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Abstract We construct examples of exponentially asymptotically cylindrical (EAC)
Riemannian 7-manifolds with holonomy group equal to G2. To our knowledge, these are
the first such examples. We also obtain EAC coassociative calibrated submanifolds. Finally,
we apply our results to show that one of the compact G2-manifolds constructed by Joyce
by desingularisation of a flat orbifold T 7/� can be deformed to give one of the compact
G2-manifolds obtainable as a generalized connected sum of two EAC SU (3)-manifolds via
the method of Kovalev (J Reine Angew Math 565:125–160, 2003).

Keywords Special holonomy · G2-manifolds · Asymptotically cylindrical manifolds ·
Moduli spaces · Coassociative submanifolds

1 Introduction

The Lie group G2 occurs as the holonomy group of the Levi–Civita connection on some
Riemannian 7-dimensional manifolds. The possibility of holonomy G2 was suggested in
Berger’s classification of the Riemannian holonomy groups [3], but finding examples of met-
rics with holonomy exactly G2 is an intricate task. The first local examples were constructed
by Bryant [5] using the theory of exterior differential systems, and complete examples were
constructed by Bryant and Salamon [6] and by Gibbons, Page and Pope [10]. The first com-
pact examples were constructed by Joyce [15] by resolving singularities of finite quotients
of flat tori, and the method was further developed in [16].
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Later the first author [18] gave a different method of producing new compact examples
of 7-manifolds with holonomy G2 by gluing pairs of asymptotically cylindrical manifolds.
More precisely, a Riemannian manifold is exponentially asymptotically cylindrical (EAC) if
outside a compact subset it is diffeomorphic to X ×R>0 for some compact X , and the metric
is asymptotic to a product metric at an exponential rate. An important part of the method
in [18] is the proof of a version of the Calabi conjecture for manifolds with cylindrical ends
producing EAC Ricci-flat Kähler 3-folds W with holonomy SU (3). The product EAC metric
on a 7-manifold W × S1 then also has holonomy SU (3), a maximal subgroup of G2, and
is induced by a torsion-free G2-structure. In fact, W × S1 cannot have an EAC metric with
holonomy equal to G2 by [29, Theorem 3.8] because the fundamental group of W × S1 is
not finite.

The purpose of this article is to construct examples of exponentially asymptotically cylin-
drical manifolds whose holonomy is exactly G2. To our knowledge these are first such
examples. Note that the metrics with holonomy G2 in [6] are asymptotically conical and not
EAC.

It is by now a standard fact that a metric with holonomy G2 on a 7-manifold can be defined
in terms of a ‘stable’ differential 3-form ϕ equivalent to a G2-structure. More generally, any
G2-structure ϕ determines a metric since G2 is a subgroup of SO(7). This metric will have
holonomy in G2 if the G2-structure is torsion-free. The latter condition is equivalent to the
defining 3-form ϕ being closed and coclosed, a nonlinear first-order PDE. A 7-manifold
endowed with a torsion-free G2-structure is called a G2-manifold. Thus a G2-manifold is a
Riemannian manifold with holonomy contained in G2. For compact or EAC G2-structures
there is a simple topological criterion to determine if the holonomy is exactly of G2. See §2
for the details.

Joyce finds examples of G2-structures on compact manifolds that have small torsion by
resolving singularities of quotients of a torus T 7 equipped with a flat G2-structure by suit-
able finite groups �. The proof in [16, Chap. 11] of the existence result for torsion-free
G2-structures on compact 7-manifolds is carefully written to use the compactness assump-
tion as little as possible. A large part of the proof can therefore be used in the EAC setting
too. The main additional difficulty in this case is to show that the G2-structure constructed
has the desired exponential rate of decay to its cylindrical asymptotic model. This task is
accomplished by our first main result Theorem 3.1. In §4 we apply this result and explain
how, in one particular example, one can cut T 7/� into two pieces along a hypersurface, attach
a semi-infinite cylinder to each half, and resolve the singularities to form EAC G2-structures
satisfying the hypotheses of Theorem 3.1. In a similar way, we obtain in §5 more examples
of EAC G2-manifolds which are simply-connected with a single end and, therefore, have
holonomy exactly G2 by [29, Theorem 3.8] (see §2.2). This includes examples both where
the holonomy of the cross-section is SU (3) and where it reduces to (a finite extension of)
SU (2) or is flat. We explain how to compute their Betti numbers, and find some examples
of asymptotically cylindrical coassociative minimal submanifolds.

In §6 we study a kind of inverse of the above construction. Given a pair of EAC G2-mani-
folds with asymptotic cylindrical models matching via an orientation-reversing isometry, one
can truncate their cylindrical ends after some large length L and identify their boundaries to
form a generalized connected sum, a compact manifold with an approximately cylindrical
neck of length approximately 2L . This compact 7-manifold inherits from the pair of EAC
G2-manifolds a well-defined G2-structure and the gluing theorem in [18, §5] asserts that
when L is sufficiently large this G2-structure can be perturbed to a torsion-free one.

Our method of constructing EAC G2-manifolds by resolving ‘half’ of T 7/� produces
them in such matching pairs. The connected sum of the pair is topologically the same as the
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compact G2-manifold (M, ϕ) obtained by resolving the initial orbifold T 7/�. We show in
our second main result Theorem 6.3 that ϕ can be continuously deformed to the torsion-free
G2-structures obtained by gluing a pair of EAC G2-manifolds as in [18]. In other words, the
G2-structures produced by the connected-sum method lie in the same connected component
of the moduli space of torsion-free G2-structures as the ones originally constructed by Joyce.
Informally, the path connecting ϕ to the connected-sum G2-structures is given by increasing
the length of one of the S1 factors in T 7 before resolving T 7/�. In this sense, the EAC
G2-manifolds are obtained by ‘pulling apart’ the compact G2-manifold (M, ϕ).

In §7 we consider one pulling-apart example in detail and identify the two EAC mani-
folds as products of S1 and a complex 3-fold. The latter complex 3-folds were studied in [19]
obtained from K3 surfaces with non-symplectic involution, and the gluing produces a compact
G2-manifold according to the method of [18]. Thus the compact 7-manifold M admits a path
g(t), 0 < t < ∞ of metrics with holonomy G2 so that the limit as t → 0 corresponds to an
orbifold T 7/� and the limit as t → ∞ corresponds to a disjoint union of EAC G2-manifolds
of the form W j × S1, j = 1, 2, where each W j is an EAC Calabi–Yau complex 3-fold with
holonomy SU (3). To the authors’ knowledge, g(t) is the first example of G2-metrics on a
compact manifold exhibiting two geometrically different types of deformations, related to
different constructions [16,18] of compact irreducible G2-manifolds. (Demonstrating that
two constructions produce distinct examples of G2-manifolds can often be accomplished by
checking that these have different Betti numbers, a rather easier task.)

For the examples in this article, we mostly restrict attention to one compact 7-manifold
underlying the G2-manifolds constructed in [15, I §2]. However, our techniques can be
extended with more or less additional work to construct more examples of EAC G2-manifolds
from other G2-manifolds, including those obtained in [16] by resolving more complicated
singularities. The authors hope to develop this in a future article.

2 Preliminaries

2.1 Torsion-free G2-structures and the holonomy group G2

The group G2 can be defined as the automorphism group of the normed algebra of octonions.
Equivalently, G2 is the stabiliser in GL(R7) of

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 ∈ �3(R7)∗, (1)

where dxi jk = dxi ∧ dx j ∧ dxk [5, pp. 539–541]. A G2-structure on a 7-manifold M may
therefore be induced by a choice of a differential 3-form ϕ such that ι∗p(ϕ(p)) = ϕ0, for each
p ∈ M for some linear isomorphism ιp : R

7 → Tp M smoothly depending on p. Every such
3-form on M will be called stable, following [14], and we shall, slightly inaccurately, say
that ϕ is a G2-structure. As G2 ⊂ SO(7), a G2-structure induces a Riemannian metric gϕ
and an orientation on M , and thus also a Levi–Civita connection ∇ϕ and a Hodge star ∗ϕ .

The holonomy group of a connected Riemannian manifold M is defined up to isomor-
phism as the group of isometries of a tangent space at p ∈ M generated by parallel transport,
with respect to the Levi–Civita connection, around closed curves based at p. Parallel ten-
sor fields on a manifold correspond to invariants of its holonomy group and the holonomy
of gϕ on M will be contained in G2 if and only if ∇ϕϕ = 0. A G2-structure satisfying
this latter condition is called torsion-free and by a result of Gray [31, Lemma 11.5] this is
equivalent to
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dϕ = 0 and d∗ϕϕ = 0.

We call a 7-dimensional manifold equipped with a torsion-free G2-structure a G2-manifold.
We call a G2-manifold irreducible of the holonomy of the induced metric is all of G2 (i.e.
not a proper subgroup). A compact G2-manifold is irreducible if and only if its fundamental
group is finite [16, Proposition 10.2.2].

More generally, the only connected Lie subgroups of G2 that can arise as holonomy of the
Riemannian metric on a G2-manifold are G2, SU (3), SU (2) and {1} [16, Theorem 10.2.1].

We call a G2-structure ϕX on a product manifold X6 × R cylindrical if it is translation-
invariant in the second factor and defines a product metric gM = dt2 + gX , where t denotes
the coordinate on R. Then ∂

∂t is a parallel vector field on X6 × R. The stabiliser in G2 of
a vector in R

7 is SU (3), so the Riemannian product of X6 with R has holonomy contained
in G2 if and only if the holonomy of X is contained in SU (3). The latter condition means
that X is a complex 3-fold with a Ricci-flat Kähler metric and admits a nowhere-vanishing
holomorphic (3,0)-form, i.e. X is a Calabi–Yau 3-fold. More explicitly, we can write

ϕX = �+ dt ∧ ω, where ω = ∂
∂t �ϕX and � = ϕX |X×{pt}. (2)

Then ω is the Kähler form on X and � is the real part of a holomorphic (3, 0)-form on X ,
whereas g(ϕX ) = dt2 + gX . It can be shown that a pair (�, ω) of closed differential forms
obtained from a torsion-free G2-structure as in (2) determines a Calabi–Yau structure on X
(cf. [13, Lemma 6.8] and [16, Proposition 11.1.2]).

If the cross-section is itself a Riemannian product X = S1 × S1 × D then D is a
Calabi–Yau complex surface with holonomy in SU (2) ∼= Sp(1), with Kähler form κI and
holomorphic (2,0)-form κJ + iκK . Alternatively, D may be described as a hyper-Kähler
4-manifold, so D has three integrable complex structures I, J, K satisfying quaternionic
relations I J = −J I = K and a metric which is Kähler with respect to all three. The
κI , κJ , κK are the respective Kähler forms and this triple of closed real 3-forms in fact deter-
mines the hyper-Kähler structure (see [12, p. 91]). Denote by x1, x2 the coordinates on the
two S1 factors of X . Then the cylindrical torsion-free G2-structure on R × S1 × S1 × D
corresponding to a hyper-Kähler structure on D is

ϕD = dx1 ∧ dx2 ∧ dt + dx1 ∧ κI + dx2 ∧ κJ + dt ∧ κK . (3)

It induces a product metric g(ϕD) = dt2+(dx1)2+(dx2)2+gD (cf. [16, Proposition 11.1.1]).

2.2 Asymptotically cylindrical manifolds

A non-compact manifold M is said to have cylindrical ends if M is written as a union of
a compact manifold M0 with boundary ∂M0 and a half-cylinder M∞ = R+ × X , the two
pieces identified via the common boundary ∂M0 ∼= {0} × X ⊂ M∞. The manifold X is
assumed compact without boundary and is called the cross-section of M . Let t be a smooth
real function on M which coincides with the R+-coordinate on M∞, and is negative on the
interior of M0. A metric g on M is called exponentially asymptotically cylindrical (EAC)
with rate δ > 0 if the functions eδt‖∇k∞(g − (dt2 + gX ))‖ on the end M∞ are bounded for
all k ≥ 0, where the point-wise norm ‖ · ‖ and the Levi–Civita connection ∇∞ are induced
by some product Riemannian metric dt2 + gX on R+ × X . A Riemannian manifold (with
cylindrical ends) with an EAC metric will be called an EAC manifold.

We can use ∇∞ to define translation-invariant tensor fields on an EAC manifold M as
tensor fields whose restrictions to M∞ are independent of t . A tensor field s on M is said
to be exponentially asymptotic with rate δ > 0 to a translation-invariant tensor s∞ on M∞
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if eδt‖∇k∞(s − s∞)‖ are bounded on M∞ for all k ≥ 0. A G2-structure is said to be EAC if
it is exponentially asymptotic to a cylindrical G2-structure on R+ × X . It is not difficult to
check that each EAC G2-structure ϕ induces an EAC metric g(ϕ). The asymptotic limit of a
torsion-free EAC G2-structure then defines a Calabi–Yau structure on the cross-section X .

We shall need a topological criterion for an EAC G2-manifold to be irreducible.

Theorem 2.1 ([29, Theorem 3.8]) Let (M7, ϕ) be an EAC G2-manifold. Then the induced
metric gϕ has full holonomy G2 if and only if the fundamental group π1(M) is finite and
neither M nor any double cover of M is homeomorphic to a cylinder R × X6.

Corollary 2.2 Every simply-connected EAC G2-manifold with a single end (i.e. a connected
cross-section X) is irreducible.

Remark 2.3 As every G2-manifold is Ricci-flat, the Cheeger–Gromoll line splitting theorem
[8] implies that a connected EAC G2-manifold either has just one end or two ends. In the
latter case, the EAC G2-manifold is necessarily a cylinder R × X with a product metric and
cannot have full holonomy G2.

On an asymptotically cylindrical manifold M it is useful to introduce weighted Sobolev
norms. Let E be a vector bundle on M associated to the tangent bundle, k ≥ 0 and δ ∈ R.
We define the L2

k,δ-norm of a section s of E in terms of the usual Sobolev norm by

‖s‖L2
k,δ

= ‖eδt s‖L2
k
. (4)

Denote the space of sections of E with finite L2
k,δ-norm by L2

k,δ(E). Up to Lipschitz
equivalence the weighted norms are independent of the choice of asymptotically cylindrical
metric, and of the choice of t on the compact piece M0. In particular, the topological vector
spaces L2

k,δ(E) are independent of these choices. As any asymptotically cylindrical mani-
fold M clearly has bounded curvature and injectivity radius bounded away from zero, the
Sobolev embedding L2

k ⊂ Cr is still valid whenever r < k − 7/2 [2, § 2.7]. It follows that
L2

k,δ consists of sections decaying (when δ > 0) with all derivatives of order up to r at the

rate O(e−δt ) as t → ∞.
An important property of the weighted norms is that elliptic linear operators with asymp-

totically translation-invariant coefficients over M extend to Fredholm operators between
δ-weighted spaces of sections, for ‘almost all’ choices of weight parameter δ [22,23,25]. In
particular, this can be applied to the Hodge Laplacian of an EAC metric to deduce results
analogous to Hodge theory for compact manifolds. In this article, we shall require only a
result about Hodge decomposition. Let Mn be an EAC manifold with rate δ0 and cross-section
X . Abbreviate �m T ∗M to �m , and let

L2
k,δ

[
d�m−1] , L2

k,δ

[
d∗�m+1] ⊂ L2

k,δ

(
�m)

denote the subspaces of exact and coexact L2
k,δm-forms, respectively. Let Hm+ denote the

space of L2 harmonic forms on M , and Hm∞ the space of translation-invariant harmonic
forms on the product cylinder X × R. If ρ : M → [0, 1] is a smooth cut-off function sup-
ported on the cylindrical ends M∞ of M and such that ρ ≡ 1 in the region {t > 1} ⊂ M
then ρHm∞ can be identified with a space of smooth m-forms on M . Suppose that 0 < δ < δ0

and that δ2 is smaller than any positive eigenvalue of the Hodge Laplacian on ⊕m�
m T ∗ X

for the asymptotic limit metric gX on X . Then the elements of Hm+ are smooth and decay
exponentially with rate δ [25].
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Theorem 2.4 (cf. [29, p. 328]) In the notation above, there is an L2-orthogonal direct sum
decomposition

L2
k,δ(�

m) = Hm+ ⊕ L2
k,δ

[
d�m−1] ⊕ L2

k,δ

[
d∗�m+1] . (5)

Furthermore, any element of L2
k,δ

[
d�m−1

]
can be written as dφ, for some coexact form

φ ∈ L2
k+1,δ

(
�m−1

) ⊕ ρHm−1∞ .

3 Existence of EAC torsion-free G2-structures

We shall construct EAC manifolds with holonomy exactly G2 by modifying Joyce’s con-
struction of compact G2-manifolds. To this end, we shall obtain a one-parameter family of
G2-structures with ‘small’ torsion on a manifold with cylindrical end. More precisely, this
family will satisfy the hypotheses of the following theorem, the main result of this section,
which is an EAC version of [16, Theorem 11.6.1].

Theorem 3.1 Let μ, ν, λ positive constants. Then there exist positive constants κ, K such
that whenever 0 < s < κ the following is true.

Let M be a 7-manifold with cylindrical end M∞ and cross-section X6, and suppose that
a closed stable 3-form ϕ̃ defines on M a G2-structure which is cylindrical and torsion-free
on M∞. Suppose thatψ is a smooth compactly supported 3-form on M satisfying d∗ψ = d∗ϕ̃,
and let r(ϕ̃) and R(ϕ̃) be the injectivity radius and Riemannian curvature of the EAC metric
gϕ̃ on M. If

(a)

‖ψ‖L2 < λs4, ‖ψ‖C0 < λs1/2, ‖d∗ψ‖L14 < λ, (6)

(b) r(ϕ̃) > μs,
(c) ‖R(ϕ̃)‖C0 < νs−2,

then there is a smooth exact 3-form dη on M, exponentially decaying with all derivatives as
t → ∞, such that

‖dη‖L2 < K s4, ‖dη‖C0 < K s1/2, ‖∇dη‖L14 < K , (7)

and ϕ = ϕ̃ + dη is a torsion-free G2-structure.

Remark 3.2 The difference between Theorem 3.1 and [16, Theorem 11.6.1] is that M is now
non-compact with a cylindrical end and we made appropriate assumptions on ϕ̃, ψ away from
a compact piece of M and are claiming an EAC property of the resulting ϕ. On the other
hand, formally, taking the cross-section X6 to be empty (hence M being compact) recovers
the statement of [16, Theorem 11.6.1].

Remark 3.3 The fact that dη is exponentially decaying is more important than its precise
rate of decay. We shall need to choose the rate δ > 0 so that δ2 is smaller than any non-zero
eigenvalue of the Hodge Laplacian on X . It should be easy to modify the proof of the theorem
to allow ϕ̃ to be EAC and ψ to be exponentially decaying. In that case one would also need
δ to be smaller than the decay rates of ϕ̃ and ψ .

We wish to find an exact exponentially asymptotically decaying 3-form dη such that ϕ̃+dη
is torsion-free. First, we show that for ϕ̃ + dη to be torsion-free it suffices to show that η is
a solution of a certain non-linear elliptic equation, which was also used by Joyce [16] in the
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compact case, and find a solution for this equation by a contraction-mapping argument. The
details of this are complicated, but largely carry over from argument for the compact case
worked out in [16, Chap. 11]. We initially obtain, adapting the method of [16, Chap. 11],
a closed 3-form χ , so that φ + χ is a torsion-free G2-structure, and use elliptic regularity to
show that the solution χ is smooth and uniformly decaying along the end M∞ as t → ∞.
Then, and this is an additional argument required for an EAC manifold, we prove that the
solution decays exponentially. This also ensures that χ is exact, which will complete the
proof of Theorem 3.1.

3.1 Contraction-mapping argument

The proposition below is an asymptotically cylindrical version of [16, Theorem 10.3.7].

Proposition 3.4 There is an absolute constant ε1 > 0 such that the following holds. Let M7

be an EAC manifold, ϕ̃ a closed EAC G2-structure on M and ψ an exponentially decaying
3-form such that ‖ψ‖C0 < ε1 and d∗ψ = d∗ϕ̃. Suppose that η is 2-form asymptotic to a
translation-invariant harmonic form, and that ‖dη‖C0 < ε1. Suppose further that

�η = d∗ψ + d∗( fψ)+ ∗dF(dη), (8)

where the function f is the point-wise inner product 1
3<dη, ϕ̃> and F denotes the qua-

dratic and higher order parts, at ϕ̃, of the non-linear fibre-wise map � : ϕ �→ ∗ϕϕ from
G2-structures to 4-forms. Then ϕ̃ + dη is a torsion-free EAC G2-structure on M.

Proof The proof for the compact case in [16] relies on integrating by parts. It is easy to check
that, in the asymptotically cylindrical setting, the necessary integrals still converge provided
that η is bounded and dη decays, so we can still use (8) as a sufficient condition for the torsion
to vanish. ��

A key part in the proof of the existence of solutions for (8) on a compact 7-manifold is
the contraction-mapping argument [16, Proposition 11.8.1]. We observe that it can easily be
adapted to the EAC case.

Proposition 3.5 Let (�, ω) be a Calabi–Yau structure on a compact manifold X6 andμ, ν, λ
be positive constants. Then there exist positive constants κ, K ,C1 such that whenever 0 <
s < κ the following is true.

Let M7 be a manifold with cylindrical end and cross-section X, and ϕ̃ a closed EAC
G2-structure on M with asymptotic limit �+ dt ∧ ω. Suppose that ψ is a smooth exponen-
tially decaying 3-form on M satisfying d∗ψ = d∗ϕ̃, and that

(a) ‖ψ‖L2 < λs4, ‖ψ‖C0 < λs1/2, ‖d∗ψ‖L14 < λ,
(b) the injectivity radius is > μs,
(c) the Riemannian curvature R satisfies ‖R‖C0 < νs−2.

Then there is a sequence dη j of smooth exponentially decaying exact 3-forms with dη0 = 0
satisfying the equation

�η j = d∗ψ + d∗( f j−1ψ)+ ∗dF(dη j−1), (9)

where f j = 1
3<dη j , ϕ̃> for each j > 0. The solutions satisfy the inequalities

(i) ‖dη j‖L2 < 2λs4,
(ii) ‖∇dη j‖L14 < 4C1λ,

123



228 Ann Glob Anal Geom (2010) 38:221–257

(iii) ‖dη j‖C0 < K s1/2,
(iv) ‖dη j+1 − dη j‖L2 < 2− jλs4,
(v) ‖∇(dη j+1 − dη j )‖L14 < 4 · 2− j C1λ,

(vi) ‖dη j+1 − dη j‖C0 < 2− j K s1/2.

Proof The existence of the sequence dη j and the inequalities (i)–(vi) are proved inductively.
Take δ > 0 smaller than the decay rates of ϕ̃ and ψ such that δ2 is smaller than any positive
eigenvalue of the Hodge Laplacian on X , and let ρ be a cut-off function for the cylinder on
M . If dη j−1 exists and satisfies the uniform estimate (iii) then F(dη j−1) is well-defined, and
the RHS of (9) is d∗ of a 3-form that decays with exponential rate δ. The EAC Hodge decom-
position Theorem 2.4 implies that there is a unique coexact solution η j ∈ L2

k,δ(�
2)⊕ ρH2∞

for all k ≥ 2.
The induction step for the inequalities is proved using exactly the same argument as in

[16, Proposition 11.8.1]. (i) and (iv) are proved using an integration by parts argument, and
since each dη j decays exponentially this is still justified when M has cylindrical ends.

(ii), (iii), (v) and (vi) are proved using interior estimates, which do not require compact-
ness. ��

It follows that if s is small, then dη j is a Cauchy sequence, in each of the norms L2, L14
1

and C0, and has a limit χ with

‖χ‖L2 < K s4, ‖χ‖C0 < K s1/2, ‖∇χ‖L14 < K , (10)

for some K > 0. The form χ is closed, L2-orthogonal to the space of decaying harmonic
forms H3+ and satisfies the equation

d∗χ = d∗ψ + d∗( fψ)+ ∗dF(χ), (11)

where f = 1
3<χ, ϕ̃>. We do not know a priori that χ is the exterior derivative of a bounded

form, so we cannot yet apply Proposition 3.4 to show that ϕ̃ + χ is torsion-free.

3.2 Regularity

We first show by elliptic regularity that χ is smooth and uniformly decaying.

Proposition 3.6 If s is sufficiently small then χ ∈ L14
k (�

3) for all k ≥ 0.

Proof Since F(χ) depends only point-wise on χ and is of quadratic order we can write

∗ dF(χ) = P(χ,∇χ)+ Q(χ), (12)

where P(u, v) is linear in v and smooth of linear order in u, whilst Q(u) is smooth of qua-
dratic order in u for u small. We can then rephrase (11) as stating that β = χ is a solution
of

d∗β − P(χ, β)− d∗( f (β)ψ) = d∗ψ + Q(χ),

dβ = 0, (13)

where f (β) = 1
3<β, ϕ̃>. The LHS is a linear partial differential operator acting on β. Its

symbol depends on χ andψ , but not on their derivatives. By taking s small we can ensure that
χ and ψ are both small in the uniform norm (see (10) and hypothesis a in Proposition 3.5)
so that the equation is elliptic.

Now suppose that χ has regularity L14
k . Then so do the coefficients and the RHS of (13).

Because β = χ ∈ L14
1 (�

3) is a solution of (13), standard interior estimates (see Morrey
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[27, Theorems 6.2.5 and 6.2.6]) imply that it must have regularity L14
k+1 locally. Moreover,

because the metric is asymptotically cylindrical the local bounds are actually uniform, so in
fact χ is globally L14

k+1. The result follows by induction on k. ��
In the next result and in §3.3, we interchangeably consider χ on the cylindrical end

M∞ = R+ × X as a family of sections over X depending on a real parameter t .

Corollary 3.7 If s is sufficiently small then on the cylindrical end of M the form χ decays,
with all derivatives, uniformly on X as t → ∞.

Proof Because M is EAC, standard Sobolev embedding results imply that we can pick r > 0
such that M is covered by balls B(xi , r) with the following property:

‖χ |B(xi ,r)‖Ck < C‖χ |B(xi ,2r)‖L14
k+1
,

where the constant C > 0 is independent of xi ∈ M . If we ensure that each point of M is
contained in no more than N of the balls B(xi , 2r) then

∑

i

‖χ |B(xi ,r)‖14
Ck < NC14‖χ‖14

L14
k+1
.

As the sum is convergent the terms tend to 0, i.e. the k-th derivatives of χ decay uniformly.
��

3.3 Exponential decay

To complete the proof of Theorem 3.1 it remains to prove that the rate of decay of χ is
exponential. Then χ = dη for some exponentially asymptotically translation-invariant η by
the Hodge decomposition Theorem 2.4, since χ is closed and L2-orthogonal to the decaying
harmonic forms H3+. Proposition 3.4 then implies that ϕ̃ + dη is torsion-free, so that dη has
all the desired properties.

By hypothesis, ϕ̃ is exactly cylindrical on the cylindrical end M∞ = {t ≥ 0} of M , and
ψ is supported in the compact piece M0 = {t ≤ 0}. Thus on the cylindrical end the Eq. (11)
for χ simplifies to

d∗χ = ∗dF(χ). (14)

On the cylindrical end t > 0 we can write

χ = σ + dt ∧ τ,
F(χ) = β + dt ∧ γ,

where τ ∈ �2(X), σ, γ ∈ �3(X) and β ∈ �4(X) are forms on the cross-section X depend-
ing on the parameter t . Let dX denote the exterior derivative on X . Then the conditions dχ = 0
and (14) are equivalent to

dXσ = 0, (15a)
∂
∂t σ = dXτ, (15b)

dX∗τ = −dXβ, (15c)
∂
∂t ∗τ = −dX∗σ − ∂

∂t β + dXγ. (15d)

(15b) implies that σ(t1) − σ(t2) is exact for any t1, t2 > 0. Since the exact forms form a
closed subspace of the space of 3-forms on X (in the L2 norm) and σ → 0 as t → ∞ it
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follows that σ is exact for all t > 0. Similarly (15d) implies that ∗τ −β is exact for all t > 0.
(The Eqs. (15a) and (15c) are thus redundant.) The path (σ, τ ) is therefore constrained to lie
in the space

F = {(σ, τ ) ∈ dX L2
1

(
�2T ∗ X

) × L2 (
�2T ∗ X

) : ∗τ − β is exact}.

Remark 3.8 We have not assumed that χ is in L1 on M .

β is a function of σ and τ , and it is of quadratic order. The implicit function theorem
applies to show that if we replace F with a small neighbourhood of 0 then it is a Banach
manifold with tangent space

T0F = B = dX L2
1

(
�2T ∗ X

) × d∗
X L2

1

(
�3T ∗ X

)
.

We can now interpret (15b) and (15d) as a flow on F , or equivalently near the origin in
B. By the chain rule we can write ∂

∂t β as

∂
∂t β = A2

(
∂
∂t τ

) + A3
(
∂
∂t σ

) + β ′,

where Am is a linear map from�m T ∗ X to�4T ∗ X , determined point-wise by σ and τ and of
linear order, whilst β ′ is a 4-form determined point-wise by σ and τ and of quadratic order.
In particular, for large t the norm of A2 is small, and (15b) and (15d) are equivalent to

∂
∂t σ = dXτ,

∂
∂t τ = (id + ∗A2)

−1(d∗
X σ − ∗A3dXτ − ∗β ′ + ∗dXγ ). (16)

The origin is a stationary point for the flow, and the linearisation of the flow near the origin

is given by the (unbounded) linear operator L =
(

0 dX

d∗
X 0

)
on B. Because L is formally

self-adjoint B has an orthonormal basis of eigenvectors. Also, L is injective on B, so B can
be written as a direct sum of subspaces with positive and negative eigenvalues,

B = B+ ⊕ B−.

Then {e∓t L : t ≥ 0} defines a continuous semi-group of bounded operators on B±. If we
let μ denote the smallest absolute value of the eigenvalues of L then etμe∓t L is uniformly
bounded on B± for t ≥ 0, so the origin is a hyperbolic fixed point. By analogy with finite-
dimensional flows, we expect that any solution of (15b) and (15d) approaching the origin
must do so at an exponential rate.

A similar problem of exponential convergence for an infinite-dimensional flow is consid-
ered by Mrowka, Morgan and Ruberman [26, Lemma 5.4.1]. Their problem is more general
in that the linearisation of their flow has non-trivial kernel, so that they need to consider
convergence to a ‘centre manifold’ rather than to a well-behaved isolated fixed point. As a
simple special case we can prove the L2 exponential decay for χ .

Proposition 3.9 Let δ > 0 such that δ2 is smaller than any positive eigenvalue of the Hodge
Laplacian on X. Then χ is L2

δ .

Proof Identify F with a neighbourhood of the origin in the tangent space B, and let x be the
path in B corresponding to (σ, τ ) in F . Then (16) transforms to a differential equation for x ,

dx

dt
= Lx + Q(x),
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where L is the linearisation of (16) as above, and Q is the remaining quadratic part. Let
x = x+ + x− with x± ∈ B±. If, as before, μ denotes the smallest absolute value of the
eigenvalues of L then

‖Lx+‖L2 ≥ μ‖x+‖L2 , −‖Lx−‖L2 ≤ −μ‖x−‖L2 .

Applying the chain rule to the quadratic part of (16) gives

‖Q(x)‖L2 < O(‖x‖L2)‖x‖L2
1
+ O(‖x‖2

L2).

By corollary 3.7, x converges uniformly to 0 with all derivatives as t → ∞. Therefore,
for any fixed k > 0, we can find t0 such that

‖Q(x)‖L2 < k‖x‖L2

for any t > t0. As μ2 is an eigenvalue for the Hodge Laplacian on X we may fix k so that
μ− 2k > δ.

We thus obtain that for t > t0

d

dt
‖x+‖L2 ≥ μ‖x+‖L2 − k‖x‖L2 , (17a)

d

dt
‖x−‖L2 ≤ −μ‖x−‖L2 + k‖x‖L2 . (17b)

In particular, ‖x+‖L2 − ‖x−‖L2 is an increasing function of t . Because it converges to 0 as
t → ∞,

‖x+‖L2 ≤ ‖x−‖L2

for all t > t0. Substituting into (17b)

d

dt
‖x−‖L2 ≤ −μ‖x−‖L2 + 2k‖x−‖L2 ,

so ‖x−‖L2 is of order e(−μ+2k)t . Hence so is ‖x‖L2 , so eδtχ is L2-integrable on M. ��
Corollary 3.10 χ decays exponentially with rate δ.

Proof We prove by induction that χ is L2
k,δ for all k ≥ 0. Interior estimates for the elliptic

operator d + d∗ on M imply that we can fix some r > 0 and cover the cylindrical part of M
with open balls U = B(x, r) such that

‖χ‖L2
k+1(U )

< C1

(
‖dχ‖L2

k (U )
+ ‖d∗χ‖L2

k (U )

)
+ C2‖χ‖L2(U ).

The constants C1 and C2 depend on the local properties of the metric and the volume of U .
Since M is EAC we can take the constants to be independent of U . Recall that on the cylinder
dχ = 0 and d∗χ = ∗dF(χ). In view of the chain rule expression (12) there is a constant
C3 > 0 such that

‖dF(χ)‖L2
k (U )

< C3‖χ‖Ck (U )

(
‖∇χ‖L2

k (U )
+ ‖χ‖L2

k (U )

)
.

As χ decays uniformly we can ensure that ‖χ‖Ck (U ) < 1/2C1C3 by taking U to be suffi-
ciently far along the cylindrical end. Then

‖χ‖L2
k+1(U )

< ‖χ‖L2
k (U )

+ 2C2‖χ‖L2(U ).

Hence χ is L2
k,δ for all k ≥ 0. ��

This completes the proof of Theorem 3.1.
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4 Constructing an EAC G2-manifold

We shall obtain examples of torsion-free EAC G2-structures by modifying one of the com-
pact 7-manifolds M with holonomy G2 constructed by Joyce [16]. Our EAC G2-manifolds
will arise in pairs via a decomposition of a compact M into two compact manifolds identified
along their common boundary, a 6-dimensional submanifold X ⊂ M ,

M = M0,+ ∪X M0,−. (18a)

A collar neighbourhood of the boundary of each M0,± is diffeomorphic to I × X , for an
interval I ⊂ R. Define

M± = M0,± ∪X (R+ × X). (18b)

It is on the manifolds M± with cylindrical ends that we shall construct EAC G2-structures
satisfying the hypotheses of Theorem 3.1, such that the resulting EAC G2-manifolds have
holonomy G2. (Of course, M± is homeomorphic to the interior of M0,±.)

4.1 Joyce’s example of a compact irreducible G2-manifold

In order to give examples of M± as above, we need to recall part of the construction of a
relatively uncomplicated example of a compact G2-manifold in [16, §12.2]. Consider the
action on a torus T 7 by the group � ∼= Z

3
2 generated by

α : (x1, . . . , x7) �→ ( x1, x2, x3,−x4,−x5,−x6,−x7),

β : (x1, . . . , x7) �→ ( x1,−x2,−x3, x4, x5,
1
2 − x6,−x7), (19)

γ : (x1, . . . , x7) �→ (−x1, x2,−x3, x4,
1
2 − x5, x6,

1
2 − x7).

These maps preserve the standard flat G2-structure on T 7 (cf. (1)), so T 7/� is a flat
compact G2-orbifold. It is simply-connected.

The fixed point set of each of α, β and γ consists of 16 copies of T 3 and these are all
disjoint. αβ, βγ, γ α and αβγ act freely on T 7. Furthermore, 〈β, γ 〉 acts freely on the set
of sixteen 3-tori fixed by α, so they map to 4 copies of T 3 in the singular locus of T 7/�.
Similarly 〈α, γ 〉 and 〈α, β〉 acts freely on the sixteen 3-tori fixed by β and γ , respectively.
Thus the singular locus of T 7/� consists of 12 disjoint copies of T 3.

A neighbourhood of each component T 3 of the singular locus of T 7/� is diffeomorphic
to T 3 ×C

2/{±1}. The blowup of C
2/{±1} at the origin resolves the singularity giving a com-

plex surface Y biholomorphic to T ∗
CP1, with the exceptional divisor corresponding to the

zero section CP1. The canonical bundle of Y is trivial and Y has a family of asymptotically
locally Euclidean (ALE) Ricci-flat Kähler (hyper-Kähler) metrics with holonomy SU (2).
These metrics may be defined via their Kähler forms i∂∂̄ fs , in the complex structure on Y
induced by from T ∗

CP1, where

fs =
√

r4 + s4 + 2s2 log s − s2 log(
√

r4 + s4 + s2), r2 = z1 z̄1 + z2 z̄2, (20)

and z1, z2 are coordinates on C
2 and s > 0 is a scale parameter. The forms i∂∂̄ fs admit a

smooth extension over the exceptional divisor. Metrics induced by fs in (20) are the well-
known Eguchi–Hanson metrics [9,16, Chap. 7].

It is known (and easy to check) that for each λ > 0 the map Y → Y induced by (z1, z2) �→
λ(z1, z2) pulls back i∂∂̄ fs to iλ2∂∂̄ fλs . In particular, s is proportional to the diameter of the
exceptional divisor on Y . Further, an important property of the Eguchi–Hanson metrics is
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that the injectivity radius is proportional to s whereas the uniform norm of the curvature is
proportional to s−2.

As discussed in §2.1, the product of an SU (2)-manifold and a flat 3-manifold has a ‘natural’
torsion-free G2-structure (3). By replacing a neighbourhood of each singular T 3 in T 7/� by
the product of T 3 and a neighbourhood U ⊂ Y of the exceptional divisor in the Eguchi–Han-
son space one obtains a compact smooth manifold M . Now fs , for each s > 0, is asymptotic
to r2 as r → ∞ and i∂∂̄r2 is the Kähler form of the flat Euclidean metric on C

2/{±1}. It is
therefore possible to smoothly interpolate between the torsion-free G2-structures on T 3 ×U
corresponding to the Eguchi–Hanson metrics and the flat G2-structure on T 7/� away from a
neighbourhood of the singular locus, using a cut-off function in the gluing region. In this way,
one obtains, for each small s > 0, a closed stable 3-form, say ϕinit

s , on M , so that the induced
G2-structure is torsion-free, except in the gluing region. Altogether, according to [16, §11.5]
the torsion ϕinit

s is ‘small’ in the sense that d∗ϕinit
s = d∗ψs for some 3-forms ψs satisfying

‖ψs‖L2 < λ′s4, ‖ψs‖C0 < λ′s1/2, ‖d∗ψs‖L14 < λ′, (21)

for some constant λ′ independent of s (cf. (6)). By [16, Theorem 11.6.1] (cf. Remark 3.2),
there is a constant κM > 0, so that the G2-structure ϕinit

s can be perturbed into a torsion-free
G2-structure

ϕs = ϕinit
s + (exact form) (22)

inducing a metric g(ϕs) with holonomy G2 on M whenever 0 < s < κM .
We also recall from [16, §12.1] the technique for computing the Betti numbers of the res-

olution M . This will be needed later when we compute Betti numbers of the EAC G2-mani-
folds M±.

The cohomology of T 7/� is just the �-invariant part of the cohomology of T 7, so
b2(T 7/�) = 0 whilst b3(T 7/�) = 7. For each of the 12 copies of T 3 in the singular locus
we cut out a tubular neighbourhood, which deformation retracts to T 3, and glue in a piece
of T 3 × Y , which deformation retracts to T 3 × CP1. Each of the operations increases the
Betti numbers of M by the difference between the Betti numbers of T 3 × Y and T 3. This is
justified using the long exact sequences for the cohomology of T 7/� relative to its singular
locus and M relative to the resolving neighbourhoods. Hence

b2(M) = 12 · 1 = 12,

b3(M) = 7 + 12 · 3 = 43.

4.2 An EAC G2-manifold

We can let the group � defined above act on R × T 6 instead of T 7, taking x1 to be the
coordinate on the R-factor. Then (R×T 6)/� is a flat G2-orbifold with a single end. We want
to resolve it to an EAC G2-manifold.

The fixed point set of each of α and β in R × T 6 consists of 16 copies of R × T 2 and
the fixed point set of γ consists of 8 copies of T 3. Resolving the singularities of (R × T 6)/�

arising from α, β by gluing in copies of R×T 2 ×Y (along with resolving the T 3 singularities
arising from γ as before) yields a smooth manifold M+ with a single end (the cross-section
X of M+ is a resolution of T 6/�′, where �′ ⊂ � is the subgroup generated by α and β).
However, the G2-structure defined by naively adapting the method of the last subsection
would introduce torsion in a non-compact region, making it difficult to perturb to a torsion-
free G2-structure. To apply Theorem 3.1 we need to ensure that the G2-structure is exactly
cylindrical and torsion-free on the cylindrical end, so there may only be torsion in a compact
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region. We shall get round this problem by performing the resolution in two steps, and prove
the following.

Theorem 4.1 The manifold M+ with cylindrical end and cross-section X, as defined in the
beginning of this subsection, has an EAC metric with holonomy equal to G2. The asymptotic
limit metric on X has holonomy equal to SU (3).

Before giving the details of the proof of Theorem 4.1, let us change perspective slightly
and explain how the latter 7-manifold M+ arises in the setting (18), with M the compact
7-manifold discussed in §4.1. The image of a hypersurface T 6 ⊂ T 7 defined by x1 = 1

4 is
a hypersurface orbifold X0 which divides T 7/� into two open connected regions. In fact,
X0 is precisely T 6/�′, as �′ is the subgroup that acts trivially on the x1 factor in T 7. Each
component of (T 7/�)\X0 is the interior of a compact orbifold with boundary X0 and we can
attach product cylinders R>0 × X0 to form orbifolds with a cylindrical end. One of these (the
one containing the image of x1 = 0) corresponds naturally to (R × T 6)/�.

Now, M+ is well-defined as a resolution of singularities of this (R × T 6)/� as described
above and M− is defined similarly by starting from the other component of T 7/�\X0.

Remark 4.2 In this particular example, the two EAC halves M± will be isometric, the isom-
etry being induced from an involution on T 7/�,

(x1, . . . , x7) �→ (
x1 + 1

2 , x2, x3, x4, x5, x6, x7
)
,

which swaps the two components of (T 7/�)\X0. The restriction to X0 induces an anti-holo-
morphic isometry on its resolution X .

We now state a technical result from which Theorem 4.1 will follow.

Proposition 4.3 Let M be a smooth compact 7-manifold obtained by resolving singulari-
ties of T 7/�, as defined in §4.1. There exists a constant κ ′ > 0, such that for each s with
0 < s < κ ′, there is a closed stable ϕ̃s ∈ �3(M) with the following properties:

(i) There is a Calabi–Yau structure (�, ω) on a 6-manifold X and an interval I = (−ε, ε)
such that M has an open subset N ∼= X × I with

ϕ̃s |N = �+ dt ∧ ω, (23)

and N retracts to X and the complement of N in M has exactly two connected com-
ponents (diffeomorphic to the components of M\X).

(ii) There is a smooth 3-form ψs such that d∗ψs = d∗ϕ̃s , satisfying the estimates (6), with
λ > 0 independent of s.

(iii) ψs vanishes on N.
(iv) The 3-form ϕ̃s − ϕinit

s is exact, where ϕinit
s is the G2-structure on M defined in §4.1.

We can think of ϕ̃s as an ‘intermediate’ perturbation of ϕinit
s . Instead of perturbing away all

the torsion in one go, like in §4.1, we settle for eliminating the torsion from the neck region N ,
whilst keeping it controlled elsewhere. What we gain is that ϕ̃s is a product G2-structure on
N . We can therefore cut M into two halves along the hypersurface X × {0} ⊂ N , and
attach a copy of X × [0,∞) to each half to form cylindrical-end manifolds M± with EAC
G2-structures ϕ̃s,± = ϕ̃s |M± . The properties (i)–(iii) achieved in Proposition 4.3 ensure that
Theorem 3.1 then applies to each of M±, giving 0 < κ ≤ κ ′ such that ϕ̃s,± can be perturbed
to torsion-free G2-structures

ϕs,± = ϕ̃s,± + dηs,±,
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whenever 0 < s < κ .
The orbifold (R×T 6)/� is simply-connected, and so is the resolution M+. Therefore, any

torsion-free G2-structure on M+ induces a metric with full holonomy G2 by Corollary 2.2,
which proves Theorem 4.1 assuming Proposition 4.3.

Remark 4.4 This construction of the EAC G2-structures with small torsion is only superfi-
cially different from the description given before the statement of Theorem 4.1. That is, the
choice of whether we cut the manifold in half and attach cylinders before or after resolving
the singularities of the neck is not particularly important. The convenience of going with the
latter choice in the proof is that it allows us to do most of the technical work on compact
manifolds. Another advantage is that then it is better illuminated that we obtain a pair of
torsion-free EAC G2-manifolds whose asymptotic models are isomorphic. One can apply to
this pair of G2-structures the gluing theorem from [18, §5] and obtain a G2-structure on the
generalized connected sum of M± joined at their ends, giving a compact G2-manifold with a
long neck. This connected sum is, of course, diffeomorphic to the compact G2-manifold M
as obtained by resolving singularities T 7/� directly as in §4.1. Considering the G2-metrics
one may intuitively think of the EAC halves M± being obtained by ‘pulling M apart’. This
will be made more precise in §6, where the clause (iv) of Proposition 4.3 will be important.

4.3 Proof of Proposition 4.3

We find the desired cylindrical-neck G2-structure ϕ̃s on the resolution M of T 7/� by per-
forming the resolution in two stages. The group � preserves the product decomposition
T 7 = S1 × T 6, where the S1 factor corresponds to the x1 coordinate. Let �′ ⊂ � be the
subgroup generated by α and β; notice that �′ acts on T 6 (and fixes the S1-factor). Define
� = �/�′. Here is the strategy of our proof:

(1) Resolve the singularities of T 7/�′ using Eguchi–Hanson hyper-Kähler spaces as
described in §4.1 to form a compact manifold M ′ ∼= S1 × X6 equipped with a family of
�-invariant G2-structures ϕ̃′

s with small torsion. Perturb ϕ̃′
s to a torsion-free�-invariant

product G2-structure ϕ′
s on M ′.

(2) The G2-structure ϕ′
s is not flat near the fixed point set F of� acting on M ′. We perturb

ϕ′
s by adding an exact 3-form supported near F , so that the resulting G2-structure on

M ′ interpolates between the flat structure near F and ϕ′
s away from F . The torsion

introduced by the latter perturbation 3-form is controlled by estimates similar to (6).
Furthermore, the interpolating G2-structure is �-invariant and descends to the orbi-
fold M ′/� (see Fig. 1).

(3) Resolve the singularities of M ′/�, using the same Eguchi–Hanson hyper-Kähler struc-
tures as in the construction of ϕinit

s in §4.1 (in particular, they have the same scale
parameter s as in step 1) and construct the G2-structure ϕ̃s on the compact manifold M .
Finally, check that the difference ϕ̃s −ϕinit

s is essentially the exact form added in step 2.

Our first step is entirely analogous to the construction of ϕinit
s outlined in §4.1, but this

time we resolve the singularities of the orbifold (S1 × T 6)/�′ rather than T 7/�. This gives
a compact 7-manifold M ′ with a family of closed S1-invariant 3-forms, say ϕ̃′

s , inducing
G2-structures with small torsion in the sense of (21). Then, as noted in Remark 3.2, we can
apply [16, Theorem 11.6.1] and obtain a κ ′ > 0, such that ϕ̃′

s admits a perturbation to a
torsion-free G2-structure

ϕ′
s = ϕ̃′

s + dη′
s, (24)
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for 0 < s < κ ′. The correction term satisfies

‖dηs‖L2 < K ′s4, ‖dηs‖C0 < K ′s1/2, ‖∇dηs‖L14 < K ′, (25)

with some constant K ′ independent of s [cf. (7)].
Clearly, there is a diffeomorphism

M ′ � S1 × X,

where X denotes a blowup of the complex orbifold T 6/�′. Since ϕ̃′
s is S1-invariant, so is ϕ′

s ;
in fact, more is true. The lemma below can be thought of as a simple version of the Chee-
ger–Gromoll line splitting theorem (cf. [8]) and ensures that ϕ′

s is a product G2-structure
determined by some Calabi–Yau structure on X and some diffeomorphism M ′ ∼= S1 × X
(but not necessarily the same one as for ϕ̃′

s).

Lemma 4.5 (cf. Chan [7, p. 15]) Let T m be a torus and X a compact manifold with b1(X) =
0. If g is a Ricci-flat metric on T n × X that is invariant under translations of the torus factor
then there is a function f : X → R

n such that the graph diffeomorphism

T n × X → T n × X, (t, x) �→ (t + f (x), x)

pulls g back to a product metric.

Sketch proof Let ∂
∂x1 , . . . ,

∂
∂xn be the coordinate vector fields on T n and αi = ( ∂

∂xi )
�. Each

∂
∂xi is a Killing vector field on a Ricci-flat manifold, so the 1-forms αi are harmonic. Since

b1(X) = 0 the closed forms αi are exact. Define f : X → R
n by choosing fi such that

αi = −d fi . ��
The following commutative diagram shows the relation between M ′ � S1 × X and M in

the resolution of singularities and will be useful for keeping track of the construction of the
desired ϕ̃s on M from G2-structures ϕ̃′

s and ϕ′
s on M ′.

M

��

��

�
�

�
�

�
�

�

M ′

��

[�] �� M ′/�

��
S1 × (T 6/�′)

[�] �� T 7/�

(26)

Here, we used [�] to denote the quotient maps for the actions of � = �/�′ ∼= Z2. The
vertical arrows are the resolution maps (essentially blowups) locally modelled on T 3 ×U →
T 3 × (C2/ ± 1), with U a neighbourhood of the exceptional divisor in an Eguchi–Hanson
space. Note that there is a unique way to lift the action of � to M ′, so that the diagram (26)
commutes. (One can further ‘fill in’ the top left corner of (26), the respective manifold being
essentially the blowup of the fixed point set of � in M ′, but we won’t need that.)

The singular locus of M ′/� consists of 4 copies of T 3, corresponding to the fixed point
set of γ , cf. §4.1. We can choose the resolutions in constructing ϕ̃′

s so that it becomes
�-invariant, moreover, so that away from a neighbourhood S of the fixed point set of�, ϕ̃′

s is
the pull-back of ϕinit

s via M ′\S → M . Then ϕ′
s is�-invariant too, so both ϕ̃′

s and ϕ′
s descend

to well-defined G2-structures on the quotient M ′/�. A neighbourhood of each T 3 component
of the singular locus is homeomorphic to T 3 × (C/{±1}). However, a consequence of our
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Fig. 1 An interpolating G2-structure ϕ̃′
s + d(η′ − ρχ) on the orbifold M ′/�

previous step is that the G2-structure ϕ′
s on M ′/� is not necessarily flat near the singular

locus. Therefore, we cannot immediately use Joyce’s method discussed in §4.1, resolving
the singularities of M ′/� by patching ϕ′

s with the product G2-structure on T 3 × U , in a way
that keeps the torsion small.

On the other hand, the G2-structure ϕ̃′
s on M ′ is flat except near the resolved singularities.

In particular, ϕ̃′
s is flat near the fixed point set F ⊂ M ′ of �, since the elements of � have

disjoint fixed point sets. We now wish to define on M ′, for 0 < s < κ ′, a closed �-invari-
ant G2-structure with small torsion, by smoothly interpolating between the flat ϕ̃′

s near F
and the torsion-free ϕ′

s in a �-invariant region N ′ = (
( 1

4−ε, 1
4+ε) ∪ ( 3

4−ε, 3
4+ε)) × X ⊂

(R/Z)× X � M ′, for some 0 < ε < 1
4 . Note that although N ′ has two components, its image

in the resolution M of M ′/� is connected and will be the cylindrical neck region N in the
statement of Proposition 4.3. See Fig. 1. To achieve small torsion, we use a generalization of
the classical Poincaré inequality.

Lemma 4.6 Let F be a compact Riemannian manifold and I a bounded open interval. For
any n ≥ 0, k ≥ 0 and p ≥ 1 there is a constant Cn,p,k > 0, such that for every exact
L p

k m-form dη on the Riemannian product S = F × I n there is an (m − 1)-form χ with
dχ = dη and

‖χ‖L p
k+1

< Cn,p,k‖dη‖L p
k
. (27)

Proof The proof is by induction on n. The result holds for n = 0 by standard Hodge theory
and elliptic estimate for the Laplacian on compact F . For the inductive step, we show that if
a manifold S satisfies the assertion of the lemma, then so does S × I with the product metric.

Let t denote the coordinate on I and St denote the hypersurface S × {t}. We can write

dη = α + dt ∧ β,
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with α and β sections of the pull-back of �∗T ∗S to S × I . Write α(t), β(t) for the corre-
sponding forms on St . Fix t0 ∈ I and let

χ1(t) =
∫ t

t0
β(u)du.

Let ∇ denote the covariant derivative on S × I , and consider χ1 as a form on S × I . For
any 0 ≤ i ≤ k and t ∈ I

‖(∇ iχ1)(t)‖p
L p(St )

=
∫

S

∥
∥
∥
∥

∫ t

t0
(∇ iβ)(u)du

∥
∥
∥
∥

p

volS

≤ V p−1
∫

S

∫ t

t0
‖(∇ iβ)(u)‖pdu volS ≤ V p−1‖∇ iβ‖p

L p(S×I ),

where V is the length of I . Hence

‖∇ iχ1‖p
L p(S×I ) ≤

∫

I
‖(∇ iχ1)(u)‖p

L p(Su )
du ≤ V p‖∇ iβ‖p

L p(S×I ),

and

‖χ1‖L p
k (S×I ) ≤ V ‖dη‖L p

k (S×I ).

d(η − χ1) has no dt-component, so the dt-component of d2(η − χ1) is ∂
∂t d(η − χ1) = 0.

Hence d(η−χ1) is the pull-back to S × I of an exact form on S. By the inductive hypothesis
there is a form χ2 such that dχ2 = d(η − χ1) and χ = χ1 + χ2 satisfies (27) for some C
independent of dη. ��

Let S ∼= F × I 4 be a tubular neighbourhood of F in M ′. Applying Lemma 4.6 to dη′
s

in (24), we obtain a 2-form χs on S such that

dχs = dη′
s |S

and χs satisfies the L2 estimate

‖χs‖L2 < C4,2,0‖dη′
s |S‖L2 ≤ K2s4 (28a)

as well as the L14
1 estimate

‖χs‖L14
1
< C4,14,0‖dη′

s |S‖L14 ≤ C4,14,0 vol(S)1/14‖dη′
s |S‖C0 < K14s1/2 (28b)

with K2, K14 independent of s. Here, we also used (25). We shall also need an estimate on
the uniform norm of χs which is obtained from (28) and the following version of Sobolev
embedding.

Theorem 4.7 ([16, Theorem G1]) Let μ, ν and s be positive constants, and suppose M is
a complete Riemannian 7-manifold, whose injectivity radius δ and Riemannian curvature R
satisfy δ ≥ μs and ‖R‖C0 ≤ νs−2. Then there exists C > 0 depending only on μ and ν,
such that if χ ∈ L14

1 (�
3) ∩ L2(�3) then

‖χ‖C0 ≤ C(s1/2‖∇χ‖L14 + s−7/2‖χ‖L2).

We deduce that

‖χs‖C0 < C(K2s + K14s1/2) < C̃s1/2
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as s > 0 varies in a bounded interval.
Let ρ be a cut-off function (not depending on s) which is 1 near F and 0 outside S. Then

‖d(ρχ)‖L2 < K ′′s4, ‖d(ρχ)‖C0 < K ′′s1/2, ‖∇d(ρχ)‖L14 < K ′′, (29)

with K ′′ independent of s.

Remark 4.8 A key point in achieving the estimates (28) and (29) is that a tubular neighbour-
hood S ∼= F × I 4 does not meet the region affected by resolution of singularities in our
first step. Therefore, the metric on S and the respective constants in (27) can be taken to be
independent of s. See also Remark 5.2 below.

For each 0 < s < κ ′, ϕ̃′
s + d(η′

s − ρχs) is a closed G2-structure which is flat near F . It is
clear from the chain rule that it has small torsion in the sense of Theorem 3.1: there is a form
ψ ′

s such that d∗ψ ′
s = d�(ϕ̃′

s + d(η′
s − ρχs)), satisfying (6). (Here � denotes the non-linear

mapping ϕ �→ ∗ϕϕ; note that� depends only on the smooth structure and orientation on M ′.)
However, we need to take care to choose ψ ′

s in such a way that it vanishes not only on the
cylindrical region N ′, but also near F . Because F has dimension 3 any closed 4-form on the
tubular neighbourhood S is exact. By Lemma 4.6 we can write

(
�

(
ϕ̃′

s + dη′
s

) −�
(
ϕ̃′

s

)) |S = dχ ′
s

for some 3-form χ ′
s on S, so that d(ρχ ′

s) satisfies estimates of the form (29). We can then
take

ψ ′
s = ∗ (

�
(
ϕ̃′

s + d
(
η′

s − ρχs
)) −�

(
ϕ̃′

s + dη′
s

) + d
(
ρχ ′

s

))
.

This is supported in S and vanishes near F and satisfies (6) for some λ > 0 (depending on the
constants K ′ and K ′′ from (25) and (29), but not on s). We can ensure that all forms are �-
invariant, soψ ′

s descends to a small 3-form, still denoted byψ ′
s on the orbifold M ′/�. As this

form is supported away from the singular locus, ψ ′
s is also well-defined on the resolution M .

For 0 < s < κ ′, the form ϕ̃′
s + d(η′

s − ρχs) descends to an orbifold G2-structure on
M ′/� with small torsion. By construction, it is a product G2-structure on the image N ∼=
I × X ⊂ M ′/� of N ′ ⊂ M ′. Its orbifold singularities are modelled on quotients of the flat
G2-structure, so the singularities can be resolved like in §4.1 to define a closed G2-structure
ϕ̃s on M . We make sure that the Eguchi–Hanson spaces used in this resolution have the same
scale as those used for the resolution of the first-step singularities. The torsion introduced by
the resolution is then small, in the sense that there is a smooth 3-form ψ ′′

s on M , supported
near the pre-image F ′ of the singular locus, such that d∗ψ ′′

s = d∗ϕ̃s near F ′ and ψ ′′
s satisfies

the estimates (6). Thus for each 0 < s < κ ′, ϕ̃s is a G2-structure on M with small torsion
(controlled by ψs = ψ ′

s + ψ ′′
s ) and N is a cylindrical neck region, so that ϕ̃s satisfies the

claims (i)–(iii) of Proposition 4.3.
To prove the remaining claim iv we identify the difference between our ϕ̃s and the G2-struc-

ture ϕinit
s obtained (in §4.1) by resolving all the singularities of T 7/� in a single step. By

construction in the previous paragraph, ϕ̃s − ϕinit
s vanishes on a neighbourhood of the pre-

image in M of the singular locus of M ′/� (see (26)). Therefore, we may interchangeably
consider ϕ̃s − ϕinit

s as a �-invariant form on M ′ supported away from a neighbourhood S of
the fixed point set of �.

Now recall that ϕ̃′
s is a �-invariant form on M ′ and the restriction of ϕ̃′

s agrees with the
pull-back of ϕinit

s to M\S. On the other hand, the difference between the pull-back of ϕ̃s to
M\S and ϕ̃′

s |M ′\S is d(η′
s − ρχs). The 2-form η′

s − ρχs is �-invariant, as η′
s and χs are so.
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As η′
s − ρχs is also supported away from S, it is the pull-back via M ′\S → M of a well-

defined 2-form, say ξ , on M . We find that ϕ̃s − ϕinit
s is the exact form dξ . This completes the

proof of Proposition 4.3.

5 Further examples and applications

We now construct a few further examples of EAC G2-manifolds with different types of
cross-sections and discuss their topology. We also give examples of EAC coassociative sub-
manifolds.

5.1 Topology of the example of §4

To study the topology of the EAC G2-manifold M+ we consider it as a resolution of (T 6 ×
R)/�. As noted in §4.2, both the orbifold and its resolution are simply-connected.

Recall that we chose �′ to be the stabiliser of the S1 factor corresponding to the x1 coor-
dinate in (19), i.e. �′ = 〈α, β〉. The resolution of the intermediate quotient S1 × T 6/�′ is
isomorphic to S1 × X19, for a simply-connected Calabi–Yau 3-fold X19. This X19 is then the
cross-section of M+.

We find that the Betti numbers of
(
T 6 × R

)
/� are b2 = 0, b3 = 4, b4 = 3, b5 = 0. The

singular locus in
(
R × T 6

)
/� consists of 8 copies of T 2 × R and 2 copies of T 3. Resolving

the former adds 1, 2 and 1 to b2, b3 and b4, respectively. Therefore

b2(M+) = 8 · 1 + 2 · 1 = 10,

b3(M+) = 4 + 8 · 2 + 2 · 3 = 26,

b4(M+) = 3 + 8 · 1 + 2 · 3 = 17,

b5(M+) = 2 · 1 = 2.

We can also compute the Betti numbers of the cross-section X19, and find that b2(X19) =
19, b3(X19) = 40. Therefore its Hodge numbers are

h1,1(X19) = h1,2(X19) = 19.

Remark 5.1 The Calabi–Yau 3-fold X19 can be obtained in a slightly different way. Blowing
up the singularities of T 6/〈α〉 gives a product of a Kummer K3 surface and an elliptic curve
E ∼= T 2. The map β descends to a holomorphic involution of K3 × E , still denoted by β.
The restriction β|E induced by −1 on C has 4 fixed points in E and (β|K3)

∗ multiplies the
holomorphic (2,0)-forms on the K3 surface by −1. The 3-fold X19 is then the blowup of
the orbifold (K 3 × E)/〈β〉 at its singular locus. Calabi–Yau 3-folds obtained from K3 × E
and an involution β with the above properties were studied by Borcea [4] and Voisin [32] in
connection with mirror symmetry, and are sometimes called Borcea–Voisin manifolds.

According to [29, Proposition 3.5], the dimension of the moduli space of torsion-free EAC
G2-structures on M± can be written in terms of Betti numbers as

b4(M±)+ 1
2 b3(X)− b1(M±)− 1, (30)

so in this example we find that the moduli space has dimension 36.
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5.2 Two more EAC G2-manifolds

Let us consider some variations of the example in the previous subsection in order to get
examples of different topological types. Especially, we want to show that an EAC manifold
with holonomy exactly G2 may have a cross-section X whose holonomy is a proper sub-
group of SU (3). Here and below by holonomy of a cross-section we mean ‘holonomy at
infinity’, corresponding to the Calabi–Yau structure on X defined by the asymptotic limit of
G2-structure along the cylindrical end (cf. §2.2).

When we let the group � from (19) act on R × T 6 in the previous subsection, we could
have taken the R-factor to correspond to a coordinate on T 7 other than x1. In the geometric
interpretation of Remark 4.4 this means pulling the compact G2-manifold M apart along a
hypersurface defined by xi = const rather than x1 = const. Pulling apart M in the x2 or x4

direction we get essentially the same pair of 7-manifolds M± as for the x1 direction in §4.2.
We just need to use 〈γ, α〉 or 〈β, γ 〉 as �′ to define the intermediate resolution.

If we pull apart along the x3 direction we get a slightly different geometry and new exam-
ples. The subgroup of � acting trivially on the x3 factor is �′ = 〈α, βγ 〉, which only contains
one non-identity element with fixed points. The cross-section of the neck is a resolution X11

of T 6/�′. It is a non-singular quotient of T 2 × K 3 by an involution that acts as −1 on the T 2

factor, so the first Betti number b1(X11) vanishes, but the holonomy of X11 is Z2 � SU (2).
The EAC G2-manifolds M± are however simply-connected with a single cylindrical end.
Thus, by Corollary 2.2, these are examples of irreducible EAC G2-manifolds with locally
reducible cross-section. These are not homeomorphic to the example in §4.2 as the cross-sec-
tion X19 of the latter example is simply-connected, whereas X11 is not. We can also compute
the Betti numbers of M±.

In the present case, the singular locus in each half is 4 copies of T 3 and 4 copies of T 2 ×R.
The Betti numbers are therefore

b2(M±) = 4 · 1 + 4 · 1 = 8,

b3(M±) = 4 + 4 · 2 + 4 · 3 = 24,

b4(M±) = 3 + 4 · 1 + 4 · 3 = 19,

b5(M±) = 4 · 1 = 4.

The Hodge numbers of X11 = (T 2 × K 3)/Z2 are

h1,1(X11) = h1,2(X11) = 11.

By the formula (30) the moduli space of torsion-free EAC G2-structures on M± has
dimension 31.

It is also possible to pull apart M in the x5, x6 or x7 directions. In all three cases, the
resulting EAC G2-manifolds have b1(M±) = 1, so do not have full holonomy G2. In §7,
we shall consider the case of x5 in greater detail, and relate M± to quasiprojective complex
3-folds with holonomy SU (3) and to a ‘connected-sum construction’ of compact irreducible
G2-manifolds [18,19]. The case x6 is similar, but the case x7 is qualitatively different in that
the cross-section X is not T 2 × K 3 but a non-singular quotient of T 6.

In order to find an example of an EAC manifold with holonomy G2 whose cross-section
at infinity is flat, we replace � with the group �1 generated by

α : (x1, . . . , x7) �→ ( x1, x2, x3,−x4,−x5,−x6,−x7) ,

β : (x1, . . . , x7) �→ (
x1,−x2,−x3, x4, x5,

1
2 − x6,−x7

)
, (31)

γ1 : (x1, . . . , x7) �→ (−x1, x2,
1
2 − x3, x4,

1
2 − x5, x6,−x7

)
.
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The orbifold T 7/�1 can be resolved in the same way as T 7/�, and the resulting compact
G2-manifold M1 has the same Betti numbers as M . Pulling M1 apart in the x7 direction
gives an EAC manifold with holonomy exactly G2 whose cross-section is the non-singular
quotient of T 6 by �′ = 〈αβ, βγ1〉 ∼= Z

2
2. In particular, the cross-section is flat (in this case,

there is no need for any intermediate resolution in the construction of the EAC G2-structure).
The manifold has Betti numbers

b2(M+) = 6 · 1 = 6,

b3(M+) = 4 + 6 · 3 = 22,

b4(M+) = 3 + 6 · 3 = 20,

b5(M+) = 6 · 1 = 6.

The cross-section has b1(T 6/Z2
2) = 0 (this is in any case a necessary condition for the EAC

manifolds M± to have full holonomy G2, by [29, Proposition 5.16] and Theorem 2.1) and

h1,1 (
T 6/Z2

2

) = h1,2 (
T 6/Z2

2

) = 3.

The moduli space of torsion-free EAC G2-structures on M± has dimension 23.

Remark 5.2 Looking carefully, the argument for pulling apart a compact G2-manifold
obtained by resolving T 7/� (provided a method for resolving its singularities with small
torsion) relies on two properties of the group �. The first is that � preserves a product
decomposition T 7 = S1 × T 6, with some elements acting as reflections on the S1 factor. The
other is that, in order to apply Lemma 4.6, the fixed point sets of elements of the subgroup �′
acting trivially on the S1 factor must not intersect fixed point sets of the remaining elements
(cf. Remark 4.8).

In [16], Joyce gives a number of examples of suitable groups�, where such fixed point sets
of elements are pair-wise disjoint. Most of them preserve a product decomposition, so can be
pulled apart (possibly in more than one way) giving further examples of EAC G2-manifolds.

More generally, a method is proposed in [16, p. 304] for constructing G2-structures with
small torsion on a resolution of singularities of S1 × X6/(−1, a), where X6 is a Calabi–Yau
3-fold and a is an anti-holomorphic involution on X6. As discussed in §2.1, the Calabi–Yau
structure of X is completely determined by two closed forms, the real part � of a non-van-
ishing holomorphic (3, 0)-form and the Kähler form ω. Then a∗ω = −ω and without loss
of generality a∗� = �. The product torsion-free G2-structure �+ dt ∧ ω as in (2) is well-
defined on S1 × X and invariant under (−1, a), thus descends to a well-defined G2-structure
on the quotient. The singular locus of S1 × X6/(−1, a) is of the form {0, 1

2 } × L , where
L ⊂ X is the fixed point set of a, necessarily a real 3-dimensional submanifold of X (more
precisely, L is special Lagrangian).

A resolution of singularities of (S1 × X)/(−1, a) should be locally modelled on R
3 × Y ,

where Y is an Eguchi–Hanson space. It is explained in [16, p. 304] that to get a well-defined
G2-structure (initially with small torsion) on the resolution one would need to make a choice
of smooth family of ALE hyper-Kähler metrics on Y .

Assuming such choice, one could equally well define EAC G2-structures with small tor-
sion on (R × X)/(−1, a), and use Theorem 3.1 to obtain EAC manifolds with holonomy
G2.

5.3 EAC coassociative submanifolds

Let M be a 7-manifold with a G2-structure given by a 3-form ϕ. A coassociative submanifold
C ⊂ M is a 4-dimensional submanifold such that ϕ|C = 0. It is not difficult to check that
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then the 4-form ∗ϕϕ never vanishes on C , thus every coassociative submanifold is necessarily
orientable.

If a G2-structure ϕ is torsion-free then d∗ϕϕ = 0 and the 4-form ∗ϕϕ is a calibration
on M as defined by Harvey and Lawson [11]. In this case, coassociative submanifolds (con-
sidered with appropriate orientation) are precisely the submanifolds calibrated by ∗ϕϕ, in
particular, every coassociative submanifold of a G2-manifold is a minimal submanifold [11,
Theorem II.4.2]. Our definition of coassociative submanifold is not the same as in op.cit. but
is equivalent to it via [11, Proposition IV.4.5 & Theorem IV.4.6].

One way of producing examples of coassociative submanifolds is provided by the follow-
ing.

Proposition 5.3 ([16, Proposition 10.8.5]) Let σ : M → M be an involution such that
σ ∗ϕ = −ϕ. Then each connected component of the fixed point set of σ is either a coasso-
ciative 4-fold or a single point.

Any σ as in the hypothesis of Proposition 5.3 is called an anti-G2 involution. It is neces-
sarily an isometry of M .

Let M7 be the compact G2-manifold discussed in §4.1 and ϕ its torsion-free G2-structure.
We shall consider two examples of anti-G2 involution taken from [16, §12.6] which extend
to well-defined anti-G2 involutions of EAC G2-manifolds constructed in §5.2.

Example 5.4 Define an orientation-reversing isometry of T 7 as in [16, Example 12.6.4].

σ : (x1, . . . , x7) �→ ( 1
2 − x1, x2, x3, x4, x5,

1
2 − x6,

1
2 − x7

)
. (32)

Then σ commutes with the action of � defined by (19) and pulls back ϕ0 to −ϕ0. When
the singularities of T 7/� are resolved to form the compact G2-manifold M one can ensure
that σ lifts to an anti-G2 involution of (M, ϕ). The fixed point set of σ in M consists of 16
isolated points and one copy of T 4, which is a coassociative submanifold of M .

We can also consider σ in (32) as an involution of T 6 × R. Provided that the R factor
corresponds to the x2, x3 or x4 coordinate this again commutes with the action of �. When
we pull apart M in the x2, x3 or x4 direction the resulting irreducible EAC G2-manifolds M±
are resolutions of (T 6 × R)/�, so σ lifts to an anti-G2 involution of M±. The fixed point set
in each half M± consists of 8 isolated points and one 4-manifold C± ∼= T 3 × R, which is an
asymptotically cylindrical coassociative submanifold of M± (in the obvious coordinates for
the cylindrical end of M±,C± is a product submanifold).

Example 5.5 Here is another orientation-reversing isometry of T 7 taken from [16, Example
12.6.4].

σ : (x1, . . . , x7) �→ ( 1
2 − x1,

1
2 − x2,

1
2 − x3, x4, x5, x6, x7

)
.

Its fixed point set in T 7/� consists of 16 isolated points and two copies of T 4/{±1}. Again,
σ lifts to an anti-G2 involution of (M, ϕ) and the corresponding coassociative submanifolds
in M are now, respectively, two copies of the usual Kummer resolution of T 4/{±1}, diffeo-
morphic to a K 3 surface.

If we pull apart M in the x4 direction then σ again defines anti-G2 involutions of the result-
ing irreducible EAC G2-manifolds M±. In each half the fixed point set has two 4-dimensional
components, which are resolutions of (T 3 × R)/{±1}. These are asymptotically cylindrical
coassociative submanifolds of M . Topologically, they are ‘halves’ of a K 3 surface: attach-
ing two copies by identifying their boundaries T 3 ‘at infinity’ via an orientation-reversing
diffeomorphism one obtains a closed 4-manifold diffeomorphic to K 3.
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Compact coassociative submanifolds have a well-behaved deformation theory. For any
coassociative submanifold C ⊂ M , the normal bundle of C is isomorphic to the bundle
�2+T ∗C of self-dual 2-forms. McLean [24, Theorem 4.5] shows that the nearby coassocia-
tive deformations of a closed coassociative submanifold C is a smooth manifold of dimension
b2+(C) (see also [17, Theorem 2.5]).

Joyce and Salur prove an EAC analogue of McLean’s result. Denote by H2
0 (C,R) ⊆

H2(C,R) the subspace of cohomology classes represented by compactly supported 2-forms.
Equivalently, H2

0 (C,R) is the image of the natural ‘inclusion homomorphism’ of the coho-
mology with with compact support H2

c (M,R) → H2(M,R).

Proposition 5.6 ([17]) Let M7 be an EAC G2-manifold with cross-section X6 and C ⊂ M
an EAC coassociative submanifold asymptotic to R+ × L, for a 3-dimensional submanifold
L ⊂ X. Then the space of nearby coassociative deformations of C asymptotic to R+ × L is
a smooth manifold of finite dimension b2

0,+(C), which is the dimension of a maximal positive

subspace for the intersection form on H2
0 (C,R).

For T 3 × R or the half-K 3-surface this quantity vanishes. Indeed, Hi
0(T

3 × R) = 0 for
all i . The half-K3-surface can be regarded as a quotient of T 3 ×R blown up at some C

2/{±1}
singularities, so the only contribution to H2

0 comes from the exceptional CP1 divisors, which
have negative self-intersection. Thus the coassociative submanifolds in example 5.4 and 5.5
are rigid if their ‘boundary L at infinity’ is kept fixed.

6 Pulling apart G2-manifolds

In §4 and §5 we constructed pairs of asymptotically cylindrical G2-manifolds (M±, ϕs,±).
They were obtained from a decomposition (18) of compact G2-manifolds (M, ϕs) taken
from [16] which are resolutions of T 7/�. In this section we show how our construction of
(M±, ϕs,±) can be regarded as an inverse operation to a gluing construction in [18] that
forms compact G2-manifolds from a ‘matching’ pair of EAC G2-manifolds. It is easy to
see that joining the manifolds M± at their cylindrical ends yields a manifold diffeomorphic
to M , but we shall prove a stronger statement that there is a continuous path of torsion-free
G2-structures connecting ϕs to the glued G2-structures. In other words, pulling the compact
G2-manifold (M, ϕs) apart into EAC halves and gluing them back together again gives a
G2-structure that is deformation-equivalent to the original ϕs .

We begin by describing the gluing construction of compact G2-manifolds from a matching
pair of EAC G2-manifolds. Let (M±, ϕ±) be some EAC G2-manifolds with cross-sections
X±. The restrictions of the EAC torsion-free G2-structuresϕ± to the cylindrical ends [0,∞)×
X± ⊂ M± have the asymptotic form

ϕ±|[0,∞)×X± = ϕ±,cyl + dη±,

where each

ϕ±,cyl = �± + dt ∧ ω±

is a product cylindrical G2-structure induced by a Calabi–Yau structure on X and each 2-form
η± decays with all derivatives at an exponential rate as t → ∞

‖∇rη±‖{t}×X± < Cr eλt .
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We say that ϕ± is a matching pair of EAC G2-structures if there is an orientation-reversing
diffeomorphism F : X+ → X− satisfying

F∗(�−) = �+, F∗(ω−) = −ω+. (33)

For each sufficiently large L > 0, the 3-form

ϕ̃±(L) = ϕ± − d(α(t − L)η±)

induces a well-defined G2-structure. Here, we used α(t) to denote a smooth cut-off func-
tion, 0 ≤ α(t) ≤ 1, α(t) = 0 for t ≤ 0 and α(t) = 1 for t ≥ 1. For L > 1, denote
M±(L) = M±\ ((L + 1,∞)× X±). A generalized connected sum of M± may be defined
as

M(L) = M+(L) ∪F M−(L)

identifying the collar neighbourhoods of the boundaries of M(L) via (t, x) ∈ [L , L + 1] ×
X+ → (2L + 1 − t, F(x)) ∈ [L , L + 1] × X−. The 3-forms ϕ̃±(L) agree on the ‘gluing
region’ [L , L + 1] × X± and together define a closed G2 3-form ϕ(L) on M(L). It is not
difficult to check that the co-differential of this form, relative to the metric g(ϕ(L)) satisfies

‖d∗ϕ(L)ϕ(L)‖L p
k (M(L))

< C p,keλL ,

but need not vanish as the derivatives of the cut-off function introduce ‘error terms’. Thus
the G2-structure ϕ(L) has ‘small’ torsion on M , but need not be torsion-free.

For each L , the M(L) is diffeomorphic, as a smooth manifold, to a fixed compact 7-
manifold M , but the metrics g(ϕ(L)) have diameter asymptotic to 2L , as L → ∞.

Theorem 6.1 ([18, §5]) Let a compact 7-manifold M(L) and a G2 3-form ϕ(L)∈�3+(M(L))
be a generalized connected sum of a pair of EAC G2-manifolds (M±, ϕ±)with G2-structures
satisfying (33).

Then there exists an L0 > 1 and for each L > L0 a 2-form ηL on M, so that the
G2-structure on M induced by ϕ(L)+ dηL is torsion-free. Furthermore, the form ηL may be
chosen to satisfy ‖ηL‖L p

k (M(L))
< C p,ke−δL , for some positive constants C p,k, δ independent

of L.

The above is a variant of the ‘gluing theorem’ for solutions of nonlinear elliptic PDEs
on generalized connected sums [20], adapted to (8). The proof uses a lower bound for the
linearisation of (8) on M with carefully chosen weighted Sobolev norms and an application
of the inverse mapping theorem in Banach spaces.

Definition 6.2 For a matching pair of torsion-free G2-structures and L > L0, let

�(ϕ+, ϕ−, L) = ϕ(L)+ dηL

be the G2-structure on M defined in Theorem 6.1.

The family of G2-metrics induced by �(ϕ+, ϕ−, L) may be thought of as stretching the
neck of a generalized connected sum, defined by the decomposition of compact 7-manifold
M along a hypersurface X . The pair of EAC G2-manifolds (M±, ϕ±) may be identified as
a boundary point of the moduli space for G2-structures on M corresponding to the limit of
the path �(ϕ+, ϕ−, L), as L → ∞ (see [30, §5] for more precise details).

Now we return to consider the pairs (M±, ϕ±) of EAC G2-manifolds constructed in
§4.2 and §5. It follows from the decomposition (18) that ϕ± is a matching pair of EAC
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G2-structures in the sense of (33). The generalized connected sum of M± is clearly dif-
feomorphic to M in the left-hand side of (18a), so by Theorem 6.1 we obtain a family of
torsion-free G2-structures �(ϕ+, ϕ−, L) ∈ �3+(M). On the other hand, in this case we can
construct on M another path φ(L) of torsion-free G2-structures, with the same asymptotic
properties as L → ∞, using the G2-structure ϕ̃s defined in Proposition 4.3. Recall from (23)
that ϕ̃s restricts to a product torsion-free G2-structure on N ⊂ M , which is a finite cylindrical
domain N ∼= (−ε, ε) × X . For each L ≥ 0, using a diffeomorphism fL between intervals
in R

t ∈ (−ε, ε) → tL = fL(t) ∈ (−ε − L , ε + L), (34)

we define a new G2-structure ϕ̃s(L) on M so that ϕ̃s(L)|N = �+ dtL ∧ ω and ϕ̃s(L) coin-
cides with ϕ̃s away from N . It is easy to see that the resulting family of metrics g(ϕ̃s(L))
may be informally described as ‘stretching’ the neck region N in the Riemannian manifold
(M, g(ϕ̃s)). The change (34) of the cylindrical coordinate on N amounts to the diameter of
(M, g(ϕ̃s)) being increased by 2L .

For each L ≥ 0, the G2-structure ϕ̃s(L) satisfies the same estimates on the torsion as
ϕ̃s (this follows from the argument of §4.3). Therefore, the same method as in the case
of ϕ̃s applies to show that ϕ̃s(L) can be perturbed to a torsion-free G2-structure φs(L) =
ϕ̃s(L)+ (exact form) [16, §11.6 and §12.2].

There is no obvious reason for the G2-structures φ(L) to be isomorphic to�(ϕ+, ϕ−, L),
but we show that the two families are ‘asymptotic’ to each other in the following sense.

Theorem 6.3 Let M7 be a compact manifold with a closed G2-structure ϕ̃s , such that the
assertions i–iii of Proposition 4.3 hold, for each sufficiently small s. Assume that s is suf-
ficiently small and define the path φs(L) as above. Let ϕ̃s,± be EAC G2-structures on the
manifolds M± with cylindrical ends defined after Proposition 4.3 and ϕs,± the torsion-free
perturbations of ϕ̃s,± within their cohomology class defined by Theorem 3.1.

Then for every sufficiently large L, there are some matching deformations ϕ′
s,± =

ϕ′
s,±(L) of ϕs,±, satisfying ‖ϕ′

s,± − ϕs,±‖ < C1L−1, and a real εL , satisfying |εL | <
C2, with C1,C2>0 independent of L, so that the G2-structure φs(L) is isomorphic to
�(ϕ′

s,+, ϕ′
s,−, L + εL).

When (M, ϕs) is an example of compact G2-manifold discussed in §4.1 and §5 we shall
deduce from the proof of Theorem 6.3 a further result which will be used in §7.

Theorem 6.4 Let (M, ϕs) and (M±, ϕs,±) be the G2-manifolds defined in §4.1 and §4.2
or in §5. There is, for every sufficiently small s > 0, a continuous path of torsion-free
G2-structures on M connecting ϕs and�(ϕs,+, ϕs,−, L), whenever L is sufficiently large in
the sense of Theorem 6.1.

As we shall see, a closed G2-structure ϕ̃s will be required once again in the argument of
Theorem 6.4 and the clause iv of Proposition 4.3 will be important.

In order to prove Theorems 6.3 and 6.4 we need to recall some results concerning the
moduli of torsion-free G2-structures.

6.1 The moduli space of torsion-free G2-structures

Let M be a compact G2-manifold, X the space of torsion-free G2-structures on M and
D the group of diffeomorphisms of M isotopic to the identity. The group D acts on X ,
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and the quotient M = X/D is the moduli space of torsion-free G2-structures. Since tor-
sion-free G2-structures are represented by closed forms there is a well-defined projection
M → H3(M,R) via the de Rham cohomology.

One way to extend the definition of M to an EAC G2-manifold M , with G2-structure ϕ̌ say,
is to set X to be the space of EAC torsion-free G2-structures on M exponentially asymptotic
to ϕ̌ along the cylindrical end. The group D is now taken to be the group of diffeomorphisms
of M isotopic to the identity and on the cylindrical end exponentially asymptotic to the iden-
tity map. Then M = X/D is the moduli space of torsion-free G2-structures asymptotic to
a fixed cylindrical G2-structure. It can be shown that for every ϕ exponentially asymptotic
to ϕ̌ the de Rham cohomology class [ϕ − ϕ̌] can be represented by a compactly supported
closed 3-form on M . (More generally, one can define a moduli space for G2-structures on M
whose asymptotic model is allowed to vary, see [29] for the details.)

Theorem 6.5 (i) Let M be a compact 7-manifold admitting torsion-free G2-structures.
Then the moduli space M of torsion-free G2-structures on M is a smooth manifold,
and the map

π : ϕD ∈ M → [ϕ] ∈ H3(M,R)

is a local diffeomorphism.
(ii) Let (M, ϕ̌) be an EAC G2-manifold. Then the moduli space M of torsion-free

G2-structures on M asymptotic to ϕ̌ is a smooth manifold, and the map to affine
subspace

π : ϕD ∈ M → [ϕ] ∈ [ϕ̌] + H3
0 (M,R) ⊂ H3(M,R)

is a local diffeomorphism. Here H3
0 (M,R) ⊂ H3(M,R) denotes the subspace of

cohomology classes represented by compactly supported closed 3-forms.

The clause (i) is proved in [16, Theorem 10.4.4] and (ii) in [29, Theorem 3.2 and
Corollary 3.7].

The torsion-free G2-structures discussed in this article are obtained as a perturbation of
some closed stable 3-forms ϕ̃s by adding a ‘small’ exact form. In particular, a G2-structure
induced by ϕ̃s necessarily has small torsion. Our next result shows that two closed stable
3-forms, which are in the same de Rham cohomology class and have small torsion, will define
the same point in M whenever their difference is also small.

Proposition 6.6 Suppose that a 7-manifold M is either compact or has a cylindrical end.
For i = 0, 1 let ϕ̃i be a closed stable 3-form defining a G2-structure and a metric g̃i = g(ϕ̃i )

and Hodge star ∗i on M. If M has a cylindrical end, suppose further that ϕ̃i are EAC
G2-structures and that ϕ̃0 − ϕ̃1 decays to zero with all derivatives along the end.

Let ψi be smooth 3-forms such that d∗iψi = d∗i ϕ̃i and suppose that each (ϕ̃i , ψi ) sat-
isfies the hypotheses a–c in Theorem 3.1, relative to the metric g̃i . Let ϕi be the torsion-free
G2-structures defined by Theorem 3.1 using (ϕ̃i , ψi ).

Finally suppose that the 3-form ϕ̃0 − ϕ̃1 is exact and

‖ϕ̃0 − ϕ̃1‖L2 < λs4, ‖ϕ̃0 − ϕ̃1‖C0 < λs1/2, ‖ϕ̃0 − ϕ̃1‖L14
1
< λ,

where the norms are defined using the metric g̃0.
Then for each sufficiently small s > 0, the torsion-free G2-structures ϕi are isomorphic

and define the same point in M.

123



248 Ann Glob Anal Geom (2010) 38:221–257

Recall from Remark 3.2 that in the case when M is compact the statement of Theorem 3.1
recovers [16, Theorem 11.6.1].

Proof Let ϕ̃1 − ϕ̃0 = dη, η ∈ �2(M) and set ϕ̃u = ϕ̃0 + u dη, for u ∈ [0, 1]. If 0 < s < s0

for a sufficiently small s0 > 0 independent of the choice of ϕ̃ j then ϕ̃u induces a well-defined
path of G2-structures on M . Define a path of 3-forms

ψ ′
u = ϕ̃u + ∗u ((1 − u) ∗0 (ψ0 − ϕ̃0)+ u ∗1(ψ1 − ϕ̃1)) ,

where ∗u is the Hodge star of the metric defined by ϕ̃u . Then ψ ′
0 = φ0 and ψ ′

1 = ψ1 and
d∗uψu = d∗uϕu , for each u ∈ [0, 1].

By our hypothesis, (ϕ̃u, ψ
′
u) satisfy for u = 0 and u = 1, all the estimates required in

Theorem 3.1. The left-hand sides of these estimates depend continuously on u. Therefore,
by choosing a smaller s0 > 0 if necessary we obtain that the estimates on (ϕ̃u, φ

′
u) are satis-

fied for every u ∈ [0, 1] and Theorem 3.1 produces a path of torsion-free G2-structures ϕu ,
connecting the given ϕi , i = 0, 1. A standard argument verifies that ϕu is continuous in u.

By the construction, the de Rham cohomology class of ϕ̃u is independent of u ∈ [0, 1].
By Theorem 6.5, the path in the moduli space M defined by ϕu must be locally constant.
It follows that ϕ0 and ϕ1 define the same point in M and the respective G2-structures are
isomorphic. ��

6.2 Deformations and gluing. Proof of Theorems 6.3 and 6.4

We require one more ingredient for proving Theorem 6.3. The second author [30] shows that
any small torsion-free deformation of �(ϕ+, ϕ−, L) is, up to an isomorphism, obtainable
by gluing some small deformations of ϕ±. More important to the present discussion is the
following local description from the proof of that result.

There are pre-moduli spaces R± of EAC torsion-free G2-structures near ϕ±, i.e. a sub-
manifold of the space of EAC G2-structures, which is homeomorphic to a neighbourhood
of ϕ± in the moduli space of EAC G2-structures on M±. The subspace Ry ⊆ R+ × R−
of matching pairs is a submanifold. The connected-sum construction gives a well-defined
map � from Ry × (L1,∞) (for L1 > 0 sufficiently large) to the moduli space M of tor-
sion-free G2-structures on M . It is best studied in terms of the composition with the local
diffeomorphism M → H3(M),

�H : Ry × (L1,∞) → H3(M).

Topologically M = M+ ∪ M−. Consider the Mayer–Vietoris sequence

· · · −→ Hm−1(X)
δ−→ Hm(M)

i∗+⊕i∗−−→ Hm(M+)⊕ Hm(M−)
j∗+− j∗−−→ Hm(X) −→ · · · ,

(35)

where j± : X → M± is the inclusion of the cross-section and i± : M± → M is the inclusion
in the union (these maps are naturally defined up to isotopy).

The cohomology class of the glued G2-structure satisfies i∗±�H (ϕ+, ϕ−, L) = [ϕ±]. Also
∂
∂L�H (ϕ+, ϕ−, L) = 2δ([ω]), where ω denotes the Kähler form of the Calabi–Yau structure
on X defined by the common asymptotic limit of ϕ±. Thus, if we let R′

y be the submanifold

R′
y = {(ψ+, ψ−) ∈ Ry : i∗±ψ± = i∗±ϕ±},
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then the restriction of �H to R′
y × (L1,∞) takes values in the affine subspace K = [ϕ] +

δ(H2(X)), and can be written as

�H : R′
y × (L1,∞) → K , (ϕ′+, ϕ′−, L) �→ F(ϕ′+, ϕ′−)+ 2Lδ([ω′]), (36)

whereω′ is the Kähler form of the common boundary value of (ϕ′+, ϕ′−) ∈ Ry and F : R′
y →

K is smooth. It is explained in [30, §5] that the image of R′
y → δ(H2(X)), (ϕ′+, ϕ′−) �→

δ([ω′]) is a submanifold transverse to the radial direction, so that (36) is diffeomorphism
onto its image, which contains an open affine cone in K (if L1 is large enough).

Proof of Theorem 6.3 Recall that the torsion-free G2-structures φs(L) are obtained by per-
turbing the closed G2-structures ϕ̃s(L) with small torsion, which are in turn defined by
stretching the cylindrical neck X × I of ϕ̃s by a length 2L . Their cohomology classes are
[φs(L)] = [ϕ̃s(L)] = [ϕs] + 2Lδ([ω]), where ω is the Kähler form on X , so the image of
the path φs(L) in H3(M) is an affine line with slope 2δ([ω]).

We also defined torsion-free EAC G2-structures ϕs,± on M± by perturbing the G2-struc-
tures ϕ̃s,± obtained from ϕ̃s via decomposition (18) of M . The gluing Theorem 6.1 applied
to ϕs,+ and ϕs,− defines a path �(ϕs,+, ϕs,−, L) of torsion-free G2-structures on M . The
restrictions satisfy i∗±[�(ϕs,+, ϕs,−, L)] = i∗±[ϕs], so the image of the path in H3(M) lies
in the affine space K = [ϕs] + δ(H2(X)). This is an affine line with the same slope 2δ([ω]).

Our aim is to show that for every large L there is a small deformation (ϕ′
s,+(L), ϕ′

s,−(L))
of (ϕs,+, ϕs,−) and L + εL at a bounded distance from L , so that φs(L) is isomorphic to
�(ϕ′

s,+(L), ϕ′
s,−(L), L + εL). We prove this by appealing to to Proposition 6.6, showing

first that we can find a small deformation such that the glued �(ϕ′
s,+(L), ϕ′

s,−(L), L + εL)

has the same cohomology class as φs(L), and then checking that the gluing is close to ϕ̃s(L)
in the relevant norms.

The difference between the cohomology classes [φs(L)] and [�(ϕs,+, ϕs,−, L)] is inde-
pendent of L . Therefore, for each sufficiently large L , there is an L + εL of bounded dis-
tance to L and a matching pair (ϕ′

s,+(L), ϕ′
s,−(L)) ∈ R′

y , such that φs(L) is cohomologous
to the glued G2-structure �(ϕ′

s,+(L), ϕ′
s,−(L), L + εL). In fact, because the RHS of (36)

is dominated by the 2Lδ([ω]) term for large L , the distance between (ϕ′
s,+(L), ϕ′

s,−(L))
and (ϕs,+, ϕs,−) is of order 1/L , as L → ∞, measured in the C1 norm (since Ry has
finite dimension all sensible norms are Lipschitz equivalent). Hence the difference between
�(ϕs,+, ϕs,−, L) and �(ϕ′

s,+(L), ϕ′
s,−(L), L) is of order 1/L in C0 norm. As the volume

growth is of order L it follows also that the difference is of order L−1/2 in L2-norm, and
order L−13/14 in L14

1 -norm.
Now φs(L) and �(ϕ′

s,+(L), ϕ′
s,−(L), L + εL(L)) are both torsion-free perturbations of

ϕ̃s(L) within its cohomology class, so we can try and use Proposition 6.6 to show that they
are diffeomorphic. For large L , the difference between �(ϕ′

s,+(L), ϕ′
s,−(L), L + εL) and

ϕ̃s(L) is dominated by the difference between ϕ̃s,± and ϕs,±, which is estimated in terms
of s in (7). Therefore if s is sufficiently small then for all sufficiently large L the estimates
required to apply Proposition 6.6 are satisfied, and

�
(
ϕ′

s,+(L), ϕ′
s,−(L), L + εL

) ∼= φs(L).

This completes the proof of Theorem 6.3. ��
Proof of Theorem 6.4 We know from the argument of Theorem 6.3 and the preceding
remarks that the pair ϕ′

s,+(L), ϕ′
s,−(L), for each L > L1, is contained in the pre-moduli

space R′
y which we may assume connected. As discussed earlier in this subsection, the

map �(ϕ+, ϕ−, L) induces a continuous function from R′
y × (L1,∞) to the G2 moduli
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space for M . We find that, for L > L1, the torsion-free G2-structure �(ϕs,+, ϕs,−, L) is a
deformation of �(ϕ′

s,+(L), ϕ′
s,−(L), L).

By Theorem 6.3, we may further replace �(ϕ′
s,+(L), ϕ′

s,−(L), L), with the torsion-free
G2-structure φs(L − εL), assuming sufficiently large L . We saw above that the cohomology
class [φs(L)] depends continuously on L and it is not difficult to check, using Theorem 6.5(i)
that the forms φs(L) define a continuous path in the G2 moduli space for M . Thus, we may
further replace φs(L − εL ) by the torsion-free G2-structure φs(0). We claim that the latter is
isomorphic to the G2-structure ϕs .

By definition just before Theorem 6.3, φs(0) is a perturbation of G2 3-form ϕ̃s(0) = ϕ̃s

given by Proposition 4.3 and φs(0)− ϕ̃s is exact. On the other hand, recall from (22) that ϕs is
a perturbation of G2 3-formϕinit

s by an exact form. The latter two exact forms may be assumed
‘small’ in the sense of (25) by choosing a small s. Furthermore, ϕ̃s −ϕinit

s is exact by Proposi-
tion 4.3 (iv) and the argument of §4.3 ((25) and (29)) again shows that ϕ̃s −ϕinit

s is small. Prop-
osition 6.6 now ensures that ϕs and φs(0) are diffeomorphic, for every sufficiently small s. ��

7 Connected sums of EAC G2-manifolds

We now revisit the orbifold T 7/� discussed in §4.1 but this time we shall split T 7/� into
two connected components, M̂0,± say, along a different orbifold hypersurface X̂0 which is
the image of the 6-torus T̂ 6 = {x5 ≡ 1/8 mod Z} ⊂ T 7. (As before, xk modulo Z denote
the standard coordinates on T 7 induced from R

7.) As remarked in §5.2, this choice does not
produce an irreducible EAC G2-manifold but is interesting for its relation to the compact
G2-manifolds and EAC Calabi–Yau 3-folds constructed in [18,19].

More precisely, we shall show that the corresponding EAC G2-manifolds M̂± are of
the form S1 × W , where W is a known complex 3-fold obtained by the algebraic meth-
ods of [19] with an EAC Calabi–Yau structure coming from a result in [18]. Application
of Theorem 6.4 then shows that the G2-structure on M constructed in [16] by resolution of
singularities of T 7/� is a deformation of the G2-structure obtainable from [18] by regarding
M as generalized connected sum of EAC G2-manifolds M̂±.

7.1 A G2-manifold with holonomy SU (3).

Recall that the singular locus of T 7/� consists of 12 disjoint copies of T 3, the union of 3
subsets of 4 copies of T 3 corresponding to the fixed point set of, respectively, the involutions
α, β, γ defined in (19). Each of the 4 copies of T 3 in the singular locus of T 7/�, arising from
the fixed points of β, intersects X̂0 in a 2-torus. The other 8 copies of T 3 in the singular locus
do not meet X̂0. Let M̂0,+ denote the connected component of (T 7/�)\X̂0 containing the
image of {x5 = 0}. Then M̂0,+ contains all the 3-tori coming from the fixed point set of α,
whereas those coming from γ are in the image of {x5 = 1

4 } and contained in M̂0,−.

It is easy to see that X̂0 = T̂ 6/〈β〉 ∼= (T 4/±1) × T 2 and that the orbifolds M̂0,± are
diffeomorphic, via the involution of T 7/� induced by the map

(x1, x2, x3, x4, x5, x6, x7) �→ (
x1, x2, x3, x4, x5 + 1

4 , x6, x7
)
. (37)

The above is quite similar to the discussion in §4.1 and §4.2. In particular, it can be shown
that the map (37) induces an isometry of the EAC G2-manifolds M̂± constructed from M̂0,±
(compare Remark 4.2).

Notice also that the pre-image of M̂0,+ in T 7/〈α, β〉 consists of two connected compo-
nents and γ maps one of these diffeomorphically onto the other. In light of this, we can
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identify M̂0,+ ∼= ({|x5| < 1
8 } × T 6

)
/〈α, β〉, and disregard γ when restricting attention to

M̂0,+. Replacing the interval [− 1
8 ,

1
8 ] by a copy of R, with the coordinate still denoted by

x5, is equivalent to attaching a cylindrical end to M̂0,+. We have a diffeomorphism

M̂0,+ ∼=
((

Rx5 × T 5
)
/〈α, β〉

)
× S1

x1
. (38)

We see at once that the resolution of singularities of M̂0,+ amounts to resolving a 6-dimen-
sional orbifold. We shall relate the latter resolution to blowing up complex orbifolds. Identify
R

7 ∼= R × C
3 using a real coordinate and three complex coordinates,

θ = x1, z1 = x5 + i x4, z2 = x2 + i x3, z3 = x6 + i x7. (39)

In these coordinates, the involutions α, β are holomorphic in zk

α(θ, z1, z2, z3) = (θ,−z1, z2,−z3), β(θ, z1, z2, z3) = (
θ, z1,−z2,

1
2 − z3

)
.

For the first step of the procedure explained in §4.2, we consider Rx5 × T̂ 6/〈β〉. It is well-
known that the resolution of singularities of T 4/±1 using Eguchi–Hanson spaces (see p.232)
produces a Kummer K3 surface, Y say. The Kummer construction defines on Y a one-param-
eter family of torsion-free SU (2)-structures, i.e. Ricci-flat Kähler structures, with a limit
corresponding to the flat hyper-Kähler structure on T 4/±1 induced from the Euclidean R

4

[21]. Cf. (20); the parameter, still denoted by s > 0, is proportional to the diameter of the
exceptional divisors on Y . We thus obtain S1

x1
× S1

x4
× Rx5 × Y with a product torsion-free

G2-structure induced by a Kummer hyper-Kähler structure on Y (cf. (3)).
The Kummer construction can be performed α-equivariantly, so that α induces an invo-

lution on Y , say ρα , which preserves the SU (2)-structure. The quotient (38) takes the form
S1
θ × Z0, where Z0 = (Rx5 × S1

x4
× Y )/〈α〉 is a well-defined complex orbifold. Noting

that Rx5 × S1
x4

is biholomorphic to C
× = C \ {0}, we can extend α holomorphically to an

involution of Y × CP1 (identifying CP1 ∼= C ∪ {∞}). The restriction of α to CP1 may
be written as ζ �→ 1/ζ , where ζ = exp(2π i z1); it maps 0 and ∞ to each other and fixes
precisely two points ±1, both in the image of Rx5 × S1

x4
(the circle S1

θ does not yet concern
us). We can write Z0 and its compactification Z as

Z0 = (
Y × C

×)
/〈α〉, Z = (

Y × CP1) /〈α〉 (40)

and it is not difficult to check that Z0 is the complement in Z of an anticanonical divisor D
biholomorphic to the K3 surface Y . The quotient of CP1 by the involution α|CP1 is biholo-
morphic to CP1, and we shall still denote the images of the fixed points by ±1. It follows
that the second projection on Y × CP1 descends to a holomorphic map

p : Z0 → CP1 (41)

with fibres biholomorphic to Y , except that the two fibres over ±1 are biholomorphic to the
quotients Y/〈ρα〉.

Denote by κI , κJ , κK a triple of closed 2-forms encoding the ρα-invariant SU (2)-structure
on Y . Here,κI is the Kähler form of the Ricci-flat Kähler metric andκJ +iκK is a nowhere-van-
ishing holomorphic (2,0)-form, sometimes called a ‘holomorphic symplectic form’, which
is unique up to a constant complex factor. We shall always require κ2

I = κ2
J = κ2

K .
Observe that necessarily ρ∗

α(κJ + iκK ) = −κJ − iκK , so ρα acts by −1 on H2,0(Y ). The
latter makes Y into a K3 surface with ‘non-symplectic involution’ in the sense of [1], see
also [28]. A general property of this class of K3 surfaces is that the sublattice of H2(Y,Z)
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fixed by ρ∗
α has signature (1, t−), so we must have ρ∗

α(κI ) = κI , because a Ricci-flat Kähler
metric on Y is uniquely determined by the cohomology class of its Kähler form.

In order to compute some topological invariants later, we shall need some algebraic invari-
ants of non-symplectic involutions, taken from [1]. One invariant is defined as the rank r of
the sublattice Lρ of the Picard lattice of Y fixed by ρα . It can be shown Lρ has a natural
embedding into its dual lattice L∗

ρ and the quotient has the form L∗
ρ/Lρ ∼= (Z2)

a . The integer
a is another invariant that we shall need.

We determine the values of r, a in the present example from the classification of K3 sur-
faces with non-symplectic involution in [28], which includes a description of the fixed point
set of ρ. Since the fixed point set of α has 4 components and the induced involution on CP1

fixes 2 points, we must have that the ρα fixes precisely two disjoint complex curves and each
of these has genus 1. In this situation, there is only one possibility r = 10, a = 8 allowed by
the classification of fixed point sets, [28, §4] or [1, §6.3].

A neighbourhood of each singular point in Z0 is diffeomorphic to (C2/±1)× C and the
singularities of S1

θ × Z0 may be resolved in an S1
θ -invariant way by gluing in an Eguchi–

Hanson space, similarly to several instances discussed in §4 and §5. The two-step procedure
of §4 now produces a 7-manifold M̂+ = S1 × W with an S1-invariant, product G2-structure
having ‘small’ torsion. The torsion-free G2-structure on M̂+ obtained by Theorem 3.1 is
necessarily of product type (2) induced by an EAC Calabi–Yau structure on W .

We shall now show that after slightly changing some details of the method of §4 the same
torsion-free G2-structure on M̂+ can be recovered, up to an isomorphism, by constructing
an EAC Calabi–Yau structure on W using the method of [18,19]. Recall from §2.1 that
a Calabi–Yau structure on a 6-manifold may be determined by the complex structure (or,
equivalently, the real part of a non-vanishing holomorphic 3-form) and the Kähler form.

The manifold W has a ‘natural’ complex structure defined by blowing up the singular
locus of the complex orbifold Z0. This is an instance of a general construction of quasipro-
jective complex 3-folds with trivial canonical bundle from K 3 surfaces with non-symplectic
involution.

Proposition 7.1 ([19, §4]) Suppose that ρ is a non-symplectic involution of a K3 surfaceY
with invariants r, a and with a non-empty set of fixed points. Suppose that τ is a holomorphic
involution of CP1 fixing precisely two points. Let W be the blowup of the singular locus of
(Y × CP1)/(ρ, τ ) and let D ⊂ W be the pre-image of Y × {p}, for some p ∈ CP1 with
τ(p) �= p.

Then both W and W = W\D are non-singular and simply-connected and D is an anti-
canonical divisor (biholomorphic to Y ) in W with the normal bundle of D holomorphically
trivial. Also, b2(W ) = 3 + 2r − a and b3(W ) = 44 − 2r − 2a and the pull-back map
ι : H2(W ,R) → H2(D,R) induced by the embedding has rank r.

In particular, W admits nowhere-vanishing holomorphic (3, 0)-forms. An example of such
form is obtained by starting on Rx5 × S1

x4
× Y with the wedge product of dζ/ζ = dz1 =

dx5 + idx4 and the ‘obvious’ pull-back of a holomorphic symplectic form on Y . This (3, 0)-
form is α-invariant and descends to Z0. Denote its pull-back via the blowup W → Z0 by
�′ + i�′′. This form is well-defined and may be alternatively obtained using the following
resolution of singularities commutative diagram

W̃

��

�� W

��
Y × C

× �� Z0
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where W̃ → Y × C
× is the blowup of the fixed point set of α and W̃ → W is the quotient

map for the involution of W̃ induced by α.
We next construct a suitable Kähler form on W . The form idz1 ∧ dz̄1 + κI defines an

α-invariant Ricci-flat Kähler metric on Y × C
×. Pulling back to W similarly to above, we

obtain a 2-form ω0 which is a well-defined Kähler form away from the exceptional divisor E
on W . The exceptional divisors on Y arising from the Kummer construction induce divisors
on Z0, by taking a product with C

× and dividing out by α. The proper transform of these
defines a divisor, F say, on W. By choosing the parameter s in the Kummer construction
sufficiently small we achieve that the curvature of ω0 is small away from a tubular neigh-
bourhood of F . Note that F does not meet E because the fixed point sets of α and β do not
meet (see §4.1). We can choose disjoint tubular neighbourhoods of E and of F . Then on the
intersection of a tubular neighbourhood V of E with the domain of ω0 the metric ω0 is close
to flat whenever s is sufficiently small.

On the other hand, by taking a product of the Eguchi–Hanson metric (20) (with the same
value of s) and the standard Kähler metric on an open domain in C we obtain a Kähler form
ωE H which is defined near E . With an appropriate choice of V , we can smoothly interpolate
between the Kähler potentials of ω0 and ωE H to obtain a closed real (1, 1)-form ωs , so that
ω3

s �= 0 andωs is a well-defined Kähler form on W . An argument similar to that in §4.3 shows
we can perform this construction of ωs without introducing any more torsion of the corre-
sponding G2-structure than we would if ω0 was actually flat. That is, the closed S1-invariant
G2-structure ϕ′

W,s = �′ + dθ ∧ωs on the 7-manifold M̂+ has ‘small’ torsion in the sense of

Proposition 4.3. Here we takeψ = ψs = �(ϕ′
W,s)−dθ ∧�̂′′ − 1

2ωs ∧ωs . Then Theorem 3.1

produces an S1-invariant torsion-free EAC G2-structure ϕW,s + dηs on S1 × W determined
by an EAC Calabi–Yau structure on W [cf. (3)]. Remark that the starting G2-structure with
small torsion and the choice ofψ may differ by a ‘small amount’ from those described in §4,
but the resulting torsion-free G2-structures are isomorphic by Proposition 6.6.

The latter EAC Calabi–Yau structure is asymptotic on the end R>0 × S1 × Y of W to
the product Calabi–Yau structure corresponding to the hyper-Kähler structure on Y and is
obtained by the following ‘non-compact version of the Calabi conjecture’.

Theorem 7.2 ([18, §3]) Let (W , ω) be a simply-connected complex 3-fold and suppose that
a K3 surface D ⊂ W is an anticanonical divisor with the normal bundle of D holomorphi-
cally trivial and W = W\D simply-connected. Let κI , κJ , κK be a triple of closed 2-forms
inducing a Calabi–Yau structure on D, as above.

Suppose that ω̃ is a Kähler form on W which is asymptotically cylindrical in the following
sense. There is a meromorphic function z on W vanishing to order one precisely on D. On
the region {0 < |z| < ε}, for some ε > 0, ω has the asymptotic form

κI + dt ∧ dθ + dψ̃

where exp(−t − iθ) = z and a 1-form ψ̃ is exponentially decaying with all derivatives as
t → ∞.

Then W admits a asymptotically cylindrical Ricci-flat Kähler metric with Kähler form ω

and a nowhere-vanishing holomorphic (3, 0)-form �′ + i�′′ such that

ω = ω̃ + i∂∂̄ψ∞
and � on the region {0 < |z| < ε} has the asymptotic form

(κJ + iκK ) ∧ (dt + idθ)+ d�∞,

where ψ∞, �∞ are exponentially decaying with all derivatives as t → ∞.
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In the present example, we have ψ̃ = 0 by construction. The functionψ∞ is unique by [18,
Proposition 3.11]. The uniqueness of d�∞ follows from the uniqueness, up to a constant
factor, of a non-vanishing holomorphic 3-form on W with a simple pole along D = W\W .
Thus the G2-structure obtained by application of Theorem 3.1 to the cylindrical end manifold
M̂+ = S1 × W with G2-structure ϕ′

W,s is unique and may be recovered from a blowup of
complex orbifold and the Calabi–Yau analysis.

The Betti numbers for our example of M̂+ may be determined from those of W using
Proposition 7.1 as we know that r = 10, a = 8. We obtain

b3(W ) = 44 − 20 − 16 = 8 and b2(W ) = 3 + 20 − 8 = 15,

and then, using the Mayer–Vietoris exact sequence for W = W ∪ D similarly to [18, §8] and
[19, §2],

b2(W ) = b2(W )− 1 = 14 and b3(W ) = b3(W )+ 22 − b2(W )+ dim Ker ι = 20,

using also the rank-nullity for ι. Therefore,

b2
(

M̂+
)

= 14 and b3
(

M̂+
)

= 34

by the Künneth formula.
The Betti numbers of W and M̂+ can also be recovered using the method explained at the

end of §5.1.

7.2 The connected-sum construction of compact irreducible G2-manifolds revisited

Everything that we said in the previous subsection about M̂0,+ and M̂+ can be repeated,
with a change of notation, for M̂0,− and M̂−. In particular M̂− = W × S1 with a product
EAC G2-structure. However, the roles of α and γ are swapped for M̂0,− and the choice of
identification R

7 = Rθ × C
3 has to be revised too.

For M̂0,−, we set

θ = x4, w1 = x5 + i x1, w2 = x2 + i x6,

w3 = x7 + i x3, (42)

so that

β(θ,w1, w2, w3) = (
θ,w1,

i
2 − w2,−w3

)
,

γ (θ,w1, w2, w3) = (
θ, 1

2 − w1, w2,
1
2 − w3

)
.

We are interested in the image in X̂0 of the 4-torus corresponding to x2, x3, x6, x7. Writing

κ0
1 = dx2 ∧ dx3 + dx6 ∧ dx7, κ0

2 = dx2 ∧ dx6 + dx7 ∧ dx3,

κ0
3 = dx2 ∧ dx7 + dx3 ∧ dx6,

we see that with respect to the complex structure on R
4
x2,x3,x6,x7

defined by z2, z3 in (39) the
Euclidean metric is Kähler with Kähler form κ0

1 and a (2, 0)-form κ0
2 + iκ0

3 . With respect to
the complex structure of w2, w3 the Kähler form is κ0

2 and a (2, 0)-form is κ0
1 − iκ0

3 .
It follows by the symmetry of even permutations of x2, x3, x6, x7 and the equivariant

properties of the Kummer construction that a similar statement holds for a triple of 2-forms,
say κI , κJ , κK defining the hyper-Kähler structure on the resolution Y of T 4

x2,x3,x6,x7
/〈β〉.

In other words, the two Kummer K3 surfaces defined by using z- and w-coordinates cor-
respond to choices of two anticommuting integrable complex structures say I and J coming
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from the hyper-Kähler structure on Y . The κI , κJ , κK are the Kähler forms corresponding,
respectively, to I, J, K = I J .

Recall from §2.1 that the product G2-structure on a cylinder Rt × S1
θ+ × S1

θ− × D corre-
sponding to a hyper-Kähler structure on D is induced by the 3-form

ϕD = dθ+ ∧ dθ− ∧ dt + dθ+ ∧ κI + dθ− ∧ κJ + dt ∧ κK . (43)

Here, θ+ = x1, θ− = x4, corresponding to (39),(42) and x5 = t . The formula (43) is
preserved by the transformation

θ+ �→ θ−, θ− �→ θ+, t �→ −t, κI �→ κJ , κJ �→ κI , κK �→ −κK .

Notice that the transformation of κ’s corresponds precisely to changing the complex struc-
ture on Y from I to J (the latter is sometimes called a ‘hyper-Kähler rotation’). It follows
that we have an instance of a generalized connected sum of EAC G2-manifolds discussed in
the beginning of §6. In fact, more is true.

We can identify, in the present case, the isomorphism between the asymptotic models of
EAC G2 3-forms on the cylindrical ends of M̂± ∼= S1± × W±. (Here W± are copies of W
defined in the previous subsection and ± refers to using, respectively, the notation (39) or
(42).) On the D ∼= Y factor the identification is an isometry with a change of complex struc-
ture, as discussed above. The ±x5 is the parameter along cylindrical end of M̂±, respectively.
Finally, the S1+-factor with coordinate x1 is identified with a circle around the K3 divisor in
W −, whereas the S1− factor with coordinate x4 corresponds to a circle around the K3 divisor
in W +.

The matching described above between the asymptotic models of EAC G2-manifolds M̂±
is precisely of the type studied in [18]. In particular, the gluing Theorem 6.1 constructs an
irreducible torsion-free G2-structure on M regarded as the generalized connected sum of the
pair M̂± defined above, with product EAC G2-structures induced by the EAC Calabi–Yau
structures on W± in the sense of Theorem 7.2.

The ‘glued’ G2-metrics on M obtainable by Theorem 6.1 are of the type described in [19,
Theorem 5.3]. When W1,W2 are constructed from a pair of K3 surfaces with non-symplectic
involution with invariants r j , a j and with d j = dim Ker ι j as defined in Proposition 7.1, the
resulting compact G2-manifold M has

b2(M) = d1 + d2 + dim
(
ι1(H

2(W+,R)) ∩ ι2(H2(W−,R))
)
.

Recall that we have b2(M) = 12 and d1 = d2 = 4, whence the last dimension in the
right-hand side is 4. The examples explicitly discussed in [19] all have the latter intersection
zero-dimensional, thus M is a new example for the construction given there.

By Theorem 6.4 and the work in §7.1, the glued torsion-free G2-structure on M obtainable
as in [18,19] is a continuous deformation of a torsion-free G2-structure given by resolving
singularities of T 7/� according to [16, §11]. Therefore, the moduli space for torsion-free
G2-structures on M has a connected component with boundary points corresponding to two
types of degenerations of G2-metrics: (1) those arising by pulling M apart into a pair of
EAC G2-manifolds and (2) those developing orbifold singularities but staying compact with
volume and diameter bounded. To our knowledge, M is the first example of a compact irre-
ducible G2-manifold obtainable, up to deformation, both by the method of [16] and by the
method of [18].
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