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The movement of landmarks on the human face can be recorded in 3D using motion capture equipment.
We describe methods for the analysis of data collected on groups of subjects with a view to describing
and assessing the differences between the facial motions of those groups. We focus on the smile
motion in particular. The methods presented can be used more generally for continuous shape change
data.

We introduce a novel parameterization of shape change that allows the parsimonious description
of facial motion. We allow for a distinction between static facial shape and dynamic facial motion.
We describe statistical methods for modeling differences in facial motion including a comparison
of mean motions, principal components for describing the variation in motion and linear models for
describing the effects of predictors.
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1. Introduction

Surgical procedures for repairing and correcting facial injuries
and defects have advanced considerably in recent years. Sur-
geons are able to make impressive improvements to facial ap-
pearance. However, more than just a pretty face is needed—the
face must function well too. Eating, speaking and facial gestures
are an essential part of life. Function, as well as form, must be
considered when evaluating surgical outcomes.

Cleft lip or palate is a relatively common birth defect. The
standard treatment involves a series of surgeries through child-
hood to correct the problem. The incremental improvements
in facial form tend to decrease with each successive surgery
while increasing the risk of scarring and nerve damage that can
degrade facial function. Decisions need to be made by the sur-
geon and parents about whether to continue. Aesthetic consid-
erations tend to have greater weight than they perhaps deserve
and small improvements in form may be obtained at the cost of
function. The full quantification of facial function that would
allow for more informed decisions has not been available. In
earlier work—(Trotman, Faraway and Essick 2000), we pro-
posed some measures but the ones presented here represent a
full step beyond to represent the full dynamic motion of the
face.

Another type of surgery where additional understanding of
facial function is needed involves persons with unusually small
(retrognathic) or large (prognathic) jaws. Surgical techniques
have been developed to modify jaw size closer to the norm but
less is understood about how the movement of persons with
retrognathic or prognathic jaws differs from the the norm and
how surgery affects this movement. The data we analyze below
is drawn from a study investigating these issues.

The methods we shall present below are useful for quantizing
and modeling facial motion for clinical purposes. They also have
some application to non-clinical applications in animation and
in modeling shape change in general.

Three dimensional motion cannot be satisfactorily repre-
sented statically on a page. To appreciate our motion models,
they must be seen in action. We have developed standalone
viewer software that must be seen to understand the outcomes
of our analyses.

2. Data

The sample analyzed below consisted of 48 healthy subjects
recruited from the University of North Carolina School of Den-
tistry Orthodontic and Dentofacial Clinics. Some of the sub-
jects had retrognathic and prognathic jaws. The extent of these
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variations in facial form can be quantified in various ways. We
will use a measure called MFLF which represents the ratio of
a midface distance (nasion to anterior nasal spine) to a lower
face distance (anterior nasal spine to menton). There are other
measures that would be considered in a full analysis including
age and gender, but we aim to present only the method of analysis
here. Subjects were asked to perform various standard facial
motions—eye open, eye close, cheek puff, lip purse, grimace
and smile. We shall focus on the smile only here although a
full analysis would study the other animations. Subjects were
instructed to bite on the back teeth and smile as much as possible.
This is artificial but a previous study indicated that this smile had
similar characteristics to natural smiles—see Mendez (1999).
Each animation was repeated 3 times.

Data may be collected on facial motion using motion capture
equipment. Twenty four retro-reflective markers, each with a di-
ameter of 2 mm were attached using eyelash adhesive to specific
sites on the face shown in Fig. 1.

Some markers can be placed quite consistently. For example,
the position of the commissures (lip corners—markers 16 and
19) is well defined. Other markers are placed on landmarks that
are less well defined—for example, markers 13 and 14 on the
upper lip. This is important in our choice of measures in the data
analysis to follow.

The Motion Analysis video tracking system used four cameras
to track the motion at a rate of 60 frames per second. All the
motions were recorded for 3 seconds for a total of 180 frames
per motion. At least two cameras must have a line of sight to a
given marker for its position in three dimensions to be recorded.
Due to the redundancy of having four cameras, missing data
was relatively rare although occasional outliers are generated

Fig. 1. Schematic of facial marker placement

due to problems with tracking the data were encountered. Note
that the head was not constrained so that the motion of face
was confounded with motion of the whole head. Each motion is
represented by 24 × 3 × 180 = 12960 numbers and there were
144 smiles observed for a total of around 1.9 million numbers
in the complete dataset.

We show two smiles by the same person in Exhibit 1. (Please
see Appendix for description of how to obtain and operate the
viewing software. It is important to view the motion from the
side as well as the front). In just these two observations, we see
several important characteristics of the data. The head is not
constrained. The initial positions are not exactly (nor could they
be) aligned. The smiles take place at different times during the
3 second period. A small amount of noise due to measurement
error is visible.

We have presented only a representative selection of analyses
of this data. Our purpose is just to describe what is possible
in a concrete manner but without attempting a comprehensive
analysis of the data.

3. Methods

3.1. Shape

The configuration of the 24 markers constitute a shape (see
Dryden and Mardia (1998), Bookstein (1991) and Small (1996)
for introductions to statistical shape analysis). However, we are
not so much interested in the shape of the face itself, but rather
in how this shape changes when the face moves. We already
know that facial shapes differ from person to person and what
distinguishes those with retrognathic jaws from those with the
normal jaws. Our interest is in the motion itself independent of
the shape—essentially the derivative of the shape as it changes
over time. This explains the necessity of developing new tech-
niques.

We choose to base our analysis on the following type of mea-
sure: Let di j (t) be the (Euclidean) distance between marker i
and j at time t , where i, j = 1, . . . n and n is the number of
markers. Now let

ri j (t) = di j (t)

di j (0)
− 1,

which represents the relative change in the distance from rest.
This measure has several desirable properties:

1. It is invariant to whole head motion.
2. It is approximately invariant to small variations in marker

placement. As we mentioned above, the landmarks for sev-
eral of the markers are not precisely defined. Because of the
relative scaling, small variations in placement will have only
have a second order effect.

3. It is not dependent on local shape. For example, consider
the distance between the commissures, 16–19. Of course,
some people have bigger mouths than others but we have
little interest in this. We are more concerned with how this
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distance changes during, say, a smile. By scaling using the
initial distance, we remove much of the this effect.

In Lele and Richtsmeier (2000) and other research articles, an
approach to statistical shape analysis based on di j over all pairs of
distances called EDMA (Euclidean Distance Matrix Analysis)
is developed. Given the matrix di j , it is possible to reconstruct
the shape (up to rotation, translation and reflection).

3.2. Reconstruction

Suppose we were to average (elementwise) two d matrices repre-
senting different faces. d̄ would almost certainly not correspond
exactly to any configuration of points in 3D. However, provided
the two shapes are not very different, we expect that a face ex-
ists that has a distance matrix with entries close to ¯d . This is the
classical multidimensional scaling (MDS) problem for which a
standard textbook solution exists.

A further difficulty is that MDS does not fix the orientation
of the face. We will require that successive frames in the re-
construction as t varies be displayed continuously. There are
several solutions to this. In our case, we identify 4 markers on
the nose, 4, 9, 10 and 11, that do not move very much relative
to each other. We align successive frames so that the nose ap-
pears upright. In other applications, particularly where the shape
lacks a fixed feature, like the nose in this example, alignment
is more problematic and other schemes would need to be con-
sidered. For example, Procrustes fitting could also be used to
ensure smoothness between frames.

3.3. Registration

The subjects are instructed to start from a neutral facial pose,
assume the required pose, such as “smile”, and then relax. This
should be completed within 3 seconds starting from a cue to the
subject that the cameras are recording. Subjects are given the
opportunity to practice and if they miss the 3 second time slot,

Fig. 2. Selected relative change from rest for a smile. Left: 13–17 (Upper Lip). Center: 4–5 (Eyebrow). Right: mean. Selected transitions shown

they have the opportunity to repeat the animation.
There are five phases to the motion:

1. Neutral pose
2. Assume the required pose
3. Hold
4. Relax from the required pose
5. Neutral pose

This means there are 4 transition times. These times will vary
from animation to animation so it would not make sense simply
to average several motions cross-sectionally in time. Motions
need to be “registered” with each other so that comparable points
in the motion are averaged. A further difficulty is that it is difficult
to precisely identify these transition times.

We illustrate the issues in Fig. 2, where information from
a smile is depicted. The first panel shows a Lowess-smoothed
r13,17(t) which represents a distance on the upper lip. The five
phases of the motion are clearly identifiable although the precise
transitions are not unambiguous. The center panel shows r4,5(t)
which represents a distance above the eye. In this case the phases
are not identifiable, not perhaps unsurprisingly as movement
during a smile is confined to the lower part of the face while
other unrelated activity may take place above the eyes. Clearly,
we’d prefer to use the first plot to choose the transitions in this
example. Unfortunately, patterns will differ from animation to
animation and from individual to individual. What may be a good
pair for one motion might not be for another. For this reason, we
compute the average ri j (t) over all pairwise distances as shown
in the right panel and use this to select the transitions.

Various methods for automatically registering curves have
been developed—see for example Ramsay and Li (1998). The
drawback of automatic methods in our experience is that, al-
though good ones may work well enough most of the time, they
can fail badly when confronted with unexpected features. Given
the outliers and missing values in the data, such anomalous cases
are not uncommon. For this reason, we manually identify the
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transitions in the data. This was done anonymously to avoid bias
in the selection. It would have been necessary to manually check
the selections even had an automatic method been used so little
time was lost and many errors avoided.

3.4. B-Spline representation

The curves shown in Fig. 2 can be approximated by standard cu-
bic B-splines. We represent these curves as linear combinations
of these basis functions, Bk(t) for k = 1, . . . , m. The lth curve,
rl(t), where l = 1, . . . , n(n − 1)/2, is represented as

rl(t) =
m∑

k=1

clk Bk(t) + ε(t)

where the coefficients clk are found by minimizing a least squares
criterion: ∫ 1

0

(
rl(t) −

m∑
k=1

clk Bk(t)

)2

dt

Perhaps another more robust criterion could be used, but we
chose to remove outliers and other aberrant points earlier in the
process and so our earlier smoothing makes this unnecessary
in this case. The particular B-spline basis is determined by the
choice of knot location. We evenly space our knots within the
five phases described above. Furthermore, we know that rl(0) =
rl(end) = 0. We can impose this restriction directly by omitting
the first and last B-spline basis functions. The B-spline basis
functions corresponding to Fig. 2 with just one interior knot for
each phase are shown in Fig. 3.

Because the transition points will differ from motion to mo-
tion, the placement of the knots will also differ. However, we will
be able to directly compare and compute statistics on the coeffi-
cients c with the assurance that clk1 and clk2 represent the same
part of the motion. The knot positioning ensures the appropriate
registration.

We chose m = 16. This allows for 6 knots at the endpoints
and transitions and two interior knots in the phases. Note that
the choice of the number of knots is now an approximation
rather than a smoothing issue. The observed data has already
been smoothed (see Fig. 2). We simply need enough knots to

Fig. 3. B-spline basis functions corresponding to transitions in Fig. 2.
Knot locations are shown on the horizontal axis. Note the zero values
at the two endpoints

adequately approximate the curves without using more than
necessary which would increase the computational and storage
burden.

4. Statistics

For convenience, we unroll the matrix clk into a vector ch where
h = 1, . . . , mn(n − 1)/2 which represents one complete mo-
tion. For our choices of m = 16 and n = 24, we have a vector
of length 4416. Also, we have the distance between markers at
rest di j (0) which can also be unrolled into a vector dg where
g = 1, . . . , n(n − 1)/2 which represents the face at rest. What
follows are standard statistical methods for such a multivariate
responses, ch and dg , with some special adaptations and inter-
pretations for this particular use.

For given ch and dg , we can generate a facial motion by con-
verting dg back into the matrix di j (0) and computing rl(t) from
ch and so finding ri j (t). We can then form

di j (t) = di j (0)(1 + ri j (t))

and so reconstruct the whole motion by the methods explained
earlier.

Most of the intermarker pairs used have a symmetric counter-
part on the other side of the face. We have chosen to symmetrize
the facial shape and motion by averaging these pairs in the exam-
ples that follow. Note that such symmetrization will not always
be appropriate.

4.1. Means

It is straightforward to compute means within different sub-
groups in the data. For example, we may compute the aver-
age smile on the average face by simply averaging ch and dg

over all the observed smiles. To compute the resulting mo-
tion, we must also specify the 4 transitions. We could compute
the means of the observed transitions but for ease of compari-
son between different displays, we have set these transitions at
t = 1/6, 2/6, 4/6, 5/6. Such a smile is shown in Exhibit 2.

It is not necessary to use the same subgroups for computation
of the motion and the static face. We could compute

di j (t) = d A
i j (0)

(
1 + r B

i j (t)
)

where A and B represent means computed over different groups
of individuals or even just a single individual. For example, we
can impose the group average smile on the face of any given in-
dividual. Within this particular application, this would be useful
for comparing the actual motion of a patient with what might
considered normal motion.

We can also decompose the effects of static shape and dynamic
motion. We might ask whether a particular subgroup differs from
another because the motion or the shape or both are different.
To illustrate this idea consider a division of our subjects into
two groups based on their MFLF score. One group consists of
subjects considered normal and the other with higher scores
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Fig. 4. In the first panel, the average normal face and motion is com-
pared with the average patient face and motion. In the second panel,
the average normal face and motion is compared with the patient mo-
tion applied to the average normal face. The midpoint of the motion is
depicted. Markers of the normal subject is shown with hollow dots and
patient with solid dots

generally tending to indicate smaller jaws. We call the higher
MFLF group, “patient” for ease of reference.

In Exhibit 3, we show a comparison of average smiles of
normal subjects on the average normal face with the average
smile of the patient subjects on the average patient face. We
observe some clear differences in these motions (ignoring ques-
tions of statistical significance for now). But is the difference
because the patient group have different shaped faces or be-
cause they smile differently? In Exhibit 4, we show a com-
parison of average smiles of normal subjects on the average
normal face with the average smile of the patient subjects on
the average normal face. The differences we now see are just
those of motion which are far less substantial. Although it is
best to see these differences in a dynamic display, we show the
frontal view in Exhibits 3 and 4 at the midpoint of the motion in
Fig. 4.

This observation has some practical significance since surgi-
cal techniques exist for extending the jaws of retrognathic pa-
tients. One might be concerned that altering the shape of the face
would not be sufficient if the motion were abnormal. However,
our exhibits suggest that the differences are due to abnormalities
in shape, not in motion and that provided the surgery did not alter
the motion of the patient, the outcome would be normal shape
and motion. However, since this conclusion is derived from just
a single type of motion (a smile) and a single measure of facial
shape (MFLF) it is just speculation. A broader analysis is under
way.

4.2. Variance

Of course, there is substantial natural variation in facial motion.
We can describe the nature of this variation with a principal com-
ponents analysis on the ch . In this case, we have 4416 variables
but even counting all the smiles separately, we have only 145

Fig. 5. Front and side views of the smile at maximum expression. Aver-
age plus and minus two standard deviations in the direction of the first
principal component are shown

cases. Nevertheless, we may still compute the principal compo-
nents. We find the percentage of variation explained by the first
5 components are 32.6, 12.9, 4.6, 4.4 and 4.1% respectively. We
compute

c̄ ± 2
√

sivi

where si and vi are the i th eigenvalue and eigenvector re-
spectively. We have applied these motions for the first princi-
pal component to the average face as shown in Exhibit 5 and
Fig. 5. We see that the first principal component reflects the
variation between people who tend to open their mouth when
smiling as opposed to those who tend to keep their mouths
closed.

The principal component scores are useful to identify un-
usual motions. These can be used to detect faulty or exceptional
motions that were not found at an earlier stage. Furthermore,
these can be used to rate new patients with respect to a standard
group. This provides a quantitative measure of abnormality and
could also be used to objectively assess any changes due to
surgery.

4.3. Inference

We could simply apply the standard techniques of multivari-
ate analysis (see for example, Johnson and Wichern 2002) to
the ch . However, the dimension is large (1056 in our exam-
ple) and so the power of such tests would be poor in that they
would reflect unimportant differences between the groups aris-
ing in the smaller principal components. A similar problem of
dimensionality with functional data was observed in Faraway
(1997). Instead, we contend that it is both better and simpler
to perform the inference on the first few principal component
scores.

In Fig. 6, we show the first three principal component scores
plotted against MFLF. No relationship is apparent although some
groupings of the three replicates per subject can be seen. We
can fit a linear mixed effects model for the j th replicate of
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Fig. 6. First three principal components of the smile against MFLF

subject i :

pci j = β0 + β1MFLFi + γi + εi j

where γi is the random subject effect with variance σ 2
γ while

within subject variation εi j has variance σ 2
ε .

As might be expected, the test H0 : β1 = 0 is not rejected
(p = 0.45). This confirms our earlier observation about the
small difference in the two motions. We find an intraclass cor-
relation coefficient of 62.7%. This indicates that while there is
some consistency in smiles of the same subject, there is also a
fair amount of variation in those smiles.

More extensive modeling and inference is possible but not
explored here.

5. Discussion

For this particular application and other similar clinical prob-
lems, we have developed methods for

• Comparing and testing the dynamic motion of groups of sub-
jects independent of their static facial shape.

• Describing and visualizing variation within the facial mo-
tions of groups of subjects

• Scoring the difference between individual subjects and the
population motion

We also believe the analysis presented here has application to
fields beyond facial modeling in clinical applications. Any data
on continuously changing shapes might be modeled in a similar
manner.

Appendix: Motion viewer

Facial motions are difficult to represent statically and in two
dimensions so they are best viewed dynamically. We have con-
structed a viewer that can display these motions that can be view
at any angle. The viewer may be downloaded from

http://www.stat.lsa.umich.edu/~faraway/face/

The viewer keyboard commands are

• Function keys F1–F5—Load Exhibit 1–5 respectively
• Arrow keys rotate the view
• a—show first (or only) face moving
• b—show second (if available) face moving
• c—show both (if available) faces moving
• </>—increase/decrease face size

List of exhibits

1. Two smiles by the same individual.
2. The average smile.
3. Average face/smile of normal MFLF group compared with

average face/smile of patient MFLF group.
4. Average face/smile of normal MFLF group compared with

average face of normal with average smile of the patient
MFLF group.

5. Smiles two standard deviations above and below the average
in the direction of the first principal component.
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