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Functional responses are encountered when units are observed over time. Although the whole 
function itself is not observed, a sufficiently large number of evaluations, as is common with 
modern recording equipment, are assumed to be available. Functional regression analysis relates 
the smooth functional response, y(t), to known covariates, z, by a linear combination of parameter 
functions, P(t), which are to be estimated. The model takes the standard form, y(t) = x7,0(t) + 
e(t). This approach provides an alternative to standard longitudinal data methods used in the 
biological sciences, where less and noisier data necessitate parametric modeling. The methodology 
is illustrated by an application in ergonomics. 
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Functional regression analysis is designed for the situ- 
ation in which the ith response is a smooth real function 
yli(t),i = 1 n t E 7, with associated covariate vector T..., ,> 
Q, which is constant in time throughout this article. Of 
course, it is only possible to observe the function yli(t) at a 
finite number of points, possibly with error, but it may be 
helpful and more natural to consider the response to be a 
function. 

A well-known technique for analyzing data in which in- 
dividuals are measured repeatedly through time is called 
longitudinal data analysis; see, for example, Diggle, Liang, 
and Zeger (1995). This methodology is mainly applied in 
the biological sciences, in which data are characterized by 
relatively few measures per individual and high variation 
in the measurement, possibly partly due to unmeasured 
time-varying covariates. This means that the individual’s 
progress or curve can only reasonably be approximated by 
a simple parametric form, often linear, because there are 
insufficient data to try more complex models. The effect of 
various covariates on, say, the slope of line for an individual 
may be assessed, after possibly specifying a parameterized 
covariance matrix for the errors, using standard methods of 
parametric inference. Other methods avoid the necessity of 
assuming a parametric form for the individual curves by 
having a separate parameter for each time point at which 
observations are recorded. These methods require that the 
points of observation be the same for each individual and 
fail to take advantage of the smoothness that might be sup- 
posed to exist in the individual curves. 

Imagine that we have many more accurate and well- 
controlled measurements for each individual or unit. In the 

physical and engineering sciences, real-time recording de- 
vices can easily produce many accurate measurements for 
a unit over time. Furthermore, suppose that examination of 
the data for each unit reveals no obvious parametric form 
and that the shape of the curves varies according to the co- 
variates. In the absence of strong theory about what para- 
metric form for the curves would be appropriate and with 
a relatively large number of observations per unit, it is not 
reasonable to make strong parametric assumptions. Instead, 
one might merely assume that the underlying curves are 
smooth and then ask how these curves might be modeled 
as a function of the covariates. 

Thus functional regression analysis is not intended as a 
competitor to longitudinal data analysis-it augments it. It 
fills a gap in current methodology to better handle cases 
in which many observations per unit are recorded. All we 
need for functional regression analysis to be viable is that 
a sufficiently large amount of data should be available so 
that the function can be adequately approximated. When 
measurement error is small, interpolation may be adequate, 
but otherwise nonparametric regression or smoothing tech- 
niques can be used to estimate the function. Exactly how 
much data is enough depends on the amount of noise in the 
measurement and the smoothness of the functions. A fur- 
ther use of functional regression analysis is as a precursor to 
parametric longitudinal models. An analogy is the alternat- 
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ing condition expectation method of Breiman and Friedman 
(1985) or the generalized additive models of Hastie and 
Tibshirani (1990) that have been used to suggest suitable 
parametric forms for generalized linear models. A further 
advantage of functional regression analysis is that it possi- 
bly provides a more elegant theoretical basis to longitudinal 
methods, just as the matrix-based approach is cleaner for 
standard regression. 

Functional data analysis is a new and relatively unex- 
plored area. Much of the prior work concentrates on a 
study of variation, whereas I shall be more interested in 
building predictive models. Besse and Ramsay (1986) de- 
scribed the principal-components analysis of functional re- 
sponse data. Ramsay and Dalzell (1991) laid out some gen- 
eral ideas on functional data analysis. The functional data 
were separated into a structural and a residual component. 
Functional analysis was used to describe how this should be 
done. They also discussed various other types of regression 
models involving functional responses. Rice and Silverman 
(199 1) concentrated on the study of functional variation af- 
ter the removal of the mean structure. An important differ- 
ence between the approach of Ramsay and Dalzell (1991) 
and Rice and Silverman (1991) is how and when the vari- 
ous curves should be smoothed. Ramsay, Wang, and Flana- 
gan (1995) exemplified and extended the approach of the 
former, whereas Pezulli and Silverman (1993) and Silver- 
man (1995a, b), developed the ideas of the latter. Leurgans, 
Moyeed, and Silverman (1993) considered canonical corre- 
lation analysis when the data are curves. 

Methodology is laid out in Section 1, and its application 
to a problem in ergonomics is illustrated in Section 2. A 
discussion follows in Section 3. 

1.1 Estimating the Response 

In practice, we do not observe yi(t), i = 1, . . , n, only 

1. METHOD 

Yi(tz,),j = 1,. . ', mi. The times of measurement will not 
always be the same for every unit, and there may possibly 
be noninformative missing values, so the tij do not need 
to be the same for each i. Our first step is to attempt to 
reconstruct the curves yi (t). 

Notice that there are two kinds of variability here, vari- 
ability specific to the particular observations, yi(&), and 
variability related to the whole curve, yyi(t). The former 
might be thought to represent measurement error and the 
latter individual-specific variation. An analogy can be made 
between the error terms and the random effects in a para- 
metric longitudinal model and these two types of error in 
our model. Of course, it is not easy to separate these two 
types of variability, but any smooth estimation is an attempt 
to eliminate (or at least reduce) variability of the first kind. 

A special case of this problem was considered by Hart 
and Wehrly (1986) in which there are no covariates and the 
task is just to estimate the common mean of a sample of 
curves, all observed at the same tj. This method cannot be 
used directly in the regression case. For the same problem, 
Rice and Silverman (1991) used cross-validation to deter- 

mine the amount of smoothing, leaving out the whole ith 
individual instead of the usual method of leaving out just 
one observation when cross-validating. This method could 
be directly applied to the regression case, but problems will 
arise if the form of the chosen regression model is incorrect. 

An alternative approach is to smooth each yli individu- 
ally without reference to the particular model being fit. Re- 
gression analyses typically involve the consideration of sev- 
eral possible models, so model-free smoothing-parameter 
selection would be advantageous. Methods do exist for se- 
lecting the smoothing parameter automatically in the pres- 
ence of correlated errors; see, for example, Diggle and 
Hutchison (1989), Altman (1990), or Hart (1991). These 
authors described ways of overcoming the problem that 
well-known smoothing-parameter selection methods such 
as cross-validation behave poorly when the errors are cor- 
related, usually tending to undersmooth. Assumptions need 
to be made about the form of the covariance structure if 
these methods are to be successful. 

Another issue is that kernel- or spline-based nonparamet- 
ric regression methods tend not to be robust to outliers. This 
is an important practical failing of these methods, especially 
because the smoothing step is an attempt to filter out aber- 
rant observations. In such cases a robust method such as 
LOWESS (Cleveland 1979) should be used. Because auto- 
matic methods of smoothing-parameter selection are not 
consistently reliable, especially when unexpected aberra- 
tions occur, I recommend that the user select the smooth- 
ing parameter by eye, using contextual knowledge of how 
smooth the functions are expected to be. It is possible that 
there might be so much data that such smoothing might be- 
come tiresome, but typically the cost of obtaining the data 
outweighs such concerns. It is best to err on the side of 
undersmoothing to avoid missing features of interest. 

One final idea is not to smooth at all-just interpolate 
the observed yi(tij) to get estimates of yz(tj). Because the 
b(t) is a weighted average, it will tend to be smoother than 
the interpolated yi ( tij). Furthermore, there are situations, 
particularly in the physical sciences, in which the measure- 
ment error is extremely small so that there really is no need 
to smooth. Even where the measurement error is apprecia- 
ble and so better results will usually be obtained by some 
smoothing, this interpolation approach provides a useful es- 
timate of p(t) because these can then be smoothed visually 
if an exploratory result is all that is desired. 

1.2 Estimation and Prediction 

Suppose that the functional responses, yi(t), arise from 
the model g = Xp + E, where ,0 is a vector of functions 
(/A(t), “. > PpW and X is the familiar n x p design matrix 
formed from the p-vector valued covariates z,, i = 1, , n. 
As in scalar (i.e., scalar y) regression, the first column of 
X will usually all be ones, and categorical predictors can 
be handled by assigning appropriate dummy variables. Var- 
ious transformations of the predictors can be incorporated 
in X as in scalar regression. Moreover, y is a vector of 
response functions (yl(t), . . ,~~,(t))~ and E is a vector of 
error functions (pi (t), . . , &7L(t))T. I assume that each am 
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is an independent realization of a stochastic process with 
mean 0 and covariance function y(s; t)! s, t E 1. So I allow 
for correlated errors within individuals but not between in- 
dividuals. 

I will choose fi to minimize Cy=, llyi - ~$/311~, where 
/I f /I is the L2 norm on 7. Certainly other choices of norm 
are possible, including a weighted L2 norm (although that 
would not change the following ,6) or, say, an L1 norm 
if a more robust estimate was required (although the need 
for robust estimation should be reduced by the smoothing 
discussed previously). 

By considering each t E 7 separately and provided that 
X has full rank as in the usual regression situation, it is 
clear that the solution is fi = (XTX)-lXTy. Let 5 = Xfi 
and i = y - 6. 

Given a new value of the covariates x0, we predict the 
response as Go = ~$fi. Pointwise standard errors for ijo 
and /j can be computed using the usual regression formula. 
Weights may be incorporated in the obvious way. 

The b(t) can now be plotted, which might help suggest 
a parametric form for a standard longitudinal model. The 
residuals could also be examined to help suggest a paramet- 
ric form for the covariance. Alternatively, we can deal with 
the functional regression model in its own right. 

Now it may be observed that if we consider the response 
to be the vector consisting of the values of yi(t) on the 
grid of timepoints, then the preceding estimation proce- 
dure is identical with multivariate multiple regression pro- 
vided we only require estimates of p or predictions on that 
same grid of timepoints. There are two advantages to tak- 
ing the functional regression approach, however. The first 
is conceptual-the underlying quantities are curves and not 
vectors. This fact is crucial in the construction of the yi(t) 
when the times of measurement are not coincident across 
individuals. It is also used in the plotting of the results 
and the determination of appropriate regression diagnos- 
tics. The second reason is even more compelling-the in- 
ferential techniques used in multivariate multiple regression 
break down when used on curve data because of the high 
dimension of the approximating vectors. Details are given 
in the next section. 

1.3 Inference 

Consider the comparison of two nested linear models, w 
and 12, where dim(o) = p and dim(w) = 4. The model w 
results from a linear restriction on the parameters of R. 

1.3.1 Multivariate Analysis-Based Methods. Because 
y(t) is approximated by a vector, the function evaluated 
on a grid of points, it is natural to look to multivariate mul- 
tiple regression analysis (see Anderson 1984; Johnson and 
Wichern 1992) for ideas on how to test the null hypothesis 
that w holds against the alternative of R. Although making 
the grid finer does not increase the amount of information 
because the data size is fixed, we can make the grid as fine 
as we like, so any test statistics we use should make sense 
as the mesh size decreases. 
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Suppose we evaluate yli(t) on a grid of points t,, where 
j = l,... , m. Typically we would want the t, to be equally 
spaced in 7. Now we can apply standard multivariate mul- 
tiple regression with response vector ;v: and covariates zi. 
The multivariate linear model is 

Y;,,,) = x(nx,)P;,,,) + I, 

where EE, = 0 and COV(E,) = C. Now fi’ = (XTX)-lXTy’, 
and estimates of b(t) can then be made by interpolating the 
rows of fi’. We can make m as large as we like because the 
estimates and their standard errors are computed pointwise. 
The validity of this method of estimating a follows from 
Ramsay and Dalzell(1991). Difficulties arise, however, with 
the choice of m when we want to make inference about the 
whole curves, ,&(t), or test hypotheses comparing nested 
regression models. 

The likelihood ratio test statistic of the null & versus 
the alternative Hn is 

,A, m 10 

l+.d j=l .I 

where Xp and Xy are the ordered eigenvalues of & and 
p,, respectively. 

Now let’s see how the Xi’s relate to the covariance func- 
tion X. Suppose the eigenfunction decomposition of under- 
lying covariance function y(s, t) is 

cc 

Y(% t) = c w#%(s)h(t) 
i=l 

so that a randomly selected curve from the population can 
be written as 

y(t) = xP(t) f&q): (1) 
i=l 

where the & are uncorrelated random variables with zero 
means and variances yi. Now, assuming that the model is 
correct, the eigenvalues, Xi, and eigenvectors of 2 can be 
used to estimate y. and &(t). Consistency as m -+ 03 fol- 
lows from Dauxois, Pousse, and Romain (1982), although 
in their result m represents the number of observations per 
unit, not the grid size. Typically, only the first few eigen- 
values are of any size so that the residual variation can be 
represented by just a few terms of (1). The remaining eigen- 
functions, which are approximated by the eigenvectors, rep- 
resent directions in which there is much less variation. 
The likelihood ratio statistic, however, depends on terms 
log(Xy/Xy), which do not become small as j becomes large. 
This means that the test statistic will become dominated by 
terms that represent unimportant directions of variation as 
m -+ 00. Although the likelihood ratio statistic may be fine 
for multivariate multiple regression for small m, it is not a 
suitable basis for comparing functional regression-analysis 
models. 

Other tests such as the Lawley-Hotelling trace criterion, 
the Bartlett-Nanda-Pillai trace criterion, and Roy’s max- 
imum root are subject to the same objection in that they 
become dominated by variation in unimportant directions. 
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Now these multivariate multiple regression tests could be 
used if we kept m rather small, but that requires believing 
that a rather coarse grid (maybe just three or four points) 
could represent the function. This does not seem reason- 
able. One might consider the possibility of tests based on 
just the leading eigenvalues, but then the question of how 
many leading values and how to weight them will arise. Var- 
ious shrinkage or reduced-rank-type methods might also be 
attempted. 

1.3.2 Bootstrap-Based Testing Methods. An alternative 
is to consider the sum of the eigenvalues of C, - Cn be- 
cause this will be dominated by the directions of greatest 
difference. This test statistic is proportional to 

TX ;cc (fi,o; -$?)” 

i=l j=l 
n 

4 
@Y(t) - jja(t))2 dt as m 4 03. 

i=l T 

This test statistic makes sense as m becomes large in 
contrast to the preceding statistics. Some weighting might 
be appropriate when the variance of y(t) varies consider- 
ably over 7. By making some assumptions about the error 
structure, it would be possible to derive the null distribu- 
tion of this test statistic, but instead I propose the following 
bootstrap testing procedure: 

1. Compute the test statistic T and the residuals under 
the null hypothesis: ey (t). 

2. Resample with replacement from the residual curves, 
E^y (t), to obtain E^y* (t) and form the resampled response 
y* = 6” + pJ*. 

3. Refit the null and alternative models using the re- 
sponse y*, and compute the resampled test statistic T*. 

4. Repeat B times and compute the P value for the test 
as #{T* > T}/B. 

A parametric bootstrap alternative is to assume that the 
errors are from a Gaussian stochastic process and generate 
the Y* using (1) by generating the & as independent normal 
variates with variance Xy . 

Quite apart from the usual caveats about bootstrap meth- 
ods, these tests can only be regarded as approximate due to 
the subjective nature of the smoothing carried out earlier. 

If the null hypothesis is rejected, it may be interesting to 
find out why. Large values in C,“=,($s - GE)“, i = 1, 
. . > n, will indicate individual curves that contribute sub- 
stantially to the rejection, whereas ~~=“=,($‘J - $)“, j = 
1, . , m, will identify points in time at which the two mod- 
els may differ. 

Simultaneous confidence bands for fi,i (t) and Go(t) = ^ 
$/J(t) may also be derived using this bootstrap proce- 
dure. Suppose that the function being estimated/predicted 
is f(t)-either one of the preceding-and that the standard 
error is s(t); then we wish to find a c such that 

P(&) - es(t) 5 f(t) 5 f(t) + cs(t),vt E 7) = 1 - ck 

for a (1 - a) x 100 simultaneous confidence interval for 
f(t). We can construct resampled f*(t) using the method 
described previously and let c be the (1 - o)th quantile 
of sup, If*(t) - f^(t)l/s(t). This is essentially the method 
used by Faraway (1990) and compared favorably to other 
bootstrap confidence-band construction methods by Loader 
(1993). 

1.4 Residual Analysis 

After a model has been selected, perhaps with the aid of 
the testing methods described previously, it is a good idea to 
examine the residuals to check the adequacy of the chosen 
model. Three kinds of plots may be useful: 

1. Plots of the estimated eigenfunctions and their asso- 
ciated eigenvalues. The eigenfunctions are estimated using 
the eigenvectors of the estimated residual covariance ma- 
trix. These plots show the nature of the unexplained varia- 
tion in the model, which can sometimes be given a physical 
interpretation as we will see in our example. The eigenfunc- 
tions could also be used to suggest a suitable parametric 
form for random effects in view of the form of (1). 

2. Quantile-quantile (Q-Q) plots of the estimated scores 
ii. There will be a plot of n scores for each eigenfunction. 
Typically most of the variation is represented by the first 
few eigenfunctions, so only a few of these Q-Q plots will 
be worthy of examination. The main subject of attention 
is outliers-these indicate unusual curves rather than aber- 
rant point observations. The same considerations about how 
to handle outliers apply as in scalar regression. Approxi- 
mate normality will provide some evidence of a Gaussian 
stochastic error process should this be an assumption of any 
inferential technique. 

3. For each time point tj, plot &(tj) versus iL(t,i). As 
in scalar regression, we expect to see no relationship if the 
assumptions of the model hold. For checking constancy of 
variance (with respect to 6 and not t, where we allow for 
nonconstant variance), plotting & (tj) versus Ii,; (tj) 1 is more 
effective. 

Clearly, there is more scope for other plots of the resid- 
uals, some of which would be direct analogs of the scalar 
regression case and others that would be new, using the 
functional nature of the response and error. 

2. EXAMPLE 

Ergonomically correct design of equipment is vital to 
the health and comfort of users. Devising a good design 
for such equipment is often costly because it involves the 
production of prototypes. These must be tested by users 
of different anthropometric dimensions. The prototypes are 
recursively improved, which can be expensive and time con- 
suming due to the cost of construction and testing. An ac- 
curate model of human body motion for various anthro- 
pometric dimensions would ease computer-aided design of 
equipment, avoiding much of the need for the production 
and testing of prototypes. 

As part of a study of the body motions of automobile 
drivers, researchers at the Center for Ergonomics at the Uni- 
versity of Michigan attached markers to various body joints 
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of a single individual. Four cameras tracked the marker lo- 
cations as the individual reached to various locations in the 
car and pressed a button. The coordinates of the markers 
were sampled at 25 hertz and then converted to angular data. 
There were a few missing values caused by markers being 
obscured during some parts of the motion. In this article, 
I will analyze only the right-elbow-included angle (the an- 
gle formed by the shoulder, elbow, and wrist markers) for 
a single individual. In the full study, about 10 angles are 
investigated across 36 individuals. There were 3 reaches to 
each of 20 different targets situated in the glove compart- 
ment, center console gear shifter, central instrument panel 
(where the radio is), and the headliner (above the wind- 
shield). The order of the reaches was randomized, and there 
was an adequate rest time between motions. Only the por- 
tion of motion between when the hand leaves the steering 
wheel and when it reaches the target will be modeled. 

because of the targets being at different distances from the 
The data recorded for each motion vary in length both 

driver and also because the driver may make the reach at 
different speeds. The objective now, however, is only to 
model the shape of the motion and not the speed at which 
it occurred. Let y(t) represent the angle, and t is resealed to 
vary over [O, 11. Thus, t does not represent time, merely the 
proportion of the motion between the start and the end. For 
a given motion, y(t) is observed on an equally spaced grid 
of points, but the number of such points varies from ob- 
servation to observation. There were a few missing values, 
but this poses no problem because nonparametric regression 
methods can estimate the curve at these points. 

The cirves are shown in Fig&e 1. ’ 

A plot of the data revealed no unusual single yz(ttj) and 
apparently very little noise in the observed angle curves. 
This is to be expected due to the accuracy of the mea- 
surement equipment and the smoothness of human motion. 
Thus, very little smoothing was indicated and the smooth- 
ing splines used to estimate yi(t) were close to being inter- 
polants. The y(t) were computed on an evenly spaced grid 
of 20 noints. which was adeauate to renresent the curves. 
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Figure 1. Estimates of the Right-Elbow-fncluded Angle Curve for 20 Different Locations With 3 Replications per Location. The vertical axis is in 
degrees. 
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One of the motions to the left rear shifter location is ear model. The estimated p value for the test using either 
clearly wrong. Closer investigation of the data for this ob- bootstrap test described in Section 1.3 with 200 resamples 
servation revealed that the subject changed his mind about was 0. Thus, the linear model appears not to fit sufficiently 
the target in mid-reach. This observation was discarded well. An examination of the components of the test statis- 
from the rest of the analysis. tic reveals that the lack of fit is associated with reaches 

The purpose of this experiment was to find a model for to locations that are extreme in the target space-the left 
predicting the motion given the coordinates (cz, cY, cz) of rear headliner in particular. The fit in general also becomes 
the target. The coordinates of each of the 20 targets in the worse approaching the end of the reach. 
experiment are known. A linear model A quadratic model, 

Y(t) = /Jo(t) + c.&(t) + cy Pv (t) + WA (4 (2) Y(t) = Do(t) + cm%(t) + CyPyO~) + w%(t) 

was fit to the data. To determine whether this represents an + Glq/Pzy (t) + q/d&z(t) + wzP*z (t) 
adequate fit, I compared it to the model in which we fit a 
different curve for each target: + c$3,2 (t) + c;py2 (t) + c&(t), (4) 

Y(t) = h(t), 
(3) was fit to the data and compared to the model in (3). 

The bootstrap test described previously gave an estimated 
where k = 1, ,20 indicates the target. This model is anal- p value of .26, whereas the version assuming a Gaussian 
ogous to standard one-way analysis of variance. Comparing stochastic process gave .3. This indicates that the quadratic 
these two models represents a lack-of-fit test for the lin- model cannot be rejected as an adequate model for the data. 
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Figure 2. The Fitted Curves for One-Way ANOVA Model (2) (solid line), the Linear Model (1) (dotted line), and the Quadratic Mode/ (3) (dashed 
line). The vertical axis is in degrees. Note the superiority of the quadratic fit and that the largest discrepancies occur in reaches to extreme locations. 
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Figure 3. An Eigendecomposition of the Residuals: Estimates of the 
First Four Eigenfunctions With the Associated Eigenvalues Marked on 
the Plot. 

Of course, with more data and targets, it is likely that the 
inadequacy of the quadratic model would be revealed be- 
cause it seems unlikely that the true relationship is exactly 
quadratic. This model, however, appears to give a good ap- 
proximation and forms a suitable basis for prediction for 
reaches within the general range of targets in the experi- 
ments. See the fitted curves in Figure 2. 

It is possible to obtain a measure of the fit in each of 
these models. The coefficient of determination, R”, may 
be computed pointwise and then integrated across 1. The 
values obtained are 84.0% for the one-way ANOVA model, 
68.6% for the linear model, and 80.6% for the quadratic 
model. The fit was better at the end of the motion, which is 
not surprising because the targets, which mark the end of 
the motion, were the covariates. 

Having found a prospective regression model, we now 
examine the residuals. The first four estimated eigenfunc- 
tions are shown in Figure 3. 

The first eigenfunction shows that variation about the 
mean is mostly in the form of a vertical shift but with 
greater variation in the middle of the motion. This can be 
explained by realizing that the elbow angle will start in 
roughly the same position for a reach to a given target, and 
likewise for the endpoint, but may progress at an uneven 
rate. The marking of the beginning and end of the motion 
was determined from an examination of the coordinates of 
the hand. This was difficult to do conclusively, leaving vary- 
ing amounts of stationary motion at the ends of curve, so 
variation in this could also explain the first eigenfunction. 
The second eigenfunction can be interpreted as variation in 
the start and finish angles of the elbow. The hand is not 
always in exactly the same position on the wheel or the 
arm has begun to move before the hand or the attitude of 
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the arm varies when the target has been reached. The other 
residuals checks described in Section 1.4 were carried out 
and revealed nothing abnormal. 

The selected quadratic model can now be used for predic- 
tion. The new target, ~0, for which a predicted angle curve 
is required is situated between the radio and the glove com- 
partment. The predicted curve is co(t) = nrd(f), and 95% 
simultaneous confidence bands for the mean response (the 
average predicted motion to this target) and for a new re- 
sponse are shown in Figure 4. The bands were constructed 
using the bootstrap method described in Section 1.3. The 
width of the bands happens to be roughly constant. The crit- 
ical value was 2.29 based on 999 bootstrap samples, which 
compares to the 2.01 that would be used for the t-based 
pointwise confidence bands. Further insight into the nature 
of the variability in the prediction might be had by adding 
random errors to co(t) in the manner of ( 1). 

In this example, I have not shown the y(t) because they 
would be difficult to interpret. In other data collected in this 
study, covariates such as the heights of individuals making 
the reaches were recorded, and the y(t) associated with such 
covariates would be of direct interest. 

Two alternative approaches might be considered for mod- 
eling this data. Parametric longitudinal analysis could be 
applied if we can propose suitable parametric models for 
the mean and covariance of the response. For this particu- 
lar example, there was no theory to suggest any particular 
parametric model, so one would have to examine Figure 1 
and attempt to divine one. Because the curves do not seem 
to have any common shape, a flexible model with many pa- 
rameters would be appropriate. One would then have the 
difficult task of relating these parameters to the covariates. 
[An examination of the b(t) from the functional regres- 
sion might be helpful in suggesting a suitable parametric 
model.] This approach is fine for data in which there are 
few measurements per curve with relatively large variance 
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Figure 4. The Predicted Response (solid bne) for a New Target Situ- 
ated Between the Radio and the Glove Compartment. 95% simultaneous 
confidence bands for the mean response (inner pair) and for a new ob- 
servation (outer pair) are also shown. 
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so that simpler parametric forms will work, but it seems to out this work while visiting the Statistics Group at the Uni- 
be unwieldy for data of the kind presented here. versity of Bath. 

An alternative approach is based on multivariate multiple 
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