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Abstract: A semiparametric estimate of a density may be formed via the convex combination of a parametric and a 

nonparametric density estimate. It is shown that the some trimming is often necessary to obtain an appropriate proportion of 

these estimates. 
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1. Introduction 

Olkin and Spiegelman (1987) describe a semipara- 
metric approach to density estimation. Their 
estimate of the density f(x) is given by 

ported on a compact and bounded away from zero 
then, when the parametric model is true, 7i tends 
to be closer to 0 than to 1 for small to moderate 
sample sizes. We shall see that this difficulty has 
little to do with bandwidth selection and is in fact 
caused by the tails of the density. 

where f(x, 4) is a parametric estimate of the 
density where 6 may be obtained for example by 
maximum likelihood and fix) is a nonparametric 
estimate of the density given for example by a 
kernel estimator. 7~ is estimated by maximum like- 
lihood subject to 0 < v < 1. It is hoped that 7i will 
express the suitability of the parametric model. 
That is to say that li should be close to 1 if the 
parametric model is good and close to 0 if it is 
not. So 7i would provide some valuable intuition if 
not a test statistic as well. Also, if the parametric 
model were to hold a superior rate of convergence 
for the semiparametric estimator would be had, 
whilst not sacrificing consistency if that model did 
not hold. Schuster and Yakowitz (1985) describe 
essentially the same method with some applica- 
tions. 

2. An example 

Olkin and Spiegelman (1987) give data on 20 
yearly maximum wind speeds. The proposed para- 
metric model for the data is a Gumbel distribu- 
tion. The parameters of this distribution may be 
estimated by maximum likelihood. The nonpara- 
metric density estimate may be calculated using a 
kernel estimator for data Xi, _ . . , X, of the form 

However, there are some difficulties in imple- 
menting this idea. Essentially, if the nonparamet- 
ric density estimate is constructed in a reasonable 
manner and the parametric density is not sup- 

where K is the standard normal distribution and 
b is the bandwidth. As Olkin and Spiegelman 
(1987) remark, 7i is sensitive to the choice of b 

and so b should be chosen in some reasonable 
way. The most popular method of selecting the 
bandwidth is least-square crossvalidation. How- 
ever, this method gives a very small bandwidth in 
this case which may be a result of the small 
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sample size and the ties in the data. An alternative 
is likelihood crossvalidation which gives b = 0.49s 
where s is the standard deviation of the data. This 

provides a plausible density estimate when plotted. 
This results in a 7i = 0. Olkin and Spiegelman 
(1987) chose b = 0.7s and obtained 7i = 0.8. Clearly 
the interpretation will be different. 

3. Simulations 

In this section, I describe some simulations which 
illustrate the small to moderate sample size prop- 
erties of the semiparametric density estimator. 
Suppose we generate data from the standard nor- 
mal distribution so that we know the correct para- 
metric model. We use a nonparametric estimator 
based on the Epanechnikov kernel (for speed of 
computation) and choose the bandwidth by least- 
square crossvalidation. For purposes of compari- 
son, we also generate data from a bimodal distri- 
bution iN(0.8, 0.36) + ;N( - 0.8, 0.36). With 1000 
replications the results in Table 1 were obtained 

giving the average ?i for each sample size. The 
estimated SE’s are less than 5%. 7i decreases with 
sample size for the normal case which is the 
opposite of what one would hope and what would 
be suggested by the results of Olkin and Spiegel 
(1987). One should note that the normal distribu- 
tion does not fulfill the conditions that their re- 
sults require, among these being that the paramet- 
ric density is not supported on a compact and 
bounded away from zero. In fact, good results 
were obtained when a truncated normal was used 
as the parametric model. Nevertheless, the normal 
is an important case so these results are hardly 
encouraging. However, when the parametric model 

does not hold ?i does at least go to zero fairly 
swiftly. 

Table I 

Sample 
size 25 50 100 200 400 1000 2000 

Normal 0.351 0.372 0.293 0.286 0.242 0.211 0.186 
Bimodal 0.310 0.245 0.084 0.026 0.002 0 0 

Table 2 

Sample 
size 25 50 100 200 400 loo0 2000 5000 lo000 

Normal 0.595 0.517 0.379 0.301 0.227 0.199 0.176 0.139 0.120 
Bimodal 0.421 0.252 0.111 0.024 0 0 0 0 0 

One possible explanation for this behaviour is 
that the method of bandwidth selection is un- 
trustworthy. To investigate this, I tried to eliminate 
the inherent variability in these methods by choos- 
ing the bandwidth so as to minimize the L, dis- 
tance between the true model and the nonpara- 
metric estimate for each simulated dataset. Table 
2 gives the results of that simulation (based on 
1000 replications for samples sizes 25-2000 and 
400 for the rest). 

The results are not qualitatively different from 
those above so the difficulties can not be attri- 
buted to variability in the bandwidth selection 
methods since this method is the best one can do. 

However, a closer investigation of the maxi- 
mum likelihood estimation of 7~ reveals that the 

estimate is highly sensitive to the contribution 
from data in the tails. To demonstrate this I 
calculated fi this time excluding 5% of the data 
from each tail from the likelihood function. Under 
the same conditions as above Table 3 was ob- 
tained. 

This gives results like one would hope. In fact, 
there would appear to be some scope for letting 
the amount of trimming decrease as the sample 
size increases. However, for any given dataset, I 
would prefer simulation from the proposed para- 
metric model to determine the appropriate amount 
of trimming. Returning to the wind speed data set 
discussed earlier, 7i was recalculated, excluding 
the smallest and the largest observations. 7i = 0.85 
was obtained which is more believable result that 
the 7i = 0 calculated earlier. 

Table 3 

Sample 
size 25 50 100 200 400 loo0 2000 5000 loo00 

Normal 0.802 0.935 0.965 0.981 0.982 0.977 0.982 0.997 0.990 
BimodalO.530 0.445 0.337 0.176 0.045 0 0 0 0 
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4. Conclusion 

The semiparametric density estimator as consid- 
ered here must be used with care. If the proposed 
parametric density has tails, trimming must be 
performed, otherwise inappropriate values of fi 
will be obtained. Failure to do this may lead to 
poor conclusions regarding the suitability of the 
parametric model and a poorly performing semi- 

parametric estimate of the density. 
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