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Improved Sib-Pair Linkage Test for Disease 
Susceptibility Loci 

Julian J. Faraway 

Department of Statistics, University of Michigan, Ann Arbor 

An improved sib-pair test for linkage is introduced which is superior to the 
previously proposed tests. The test is derived from the standard chi-squared good- 
ness offit statistic by restricting the alternative hypothesis to the genetically possible. 
Critical values are given and exact power comparisons are made with the previously 
proposed tests. The new test is shown to be more powerful for finite samples as 
well as being asymptotically uniformly most powerful. o 1993 Wiley-Liss. Inc. 
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INTRODUCTION 

Sib-pair methods for detecting linkage are useful because they make no assump- 
tions about the specific mode of inheritance of the disease under study. Linkage stud- 
ies using this method have become more popular recently and promise to become more 
so with the increasing availability of sufficiently polymorphic markers. In the past, 
Cudworth and Woodrow [1975], de Vries et al. [1976], and Weitkamp et al. [I9811 
all used sib-pair methods. More recently, several studies have used these methods, 
among these being Concannon et al. [ 19901, Cox et al. [ 19881, Fimmers et al. [ 19891, 
Forman et al. [ 19921, and Jeunemaitre et al. [ 19921. 

The test we propose is based on data from pairs of siblings, who are both af- 
fected with the disease under study and who are from different families. Given infor- 
mation on the number of marker locus alleles that the sibs share identical by descent 
(IBD), we can test for linkage. Several tests for linkage have been proposed previously. 
A test based on the proportion of sib pairs with two marker alleles IBD, termed the 
“two-allele test,” was proposed by Day and Sirnons [ 19761 and by Suarez et al. [1978] 
and used in Weitkamp et al. [ 198 13. Another test based on the mean number of marker 
alleles IBD, termed the “mean test,” was suggested by de Vries et al. [1976] and 
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Green and Woodrow [ 19771. Weitkamp et al. [ 19811 also used a chi-squared “goodness 
of fit” test. Blackwelder and Elston [1985] compared the powers of these tests and 
concluded that the goodness of fit was the worst and that the mean test was usually 
more powerful than the two-allele test. Schaid and Nick [1990] proposed using a lin- 
ear combination of the number of marker alleles IBD as a test statistic, but optimizing 
this statistic requires knowledge of the parameters specifying the inheritance. They 
also proposed the use of the maximum of the mean and the two-allele statistics and 
demonstrated that its power was close to the best of these two across a range of param- 
eters. In relation to this paper see also the letter to the editor by Knapp [1991] and 
reply by Schaid and Nick [ 19911. The work of Fishman et al. [ 19781 discusses a more 
general test statistic, which does not depend on the observed IBD distribution. Majumber 
and Pal [ 19871 discuss related tests when parental haplotype information is available. 

The test we introduce here is derived by restricting the alternative hypothesis to 
genetically possible values and then computing the appropriate test statistic. It should 
be emphasized that this restriction assumes that the disease is due to a single major 
locus. We have concentrated on the case where both sibs are affected, because this is 
the most powerful sampling scheme and the one most likely to be used in practice. It 
would, however, be possible to adapt the test statistic for data involving singly af- 
fected or unaffected sib pairs. 

OLD TEST STATISTICS 

Let po ,  p l ,  p 2  be the probabilities that a given affected sib-pair shares 0, 1, or 2 
marker alleles IBD. If there is no linkage, these probabilities will be Y! ,  95, %, re- 
spectively. Let the number of pairs of sibs be n and the observed proportions of pairs 
with 0, 1, 2, marker alleles IBD be Po,  P I ,  d2.  The test statistic for the two-allele test is 
t l  = @ - 1/4)/-3n and tests whether the observed proportionF2 is significantly 
different from the expected ‘/4 under the hypothesis of no linkage, whereas the mean 
test uses f2  = (2P2 + el - 1 ) / m a s  a test statistic and tests whether themean number 
of marker alleles IBD, 2@2 + el ,  is significantly different from the expected 1 under 
the hypothesis of no linkage. Both formulations lead to one-sided tests where the as- 
ymptotic distribution of the test statistic under the null hypothesis is standard normal. 
Both these statistics throw away a certain amount of information and cannot be ex- 
pected to be optimal. The chi-squared goodness of fit is based on the test statistic 

for testing the null hypothesis of Ho : po = p 2  = %, p1 = YZ against the alternative 
hypothesis H A  : po + pl + p2 = 1. Y then has a null distribution of a chi-squared 
with 2 degrees of freedom but the test only rejects the null when t2 > 0 and Y exceeds 
the upper 2a point. However, the alternatives are restricted; (Po, p i ,  p 2 )  can only take 
values defined by the model for inheritance. It should be no surprise that this test was 
the least powerful in Blackwelder and Elston’s [1985] study because the alternative 
hypothesis includes mostly infeasible values of (Po, p l ,  p 2 ) .  Note that the other two 
tests also allow infeasible values of (PO,  p l ,  p 2 )  which would lead one to expect that 
they too are suboptimal. 

A test statistic proposed by Schaid and Nick [ 19901 is based on a linear combina- 
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tion of v0, pl, D 2 ) ,  which is asymptotically most powerful test, among linear combi- 
nations, against a specified point (Po, p l ,  p2)  alternative. However, since the object of 
sib-pair tests is to avoid specifying a point alternative, the alternative hypothesis must 
range over all physically possible values of (PO, p l ,  p2) and so, as the authors admit, 
this test is not practically applicable. They also proposed max(tl, t2) as a test statistic. 

NEW TEST STATISTIC 

If we restrict the alternative hypothesis to possible values of (Po, p l ,  p2) and com- 
pute the test statistic accordingly, then we can expect a more powerful test. The proce- 
dure is explained in Lehmann [ 1986:pp 480fl. This test is an asymptotically uniformly 
most powerful invariant test. So as n gets large this test is, in some sense, the best 
possible. We shall see that it dominates the other tests for small n also. 

Since the alternative hypothesis of our test allows all feasible (Po, p l ,  p 2 )  (except the 
point of the null hypothesis, po = p2 = %, p1 = %), it is practical (in that parameters 
that are not usually known, do not need to be specified) as well as asymptotically at 
least as powerful, at any point in (Po, p l ,  p2), as the aforementioned test. 

Now, following Suarez et al. [ 19781, we assume the trait locus has two alleles T and 
t with frequencies p and q = 1 - p. respectively. Let the penetrance probabilities for 
the three genotypes, ZT, Tt, tt, befl,f2,f3, respectively. We assume thatf, 2 f 2  >f3. 

The prevalence of the trait in the population (K) is then K = p2fl + 2p4f2 + u2f3 and 
the additive (VA) and dominance (V,) variances are 

Let the recombination fraction be 8 and cp = 8 + (1 - 8)2, then the values of (Po, 
p l ,  p2) are then determined by K ,  VA, V,, and 8 as described in table 3 of Suarez et 
al. [1978]: 

(Po, p , ,  p 2 )  can only take values in a region F defined by 0 Sf,, f2, f3, p G 1 ,f, > f 2  2 
f3, 0 S 8 G %. The region is determined by three linear constraints. The first,pl + p2 s 
1, follows trivially from the fact that PO + pl + p2 = 1. The second, p ,  < Yz, can be 
derived easily from the formula forp, given above. The third restriction: 3p1/2 + p2 2 
1, is more difficult to obtain. The triangle F is equivalent to that found independently 
by Holmans [ 19931. In addition, it may be shown that this triangle cannot be made any 
smaller, which indicates that the power of the test cannot be improved further without 
the imposition of tighter constraints on the parameters. See the Appendix for details. 
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diagram. 

The value of the new test statistic depends on the observed value of 6, and e2, shown in this 

Suarez et a]. [1976] determined the feasible region for (VA, V,) for fixed values 
of K,  but this is not sufficient to determine the feasible region of (pot p l ,  p 2 )  for gen- 
eral K. 

The computation of the test statistic requires that we must find the point in F that 
minimizes the weighted distance to v0, pl, p 2 )  and the compute the chi-squared statis- 
tic based on that point, i.e., find the (vo, v l ,  v2) that minimize 

subject to (vo, v l ,  v2) E F and then the test statistic is 

T = 4n(vo- 1/4)2 + 2n(vl-  1/2)2 -t 4n(V2- %)*. 

This is a straightforward quadratic programing problem. For a reference on solv- 
ing such problems see Fletcher [1987]. Unless (Po, p , ,  p 2 )  E F ,  S will be minimized 
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TABLE I. Critical Values for T 

Tail probability 0.05 0.01 0.005 0.001 0.0005 0.0001 
Critical value 3.42 6.48 1.71 1 1 . 0 0  12.60 16.22 

on the boundary of F ,  so the test statistic may be explicitly calculated. There are four 
possibilities, depending on the region in which Go, PI ,  p2) falls. Serendipitously, the 
test statistic is a hybrid of three previously used tests. 

f l  =f2=0.05,f3=0.005 fl=0.09,f2=f3=0.009 
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Fig. 2. Exact power for the new test (T), the two-allele test, (i,), the mean test, ( t2 ) .  and the chi-squared 
goodness of fit test (Y) for a nominal 5% level of significance, complete linkage, 0 = 0, population fre- 
quency, K = 0.01, 
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Fig. 3.  Exact power for the new test (T), the two-allele test, ( t , ) ,  the mean test, ( t z ) ,  and the chi-squared 
goodness of fit test (Y) for a nominal 5% level of significance, complete linkage, 0 = 0.25, population 
frequency, K = 0.01. 

The regions and values of the test statistic may be seen in Figure 1 .  T is continu- 
ous as v0, P I ,  P 2 )  varies. The asymptotic distribution of T can be calculated exactly 
using the asymptotic multivariate normality of v0, P I ,  P 2 )  but its form is not tractable. 
The exact distribution of T under the null hypothesis may be determined exactly for all 
values of n that are likely to occur in practice, because the computation is relatively 
inexpensive. A program is available from the author which can determine exact criti- 
cal values for any desired size of test. Alternatively, Table I gives critical values based 
on n = 150. 

POWER 

We make the power comparisons as in Blackwelder and Elston [1985], setting 0 
= 0, K = 0.01, and the significance level to 5%.  Due to the discreteness of all the 
test statistics, a randomized decision rule was used to set the size at exactly 5% to 
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enable a fair comparison, although one should not do this in practice. The results are 
shown in Figure 2. The new test is more powerful than the others, the margin depend- 
ing on the setting. The tmU, statistic proposed by Schaid and Nick [ 19901 was close to 
the best of rl  and rz so the new statistic outperforms it also. The lack of monotonicity 
in the power curve can be ascribed to the discrete and composite nature of the test 
statistic. 

Other combinations of the parameters have been tried with the new test prov- 
ing superior in every case. In Figure 3, we show the same power comparisons 
for 0 = 0.25. The difference in power between the new test and the older tests is 
more substantial. 

DISCUSSION 

We have shown that the new test statistic based on restricting the regular chi- 
squared goodness of fit statistic is more powerful for the detection of linkage than the 
previously considered tests. 

It would also be possible to develop a test based on the likelihood ratio test, again 
restricting the alternative as above. This would be asymptotically equivalent to the 
chi-squared-based statistic, but its relative performance might vary in small samples. 

If more assumptions can be made about the penetrances and population preva- 
lences, this would result in a smaller feasible region for (Po, p l ,  p 2 )  and hence a more 
powerful test. 

In cases of sibships with more than two members, the data consist of all possible 
pairs and hence mutual independence is lost. Asymptotically, this is of no concern as 
has been demonstrated by Blackwelder and Elston [ 19851, but there would be some 
impact on the exact critical values for small sample sizes [see Hodge, 19841. 

REFERENCES 
Blackwelder WC, Elston RC (1985): A comparison of sib-pair linkage tests for disease susceptibility loci. 

Genet Epidemiol 2:85-97. 
Concannon P, Wright JA, Wright LG, Sylvester DR, Spielman RS (1990): T-cell receptor genes and insulin- 

dependent diabetes mellitus (IDDM): No evidence for linkage from affected sib pairs. Am J Hum 
Genet 47( 1):45-52. 

Cox NJ, Baker L, Spielman RS (1988): Insulin-gene sharing in sib pairs with insulin-dependent diabetes 
mellitus: No evidence for linkage. Am J Hum Genet 42(1): 167- 172. 

Cudworth AG, Woodrow JC (1975): Evidence for HLA-linked genes in juvenile diabetes mellitus. Br 
Med J 3:133-135. 

Day NE, Simons MJ ( 1976): Disease susceptibility genes-Their identification by multiple family studies. 
Tissue Antigens 8:109-119. 

de Vries RRP, Fat RFMLA, Nijenhuis LE, Van Rood JJ (1976): HLA-linked genetic control of host re- 
sponse of Mycobacreriurn leprue. Lancet 2: 1328-1330. 

Fimmers R, Neugebauer M, Dennert J, Wienker T, Bauer MP (1989): Association and sib-pair analysis 
for the HLA, Gm, Km, and insulin polymorphisms in multiplex IDDM families. Genet Epidemiol 
6:107-112. 

Fishman PM, Suarez B, Hodge SE, Reich T (1978): A robust method for the detection of linkage in famil- 
ial diseases. Am J Hum Genet 30:308-321. 

Fletcher R (1987): “Practical Methods of Optimization.” 2nd Ed. New York: John Wiley &Sons. 
Forman D, Oliver RT, Brett AR, Marsh SG, Moses JH, Bodmer JG, Chilvers CE, Pike MC (1992): Fa- 

milial testicular cancer: A report of the UK family register, estimation of risk and an HLA class 1 
sib-pair analysis. Br J Cancer 65:255-262. 



232 Faraway 

Green JR, Woodrow JC (1977): Sibling method for detecting HLA-linked genes in disease. Tissue Anti- 

Hodge SE (1984): The information contained in multiple sibling pairs. Genet Epidemiol 1: 109-1 122. 
Holmans P (1993): Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet 52:362-374. 
Jeunemaitre X, Rigat B, Charm A, Houot AM, Soubrier F, Corvol P (1992): Sib-pair linkage analysis of 

renin gene haplotypes in human essential hypertension. Hum Genet 88(3):301-306. 
Knapp M (1991) A powerful test of sib-pair linkage for disease susceptibility. Genet Epidemiol8: 141-142. 
Lehmann EL (1986): “Testing Statistical Hyoptheses.” 2nd Ed. New York: John Wiley & Sons. 
Majumber P, Pal N (1987) Nonrandom segregation: Uniformly most powerful tests and related considera- 

Schaid DJ, Nick TG (1990): Sib-pair linkage tests for disease susceptibility loci: Common tests vs. the 

Schaid DJ, Nick TG (1991): A reply to “A powerful test of sib-pair linkage for disease susceptibility.” 

Suarez BK, Reich T, Trost J (1976): Limits of the general two-allele single locus model with incomplete 

Suarez BK, Rice J ,  Reich T (1978): The generalised sib-pair IBD distribution: Its use in the detection of 

Weitkamp LR, Stanser HC, Persad E, Flood C, Guttormsen S (1981) Depressive disorders and HLA: A 

gens 9:31-35. 

tions. Genet Epidemiol4:277-287. 

asymptotically most powerful test. Genet Epidemiol7:359-370. 

Genet Epidemiol 8: 142- 143. 

penetrance. Ann Hum Genet 40:231-244. 

linkage. Ann Hum Genet 42:87-94. 

gene on chromosome 6 that can effect behavior. N Engl J Med 305: 1301- 1306. 

APPENDIX 

To obtain the bound 3pl/2 + p2 3 1 observe that 

The right-hand side will be maximized for 8 = 0, i.e., cp = 1, so an upper bound 
on the left-hand side is 

Now VA/VD may be made arbitrarily small by setting 8 = 0, p = E, fi = 1, 
f 2  = f 3  = E2 

which tends to zero as E + 0. This gives us the bound 3p,/2 + p2 B 1 .  To show that it 
is tight, set 0 = 0, p = E,& = f3 = €’where E is small. Ignore terms of order higher 
than e2 to obtain (after some algebra) 

2€(2€fI + E - 2E2fi + A) 
PI = ~ 2 f :  + 6~2f i  + 4e2 + 2 ~ 8  +f: 

and 
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E2 +f: 
PI = ~'f: + 6~2fi + 4e2 + 2 ~ f :  +f: 

Note that 

4e2 + 6~2fi +f: + 3~f :  

e2f: + 6~2fi + 4e2 + 2~f :  +f: 
3p112 + p2 = 

which tends 1 1 as E + 0. Now since 

and 

It is possible to choose anfl such that (PI,  p2) comes arbitrarily close to the line 3p1/2 + 
p2 = 1 for a given pI  between 0 and 112. 

To show that the other two bounds are tight, similar arguments apply. Forpl S 1/2, 
the boundary is described by setting 8 = 0, p = e,f i  = f 2  = 1 and lettingf3 vary 
between 0 and 1 for E small. For p 1  + p2 6 1 ,  the boundary described by setting 
8 = 0, p = e,f1 = 1 ,f3 = E* and lettingf2 vary between 0 and 1. 


