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The problem of sequential design for a nonparametric regression with binary data is
considered. The aim of the statistical analysis is the estimation of a quantal response
curve p. An adaptive method is developed that proposes the location of the next best
design point on the basis of past observations. The behavior of this estimator is discussed
and its small sample properties are investigated using a simulation study.
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1. INTRODUCTION

Suppose the outcome of an experiment is dichotomous — success.or
failure and that the probability of success is a function of the stimulus
level at which the experiment is carried out. In these experiments, we
assume that the reaction Y; of the ith subject at stimulus level Xx;
(i=1,...,n) is an independent Bernoulli random variable with
parameter p(x;), i = 1,...,n. The specification of the stimulus levels
x; forms the design of the experiment. We assume that p is continuous
and strictly monotone increasing. We want to estimate the curve p.
Much prior work has been devoted to the estimation of quantiles of p,
for example the so-called ED50 level. However, in situations where the
parametric form of p is unknown, we may want to estimate the whole
curve p or substantial portions of it.
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Sometimes, we have a fixed sample size available and must decide on
the location of all the design points x;, x», . .., in advance. If one uses a
kernel-based estimate of p, then Miiller and Schmitt (1988) describe
the asymptotically optimal design density. You would need some prior
knowledge of p to construct such a design in practice. Failing that, it is
often possible to observe the results of the measurements sequentially
so that we may decide on the position of the next design point on the
basis of the previous observations. In this paper, we present a new
sequential design for the estimation of the response curve for the
nonparametric regression approach. The advantage of the sequential
design is that significantly greater precision may be had for the same
sample size or fewer measurements may be required to obtain some
specified accuracy. When the experimental runs are very expensive, the
saving of a few runs by an efficient design outweights the extra effort
required in designing and running a sequential experiment. In
Section 2, we describe our algorithm and discuss how our design
converges to the optimal design based on knowledge of the true p. In
Section 3, we present a simulation study that illustrates how well our
method works with small samples. In Section 4, we conclude.

2. SEQUENTIAL DESIGN FOR CURVE ESTIMATION

2.1. The Estimator

We will assume that p € C*([0,1]), and that p is strictly monotone
increasing. We use the kernel-based estimate proposed in Miiller and
Schmitt (1988) which is defined as follows:

B(x) uWM\ K(Z5~) (1)

where b is a sequence of a positive bandwidths depending on # such
that 56— 0, nb— oo as n— oo and where X is a continuous kernel
function satisfying: [ K(u)du =1, [ K(w)udu = 0, [ K(u)u?du > 0. The
kernel is assumed to have a compact support, [—1, 1] and is required
to satisfy KeLip([—1, 1. so=0, 5, =1 and s; = (x;+ x;+1)/2 for
1<i<(n-1).
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2.2. Sequential Design Algorithm

A strictly positive design density f on [0, 1] satisfying f'e Lip([0, 1J),
uniquely determines the design points x, ..., x, by

i d i—1
tyat = .

| rwae=1=
Suppose that the design points, x;, must be given in advance of the
experiment. Miiller and Schmitt (1988) derive the optimal design

density /™ minimizing the asymptotic integrated mean squared error
for p using the optimal bandwidth & as

p(x)(1 = p(x))

AN OO

Let x},...,x} be the design points based on this optimal design. In
general, all the points would change if the sample size, n, were changed
so there is an implicit dependence on » and so the design is only
suitable when 7 is fixed in advance. Furthermore, the design is based
on the asymptotic IMSE so it is only asymptotically optimal.

This design could be used where some initial estimate of the
response curve is available such as in a two-stage experiment but when
the observations are collected sequentially, it is possible to do better
than this. We propose the following sequential design algorithm to
make the actual design density as close as possible to the optimal
design density.

()

Sequential Design Algorithm

1. Start with m initial design points, {x;}" with corresponding binary
observations {Y;}]" assumed to be generated by P(Y; = 1) = p(x;)
with true response p unknown.

2. Estimate the cumulative distribution function of the optimal design
density, F *(x) based on the current data, so

Fo= [

where p is obtained using (1).




158 D. PARK AND J. J. FARAWAY

3. Choose the next design point, x; as Fr! (&) where & =1, & = 1/2,
and for &;, i>3

bty if1<k<27?

ok = | .
T e~y 224 1<k< o

where j> 2.
4. Repeat Steps 2 and 3.

To show the pattern, here are the locations of the first 16 points
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At each stage, we are bisecting the largest interval, but even so, there
is usually a choice of intervals and we must choose carefully. We
would like the &’s to be as close to uniform as possible. For example,
suppose we choose the leftmost largest interval, then the first 12 points
would be
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In the above figure, 8 out of 12 points are less than or equal to 1/2.
This unbalanced choice is far from uniform. Note that even as the
sample size increases, the design retains this awkward property.

Our arrangement of the &’s looks strange, but to show that the
estimator based on the sequential design has the same IMSE as that
based on the optimal design, we require that {£i,...,&,} should be
almost evenly spaced for all n. Let

On = max [ — il
where n; € [(i—1)/n, i/n] and the subscript parentheses indicate sorting
in ascending order.

The &’s we have chosen are effectively equivalent to a van der
Corput sequence with base 2. Such sequences have been used in
numerical integration problems--see Niederreiter (1978). From this
literature we know that 9, < (logy n/3+ 1)/n. This is the best rate of
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convergence that can be achieved although slightly better constants
may be obtained using special irrational numbers although there are
difficulties implementing these on computers which is why we have
used a van der Corput sequence. We need only an O(n~*®) rate which
is more than satisfied by this sequence. Note that a purely random
sequence would achieve only an O(n~'/%) rate and thus would fail.

It is very difficult to get theoretical results with the estimator based
on the sequential design as defined above because of the complex
dependence structure. We assume that the optimal design density
function is given, so the sequential design point x; is chosen by
x; = F*~1(£). We also modify the estimator for the sequential design.
Let

. I (% /x—u
%TMM\&._.A )Y, )

where

&fn .L

Thus we “cheat” by using some knowledge of the true p in the
sequential design based estimator. For the sequential design based
estimator of (2) to have the same asymptotic IMSE as the optimal
design, the sequential design points x; have to be relatively close to
their respective intervals [s}_;,s}]. Of course, if x; € [s}_;,s}], Vi, there
would be no difficulty but this is not true in general and in fact it does
not seem possible to design a sequence &, &, ... so that this can be
true in general. Nevertheless, the properties of our sequential design
guarantees that they will be somewhat close in the general case.

Since /™ is strictly positive on [0, 1], F*~! has a bounded derivative
on [0, 1] so for some ~; € [s}_;,s;] and constant M,

i — | = [F*71(&) = F*~(m)] < M|& —mi| = O(n™0)

where 4/5 < §<1 and n,€[(i~1)/n, i/n].

This is sufficient to work through the derivation of the IMSE as in
Miiller and Schmitt (1988) where this fact is crucial to the bias and the
variance calculation. In this manner, we show that the estimator based
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on the sequential design has the same IMSE as that based on the
optimal design.

3. SIMULATION STUDY

We need to show that, for small samples, the sequential design
approaches the performance of the optimal design and works better
than the equally spaced design that might be used in a non-sequential
experiment. Our sequential procedure used below uses no knowledge
of the true response and is thus a fair test of its ability.

One practical difficulty is that the kernel estimate (1) is not
necessarily monotone even if the true response curve is monotone
increasing as is usually assumed. To fix this, we used the “Pool
Adjacent Violators Algorithm” as a monotonizing transformation.
(See Barlow, Bartholomew, Bremner and Brunk (1972)).

An appropriate choice of the bandwidth 4 is also very important.
For the evenly spaced design, Miiller and Schmitt (1988) adapted the
Rice criterion (1984) for response curve estimation. Since our
sequential design is not evenly spaced, we made a further change to
allow for this. We chose b to minimize

Rb) = Mg? — B))? + 25 M?m [ x5 “)au)

where w; = 5,—5;_y and 62 = (1/2(n— 1))2,(¥; — Y1)~
 We used the Epanechnikov kernel for K. Although the estimation of
p on [0, 1]is the objective, we restricted the selection of 4 to [.25, .75] to
avoid edge effects in the choice.

We compared the sequential design to the fixed design where the
design points are evenly spaced and to the optimal design where the
points are chosen by

i—1
n—1

/ 7 et =

where f* is the optimal design density described in Section 2.2.
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For the “true’” response curves in our experiment, we used the
probit model p;{x) = ®((x — 0.5)/0.1), the normal mixture model
pa(x) = 0.5®((x — 0.4)/0.05) + 0.5%((x — 0.6)/0.05), and the Weibull
model p3(x) = 1 — exp(—(x/0.5)*). For each model, N = 400 Monte
Carlo runs were made.

The sequential procedure needs some initial points before it can
work—we used 20 evenly spaced points. We then followed our
sequential design procedure up to a sample size of n = 100.

In Figures 1-3, the Monte Carlo IMSE of each design is plotted
against the sample size for each model. The standard errors are
estimated to be at most 3% and are not significant factor in
interpreting the results. The reader may be curious why the curves
for the evenly spaced and optimal designs in particular are so rough.
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FIGURE 1 The average of estimated IMSE for the probit model, py(x).
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FIGURE 2 The average of estimated IMSE for the normal mixture model, p,(x).

When one point is added, these two designs change completely so there
is a lack of continuity in »n. Furthermore, the bandwidth selection
procedure must be repeated, further adding to the “roughness”.

In each model, the sequential design outperforms the evenly spaced
design. In other words, the evenly spaced design requires a
substantially larger sample to attain the same degree of accuracy as
the sequential design. Table I shows how many samples are required to
attain the same degree of accuracy for each design. In some cases, we
can save more than half the experimental runs by using the sequential
design rather than the evenly spaced design. Of course, more
computational work is required for the sequential design but when
the experimental runs are very expensive, this saving of runs out-
weights the extra effort.
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FIGURE 3 The average of estimated IMSE for the Weibull model, p3(x).

TABLE I Sample size to attain the same degree of accuracy

Model IMSE Opt. design Seq. design Even. design
0.0057 20 34 58
) 0.0038 31 54 100
0.0025 55 100 > 100
0.0072 20 31 44
paAx) 0.0043 36 60 100
0.0030 54 100 > 100
0.0125 20 32 54
p3(x%) 0.0099 35 49 100
0.0082 57 100 > 100

4. DISCUSSION

We have presented a new sequential design and used a simulation
study to show that it is effective. We have provided some evidence that
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this sequential estimator is asymptotically equivalent to the estimator
based on the optimal design. We have not proved this for the practical
estimator and, furthermore, we believe that such a proof would be
very difficult given the dependent nature of the estimator.

We have used an estimator with a global bandwidth, but often the
design points will be unequally spaced and so a local bandwidth may
perform better. The use of local bandwidths will change the optimal
design and may lead to better estimates.

We have focussed on the estimation of the whole curve p, but often
specific percentiles of p are of special interest. The method above can
be modified easily by introducing a weight function.
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