretion. In partiular there are no transversal solitarywaves.iii. (Nonexistene of non-unidiretional waves) There exists a universal onstantÆ > 0 suh that for no supersoni wavespeed  > s does there exist any(not neessarily unidiretional) solitary wave propagating in e1 diretion whihis not longitudinal (i.e. ~r(x) � e2 not identially zero) and whose amplitudesatis�es maxx2IR j~r(x)j < Æ.The proofs of i., ii. and iii. are eah based on di�erent methods. To show i. wewill redue the problem to a salar 1D lattie problem and apply results for thoseby Frieseke and Pego [FP99℄. The proof of ii. is based on a monotoniity argumentwhih relies on the vetorial nature of the equation, while for iii. we analyse theFourier transform of (3.2).3.1 Existene and asymptoti pro�le of longitudinal solitary wavesFor longitudinal waves qi;j(t) = e1q(i� t), or more general longitudinal motionsqi;j(t) � e2 � 0; qi;j(t) � e1 � qi(t) independently of j; (3.6)the vetorial equation of motion (2.5) an be redued to a salar one. First we laimthat the seond omponent (2.5)�e2 holds automatially. To see this note �rst thatthe left hand side of (2.5) is orthogonal to e2, as are the �rst two terms on the righthand side. Next, the third and fourth term on the right hand side anel, due tothe j-independene of the qi;j. Finally the terms g(r�(e1 � e2) + qi+1;j�1 � qi;j) � e2have opposite and equal sign and equal magnitude and hene anel, as do the termsg(r�(e1 � e2) + qi;j � qi�1;j�1) � e2.The �rst omponent (2.5)�e1 beomes (using that g(r�(e1+e2)+(qj�qk)e1)�e1 =g(r�(e1 � e2) + (qj � qk)e1) � e1)�qi = � f�f((r� + qi+1 � qi)e1) � e1 + f((r� + qi � qi�1)e1) � e1�2g(r�(e1 + e2)(qi+1 � qi)e1) � e1 + 2g(r�(e1 + e2) + (qi � qi�1)e1) � e1g :This is (denoting _qi =: pi) the equation of motion �qi = _pi = ��Heff�qi for a newe�etive HamiltonianHeff = Xi2 ZZ �12 jpij2+Veff (qi+1�qi)�; Veff (�) = V1(jr�+�j)+2V2(qr�2 + (r� + �)2):(In partiular, any dynamis for this 1D anharmoni lattie an be embedded intothe 2D harmoni lattie.) Speifying to travelling waves qi;j(t) = e1q(i � t), eqn.(3.2) redues to the travelling wave equation for the 1D lattie,2q00 (x) = V 0eff (q(x+ 1)� q(x))� V 0eff (q(x)� q(x� 1)):6



Applying [FP99, Theorem 1.1℄ gives existene and all properties of the waves de-sribed in part i. of Theorem 1, noting that the required hypotheses on the potential(V 0(0) = 0, V 00(0) > 0, V 000(0) 6= 0) are satis�ed, for all hoies of spring onstantsK1; K2 > 0 and spring equilibrium lengths a1; a2 > 0: Using (2.2), (2.3), (2.4) onealulates V 0eff (0) = 0V 00eff (0) = K1a1 + (p2=2)K2a2r�V 000eff (0) = 3K2a22p2r�2 :Interestingly, the anharmoni oeÆient V 000(0) (whih governs the sign of the strainpro�le, appearing in partiular as a prefator in the asymptoti shape formula�(x) = V 00(0)V 000(0) (12 seh(x2 ))2 of [FP99℄) is always positive, yielding extension waves.3.2 Non-existene of unidiretional solitary waves of arbitrary speedWe now rule out non-longitudinal unidiretional solitary waves, i.e. waves of form~q(x) = dq(x) for d 62 Spanf 10 !g and q : IR! IR:A neessary ondition for the existene of suh waves isd? � ~q00 � 0; (3.7)where d =  d1d2 ! and d? =  �d2d1 !. Using eq. (3.2) together with the identities(r�e1 + ~q(x1)� ~q(x2)) � d? = �r�d2, (r�(e1 + e2) + ~q(x1)� ~q(x2)) � d? = r�(d1 � d2),(r�(e1 � e2) + ~q(x1) � ~q(x2)) � d? = r�(�d1 � d2) (for arbitrary x1, x2 2 IR), wealulate d? � ~q00(x) = h(q(x+ 1)� q(x))� h(q(x) � q(x� 1));withh(s) = V 01(jr�e1 + sdj)jr�e1 + sdj (�r�d2)+ V 02(jr�(e1 + e2) + sdj)jr�(e1 + e2) + sdj r�(d1 � d2) + V 02(jr�(e1 � e2) + sdj)jr�(e1 � e2) + sdj r�(�d1 � d2):But for jdj = 1, h is analyti for jsj < r�, hene (sine h is nononstant) its level setsare disrete. Hene provided supx2IR jq(x + 1) � q(x)j < r�, the equation h(q(x +1)� q(x))�h(q(x)� q(x� 1)) = 0 together with the ontinuous dependene of q onx implies q(x+ 1) � q(x) � onst. But q(x+ 1) � q(x) ! 0 as jxj ! 1 and heneq(x) � onst. This establishes Theorem 1 ii., with expliit onstant Æ = r�. (We7



remark that the above argument has not required analytiity of the potentials butmerely the generi property that h is not identially onstant in a neighbourhood ofzero. The nie feature of the harmoni potentials (2.2), (2.3) is that no restritionswhatsoever were needed on the spring onstants K1, K2 and spring equilibriumlengths a1, a2.)3.3 Non-existene of general solitary waves of supersoni speedFinally we rule out solitary waves without a �xed amplitude diretor, i.e. waves ofform qi;j(t) = ~q(i� t) (~q : IR! IR2).If the displaement pro�le ~q solves eq. (3.2) then the relative displaementpro�le ~r(x) = ~q(x + 1) � ~q(x)) solves the following entered di�erene equation(where we use the symboli notation e��~r(x; t) = ~r(x� 1; t))2~r00 = (e� � 2+ e��)�f(r�e1+ ~r)+ g(r�(e1+ e2)+ ~r)+ g(r�(e1� e2)+ ~r)�: (3.8)So it suÆes to rule out non-longitudinal solutions (i.e. ~r(x) � e2 not identiallyzero) to (3.8).To analyse this equation we follow the method introdued in a 1D ontext in[FP99℄, albeit our goal (to prove nonexistene) is di�erent from theirs (to proveexistene). Separating out the linear ontributions to f and g, i.e. writing theforing terms in the formf(r�e1 + r) + g(r�(e1 + e2) + r) + g(r�(e1 � e2) + r) = Ar +N(r); withA 2M2�2; N(r)jrj ! 0 (jrj ! 0); (3.9)and applying the Fourier transform with the normalisation f̂(�) = R1�1 e�i�xf(x)dxtransforms (3.8) into the system�2�2 b~r(�) = �4 sin2 �2 hA b~r + dN(~r)i : (3.10)A tedious alulation shows thatA =  �1 00 �2 ! ; �1 = V 00eff (0) = K1a1 + (p2=2)K2a2r� ; �2 = (p2=2)K2a2r� :In partiular �1 � �2 = K1a1=r� > 0. This will be essential below. For supersoni, i.e.  > p�1, eq. (3.10) an be rewritten as a �xed point equation involving aertain matrix-valued Fourier multiplier p(�),b~r(�) = p(�) dN(~r)(�);p(�) = 0BB� 4 sin2( �2 )2�2�4�1 sin2( �2 ) 00 4 sin2( �2 )2�2�4�2 sin2( �2 ) 1CCA = 0BB� sin2( �2 )2��1sin2( �2 ) 00 sin2( �2 )2��2sin2( �2 ) 1CCA8



where sin(z) = sin(z)=z. By Planherel's formula and the fat that jsin(z)j � 1for all z 2 IR,jj~r � e2jjL2(IR) = 1p2� jj b~r � e2jjL2(IR)� 1p2� jj sin22 � �2sin2 jjL1(IR)jj dN(~r) � e2jjL2(IR)= 1�1 � �2 jjN(~r) � e2jjL2(IR):Lemma 3.1 There exists a onstant C > 0 suh that the nonlinearity N satis�esjN(r) � e2j � Cjr � e2jjrjfor all r 2 IR2 with jrj � r�=2.Proof: Aording to (3.9),N(r) � e2 = �f(r + r�e1) + g(r + r�(e1 + e2)) + g(r + r�(e1 � e2))� � e2 � �2(r � e2):First we laim that for r with r � e2 = 0 we have N(r) � e2 = 0. Indeed the �rst termin N points in e1 diretion, the e2-omponents of the next two terms anel, andthe last (linear) term is zero. Thus we an writeN(r) � e2 = (r � e2) ~N(r); (3.11)where the funtion ~N is ontinuously di�erentiable for jrj < r�, and limr!0 ~N(r) = 0holds by (3.9). By the mean-value theorem we have for, say, jrj � r�=2 the estimatej ~N(r)j � � maxjrj�r�=2 jr ~N(r)j�jrj = Cjrj:The assertion of the lemma now follows from (3.11). 2It follows that jj~r �e2jjL2 � C�1��2 jj~rjjL1 jj~r �e2jjL2 . This implies ~r �e2 � 0 providedjj~rjjL1 < (�1 � �2)=C. The proof of Theorem 1 is omplete.4 Remarks on stabilityThe longstanding question of dynami stability of the solitary wave in the 1D Fermi-Pasta-Ulam hain has reently been resolved aÆrmatively by Frieseke and Pego ina series of papers [FP01℄. This result diretly gives the stability of the 2D solitarywave found in this paper with respet to purely longitudinal perturbations, i.e.perturbations whih an be realized as perturbed initial onditions in the e�etiveHamiltonian of setion 3.1.Next we disuss dynami stability with respet to non-longitudinal perturbations.It is ruial in the 1D results that the wave is supersoni, i.e. its wavespeed exeeds9



that of any aousti phonon. We proeed to alulate the dispersion relation forphonons in the 2D lattie. That is we seek solutions of formqj;`(t) = aei(k�x�!t); x =  r�jr�` !to the linearized equation of motion�qj;` = A1(r�e1)(qj+1;` � 2qj;` + qj�1;`) +A1(r�e1)(qj;`+1 � 2qj;` + qj;`�1)+ A2(r�(e1 + e2)(qj+1;`+1 � 2qj;` + qj�1;`�1) +A2(r�(�e1 + e2)(qj�1;`+1 � 2qj;` + qj+1;`�1)where A1, A2 are the 2�2 matries A1(q0) = D2qV1(jq0+qj)jq=0, A2(q0) = D2qV2(jq0+qj)jq=0. Under this ansatz the equation redues to the matrix eigenvalue problemDa = !2awith the dispersion matrixD = 4 sin2 r�k12 A1(r�e1) + 4 sin2 r�k22 A1(r�e2)+ 4 sin2 r�(k1+k2)2 A2(r�(e1 + e2)) + 4 sin2 r�(�k1+k2)2 A2(r�(�e1 + e2))where A1(r�e1) = K1  1 00 1� a1r� ! ; A1(r�e2) = K1 1� a1r� 00 1 ! ;A2(r�(e1 + e2)) = K2h 12 1212 12 !+ (1� a2p2r� ) 12 �12�12 12 !i;A2(r�(�e1 + e2)) = K2h(1� a2p2r� ) 12 1212 12 !+  12 �12�12 12 !i:Hene the dispersion relation !(k) is given by14(!�(k))2 = K1 �1� a12r���sin2 r�k12 + sin2 r�k22 �+ K2 �1� a22p2r���sin2 r�(k1 + k2)2 + sin2 r�(k1 � k2)2 �� (�K1a12r� �sin2 r�k12 � sin2 r�k22 ��2+ � K2a22p2r� �sin2 r�(k1 + k2)2 � sin2 r�(k1 � k2)2 ��2) 12 :(4.12)Depending on the spring onstants and spring equilibrium lengthsK1;K2 and a1; a2,the maximal group veloity jrk!(k)j is attained for di�erent diretions k. ForK1 = 0 and a1 = a2=p2, the dispersion relation redues to!2�(k)4 = K2 sin2(r� k1 � k22 )10



and the maximal group veloity is attained in (1; 1) diretion. For K2 = 0 anda1 = a2=p2 one has!2�(k)4 = K12 �sin2 r�k12 + sin2 r�k22 �+ K12 ���sin2 r�k12 � sin2 r�k22 ���and the maximal group veloity is attained in (1; 0) diretion. Numerial plots of !�for di�erent parameters suggest that only these two diretions our, with a sharprossover. So in the last example, the solitary wave is supersoni with respet to theentire aousti spetrum. By ontrast in the �rst example the solitary wave is slowerthan transversal phonons. A possible senario for the stability of the solitary wavewith respet to non-longitudinal perturbations is then as follows: The solitary waveould still be stable when it is supersoni, whereas it looses stability when there arefaster transversal phonons.Aknowledgement: The work of KM was supported by the Deutshe Forshungs-gemeinshaft (DFG) under grant MA 2351/1.Referenes[CM-PS98℄ S. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattie dynamialsystems, J. Di�. Eqs. 149 (1998), 248-291.[CM-PV99℄ J. Cahn, J. Mallet-Paret, E. Van Vlek, Traveling wave solutions forsystems of ODEs on a two-dimensional spatial lattie. SIAM J. Appl.Math. 59 (1999), 455-493.[FPU55℄ E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problemsLos AlamosSienti� Labatory Report LA-1940 (reprinted in Leture Appl. Math15 (1955), 143-56.[FP99℄ G. Frieseke, R. Pego, Solitary waves on FPU latties: I. Qualita-tive properties, renormalization and ontinuum limit Nonlinearity 12(1999), 1601-1627.[FP01℄ G. Frieseke, R. Pego, Solitary waves on FPU latties: II, III, IV, toappear[FW94℄ G. Frieseke, J. Wattis, Existene theorem for solitary waves on latties,Comm. Math. Phys.161 (1994), 391-418.[FT01℄ G. Frieseke, F. Theil, Validity and failure of the Cauhy-Born hypoth-esis in a 2D mass-spring lattie, preprint University of Warwik (2001).[IK99℄ G. Iooss, K. Kirhg�assner, Travelling waves in a hain of oupled non-linear osillators, Comm. Math. Phys.211 (2000), 439-464.11
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