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ABSTRACT

Some body parts, such as the head and the hand, change
their orientation during motion. Orientation can be conve-
niently and elegantly represented using quaternions. The
method has several advantages over Euler angles in that
the problem of gimbal lock is avoided and that the orienta-
tion is represented by a single mathematical object rather
than a collection of angles that can be redefined in various
arbitrary ways. The use of quaternions has been popu-
lar in animation applications for some time, especially for
interpolating motions. We will introduce some new appli-
cations involving statistical methods for quaternions that
will allow us to present meaningful averages of repeated
motions involving orientations and make regression pre-
dictions of orientation. For example, we can model how
the glancing behavior of the head changes according to
the target of the reach and other factors.

We will give a brief introduction to the mathematics of
quaternions and how they can be used to represent ori-
entations. We will compare it to other methods of repre-
sentation. Due to the quite different mathematics involved,
existing statistical methods cannot be directly applied and
even simple concepts such as the average, need to be de-
fined. We will introduce a method to analyze orientation
over time via functional regression analysis with the help
of quaternion splines.

We will demonstrate the utility of these methods for
analyzing orientation data. We will show an application to
the prediction of head and hand orientation during motion.

Keywords: Rotation Matrix, Euler Angles, Exponen-
tial Map, Functional Regression.

INTRODUCTION

Motion can be characterized as a change in both posi-
tion(translation) and orientation(rotation). Human motion
modelling involves analysis of both position and orienta-
tion of the various body segments. Position is represented
as a three-dimensional vector of the x, y, z co-ordinates.
Orientation, however, is much more complex and there
are several different ways we can parameterize it.

Euler’s displacement theorem states that however a rigid
body tumbles, every orientation can be achieved by a sin-
gle rotation from a reference frame. The classical way
of representing rotations is by way of rotation matrices
(sometimes called Direction Cosine Matrices), but there
exist alternatives. Many use Euler angles as they are
somewhat easier to picture and mathematically simpler to
handle, but such simplicity comes at a price and this form
of parametrization suffers from a few problems. Another
method involves the use of quaternions first introduced by
Hamilton as a form of hyper-complex number. There are a
few other methods, but these three are the main ones. We
will describe these in detail and describe why the quater-
nion parametrization is better suited for our purposes.

The mathematics of quaternions are somewhat different
and as such new modelling techniques need to be devel-
oped if we are to use this form of representation. Quater-
nion averages and splines will be described in this arti-
cle which we will use as building blocks to more com-
plex modelling techniques such as regression models
and functional regression models for analyzing orienta-
tion over time. We will outline the difficulties and issues
involved.

ROTATION PARAMETERIZATIONS
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Figure 1: A gimbal with three rings

ROTATION MATRICES A 3 × 3 matrix M is considered
a rotation matrix if and only if:

MT M = I,

detM = 1.

This means that the three column vectors of M are or-
thonormal and indicate the directions of the co-ordinate
axes in the new rotated space. The set of all 3×3 rotation
matrices forms the group SO(3)

The fact that we have to use nine numbers to describe
something with three degrees of freedom (Euler’s rota-
tion theorem states that an arbitrary rotation may be de-
scribed by only three parameters) is a disadvantage and
leads to complicated calculations involving six linear con-
straints (three constraints to maintain the unit length of the
columns and three to enforce mutual orthogonality). Still,
it does have an advantage over the other methods of rep-
resentation in that each rotation corresponds to a unique
rotation matrix, something the other forms do not have.

EULER ANGLES Euler angles represent rotations as a
series of three angles where each angle represents the
amount of rotation about a single predetermined axis. By
concatenating these single-axis rotations in sequence we
obtain the final rotation. Due to the fact that rotations do
not commute this sequence is important. There exist as
many as twelve different such sequences and as such
there are many different forms Euler angles can take. It
has the advantage of being intuitive and interpretable thus
allowing for easy visualization of the orientation.

One major disadvantage of Euler angles is that they suffer
from gimbal lock. A gimbal is a gyroscopic device used

on aircraft to keep track of its orientation. It consists of
three interlocking rotating rings (see fig. 1). Gimbal lock
occurs when two of the three rotation axes align resulting
in the loss of a rotational degree of freedom. In terms
of the figure this happens when the middle ring turns 90
degrees and causes the entire gimbal to become flat like
a plate. This causes the outer and inner rings to rotate in
the same direction.

In fact any representation that is embedded in IR3 will suf-
fer from this as IR3 cannot be mapped into SO(3) without
singularities (Mathematically, a singularity is a continuous
subspace of the parameter space, all of whose elements
correspond to the same rotation - thus movement within
the subspace produces no change in rotation), i.e. gimbal
lock.

One can express the Euler angles as a series of three
rotation matrices. Using the roll (rotation about the
x-axis), pitch (y-axis) and yaw (z-axis)definition (also
known as Cardan angles), we have the following rotation
matrices:




1 0 0
0 cos α sinα
0 − sinα cos α


 ,




cosβ 0 − sin β
0 1 0

sin β 0 cos β


 ,




cos γ sin γ 0
− sin γ cos γ 0

0 0 1


 .

where α is the roll angle, β is the pitch angle and γ is the
yaw angle. Multiplication of the above three matrices in
order will give the final rotation matrix.

QUATERNIONS Quaternions were first conceived in
1843 by William Hamilton as a sort of hyper-complex num-
ber. They consist of a real component and three imagi-
nary components. They can be written in several different
ways and it is helpful to know them all as each form is
useful.

q = [v, w]
= [(x, y, z), w]
= [x, y, z, w]
= ix + jy + kz + w.

where x, y, z, w ∈ IR,v ∈ IR3, i2 = j2 = k2 = ijk = −1.

The last form shows the classical complex number form
with i, j and k being the three imaginary numbers. For
simplicity, we can ignore the fact that they are complex
numbers and write them as a vector in IR4 as in the third
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form or we can group the x, y and z into a vector v sepa-
rate from the scalar w as in the first form.

Even though we sometimes write a quaternion as a four
dimensional vector, the usual vector algebra cannot be
used. Addition is the same, but multiplication is different.
There are two well known methods for vector multiplica-
tion: the cross product and the dot product, each yielding
a different type of result. The quaternion product can be
described in terms of these.
Addition

q1 + q2 = [v1, w1] + [v2, w2]
= [v1 + v2, w1 + w2].

Multiplication

q1 ∗ q2 = [v1, w1] ∗ [v2, w2]
= [v1 × v2 + w1v2 + w2v1, w1w2 − v1 · v2].

Other important operations, reminiscent of those found in
complex number theory, such as the conjugate, norm and
inverse are given below.
Conjugate

q∗ = [v, w]∗

= [−v, w]

Norm

‖q‖ = qq∗

= w2 + v · v
= w2 + x2 + y2 + z2

Inverse

q−1 =
q∗

‖q‖
We use unit(norm 1) quaternions to represent rotations
and thus the set of all rotations in quaternion space is S3,
the unit hypersphere on IR4. For interpretation, a rotation
around an axis u by an angle 2θ can be written in quater-
nion form as [u sin θ, cos θ]. If we wish to rotate a vector
a by a rotation parameterized by a quaternion q we can
obtain the rotated vector a′ using the following formula:

[a′, 0] = q ∗ [a, 0] ∗ q−1

where the multiplication is via the quaternion product.
One should note that we would get the same answer if
we replaced q by −q in the above formula. Thus every
rotation in IR3 may be expressed uniquely up to a sign
change. Concatenating rotations are handled seamlessly
by quaternions. If q1 is the first rotation and q2 is the sec-
ond then:

[a′, 0] = q2 ∗ (q1 ∗ [a, 0] ∗ q−1
1 ) ∗ q−1

2

= (q2 ∗ q1) ∗ [a, 0] ∗ (q2 ∗ q1)−1

One can convert a quaternion to a rotation matrix using
the following formula:

Q = µ(q)

=




w2 + x2 − y2 − z2 2(xy − wz)
2(wz + xy) w2 + y2 − x2 − z2

2(xz − wy) 2(yz + wx)

2(wx + xz)
2(yz − wx)
w2 + z2 − x2 − y2




where q = [(x, y, z), w]. Again note that µ(q) = µ(−q)
reiterating the point that only rotation matrices uniquely
express rotations.

Quaternions like rotation matrices make visualization of
the orientation difficult and for such purposes Euler an-
gles are superior. Quaternions are mathematically more
stable than Euler angles as they do not suffer from gimbal
lock, thus making them better suited for statistical analy-
sis. One can always convert quaternions to Euler angles
when it comes time to interpret results.

QUATERNION STATISTICS

QUATERNION AVERAGE Suppose that we have a
sample of repeated orientations q1, . . . ,qn from S3. We
would like to find the cluster point or average orientation.
The usual arithmetic mean q̄ = 1

n

∑n
i=1 qi would not be

a unit quaternion and thus would not be an orientation
and subsequent normalization would be required. One
method by [1] derives a spherical average which respects
spherical distance and another method given by [5] in-
volves eigendecomposition of the sample moment of iner-
tia matrix.

In normal Euclidean space the average can be defined as
the point q that minimizes the sum of squared distances

q∗ = arg min
q

(
1
n

n∑

i=1

‖q− qi‖2
)

.

In S3 we can no longer use normal Euclidean distance
as it would result in the average lying outside of S3. We
require a new distance measure that applies to points on
S3 which as stated before is the surface of the four di-
mensional unit hypersphere. We shall call this distance
measure as spherical distance and it is defined as

distS(q,p) = arccos(q · p)

where p,q ∈ S3. This is the length of the shortest
geodesic segment from q to p; the geodesic in this case
is the two dimensional great circle that passes through p,
q and the origin. From this we can define the spherical av-
erage as the point q∗ that minimizes the sum of squared
spherical distances

q∗ = arg min
q

(
1
n

n∑

i=1

distS(q,qi)2
)

.

[1] goes on to provide conditions for existence and
uniqueness of the spherical average and provides an it-
erative algorithm to obtain it.
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A key component of the algorithm involves mapping to and
from the tangent plane of S3 using what is called the ex-
ponential map. The exponential map maps a vector in IR3

describing the axis and magnitude of a three dimensional
rotation to S3, the quaternion space. The map is given by

expmap(v) =
{

[0, 1] if v=0
[v̂sin θ, cos θ] if v 6=0

where v∈ IR3, 2θ = ‖v‖ and v̂ = v/2θ. Thus a vector
v is mapped to a quaternion representing a rotation of 2θ
(i.e.‖v‖) about v.

In the statistics literature, [5] describes a simple way to
obtain the average quaternion. He shows that the eigen-
vector corresponding to the largest eigenvalue of the sam-
ple moment of inertia matrix T = 1

n

∑n
i=1 qiq′i gives us the

quaternion average. This method gives us the average
immediately without having to go through a slow iterative
algorithm.

QUATERNION INTERPOLATION A lot of interest exists
in ways to smoothly interpolate between successive ob-
servations. Much of the existing work has focused on
finding different ways of constructing sphere-based ana-
logues of cubic splines in the plane.

[8], who first introduced quaternions to the com-
puter animation world, created the slerp(spherical l inear
interpolation) algorithm for interpolating between two
quaternions. This slerp algorithm produces interpolants
which lie on the shortest geodesic between the two
quaternions and thus produces a smooth and natural in-
terpolation. For interpolating more than two points he
described a method to calculate Bèzier curves to define
curves on a sphere. Intuitively one can see that there are
many possible ways to interpolate these points and var-
ious methods have been put forward involving minimiza-
tion of different critical functions.

[1] introduces a spherical spline method based on
the spherical average. Suppose we are given points
q1, . . . ,qn on S3 observed at times t1 < t2 < · · · < tn. We
wish to find a smooth curve s lying on the hypersphere
parameterized by t such that s(ti) = xi for all i. The prob-
lem becomes finding control points pi that define a spline
curve that satisfies the conditions.

Using a standard B-spline implementation we have basis
functions which are piecewise cubic and have continuous
second derivatives. The spline curve is then given by

s(t) =sph

n∑

i=1

fi(t) · pi

where sph

∑
represents a weighted spherical average

and pi are the control points. Obtaining these control
points then involves solving an iterative algorithm, details
of which are given in [1].

Figure 2:
Initial Hand
Position

Figure 3:
Quaternion

Figure 4:
Euler

Figure 5:
Final Hand
Position

[6] produced a way of interpolating points on SO(3) by
first mapping to the tangent space using the exponen-
tial map and using normal Euclidean splines on each of
the three components. [4] shows however that such a
method is far from optimal and a straight line linking two
orientations in exponentially mapped IR3 is not, in gen-
eral, equivalent to the geodesic between the two orienta-
tions in S3.

Euler angles have been widely used for interpolation pur-
poses due to reasons of simplicity. Each angle is interpo-
lated independently from the others and this leads prob-
lems resulting in unnatural interpolation. This is due to the
fact that this method ignores the inherent order involved.
Problems with gimbal lock exist as well which reinforces
the unsuitability of Euler angles for this task. Figures 2-5
show us an illustration of this problem. Here we have two
key frame positions (figs. 2 and 5) close together where
one is just the other flipped over. We then show the inter-
polation halfway between the two key frames. The quater-
nion interpolation is where it should be; halfway between
flipping over (fig. 4). The Euler interpolation seems to be
completely off in another direction (fig. 5).

QUATERNION REGRESSION AND FUNCTIONAL RE-
GRESSION Let us suppose that we are interested in
modelling the orientation of the hand(parameterized as
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quaternions) of the final posture in a reaching task. We
wish to use predictors such as age, gender and stature of
the person performing the reach as well as the location of
the target he is reaching to.

Suppose we have a data set with n observations and p
covariates. A straight multivariate regression model could
be fit as follows:

Yn×4 = Xn×pβp×4 + εn×4.

Unfortunately such a model would not in general produce
predictions that would be unit quaternions. One possible
way around this is to simply normalize the predicted val-
ues.

Another way would be to transform the problem using the
exponential map. Since the tangent space to S3 is IR3 we
no longer have a restriction, allowing us to use a normal
multivariate regression model as follows:

Y ∗
n×3 = Xn×pβp×3 + εn×3.

We can then transform back to S3 to obtain our quaternion
results.

The best method would be to somehow figure out how to
solve the regression with this non-linear constraint and we
are currently working on this.

If we are now interested in modelling the head orientation
during the entire motion we will have to use a functional
regression [7]; [2] where the response is a quaternion
function over time. Such a model may be written as:

Y (t) = Xβ(t) + ε(t)

where Y (t) = (y1(t), . . . , yn(t))We can estimate the re-
gression coefficients β(t), which are a vector of functions,
using the familiar looking estimator:

β̂(t) = (XT X)−1XT Y (t)

To approximate the functions we will use the quaternion
splines outlined in the preceding section. Thus using the
methodology of [1] we obtain:

yi(t) =sph

m∑

j=1

fj(t) · yij

where yij is the jth control point for the B-spline of yi(t).
Note that the number of control points m is dependent on
the number of data points observed in yi(t). There is no
guarantee that we will have the same number of observed
points for all i, as subjects move at different speeds and
distances to reaching targets will vary. Additional to this
is the fact that we might observe upwards of one hun-
dred data points during a motion making data reduction
an important issue. An approximating or smoothing spline
would therefore be a better choice [3].

If this was simply a univariate problem we can now re-
write the model in the following form:

Yn×mFm×1(t) = Xn×pBp×mFm×1(t) + εn×1(t).

Figure 6: Target shelf layout in SCI/LBP experiment con-
ducted at HUMOSIM

If we factor out the vector of basis functions F (t) we get a
normal multivariate regression model:

Yn×m = Xn×pBp×m + εn×m

which can be solved in the usual way.

However in quaternion splines the yij ’s are quaternions,
which means that for each observation we no longer have
an m-dimensional vector of control points as in the univari-
ate case but rather an m× 4 matrix where the row vectors
are the quaternion control points. This means each obser-
vation is matrix-variate and this is a problem as we do not
yet know how to do a matrix-variate regression. To escape
from this predicament we propose stacking the quaternion
control points on top of one another to create a 4m dimen-
sional vector thus leading us to the multivariate regression
model:

Yn×4m = Xn×pBp×4m + εn×4m.

We will then have to use a more complicated version of
the quaternion regression techniques outlined in the be-
ginning of this section(such as mapping onto the tangent
plane) to handle the fact that we require each control
point(i.e. each block of four in the predicted response vec-
tor)to be a unit quaternion.

DATA EXAMPLE

Here is a sample analysis to illustrate the use of the
quaternion functional regression technique. The data is
from an experiment conducted at the HUMOSIM labora-
tory at the University of Michigan. The purpose of the
experiment was to assess the difference in motion caused
by spinal cord injury and lower back pain. Three groups of
ten subjects each: a control group with no injury, a group
with spinal cord injury and a group with lower back pain,
were instructed to deliver objects to shelves placed within
reach while seated (See figure 5). Their motions were
recorded and analyzed.
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For the purposes of this example, we looked at the ori-
entation of the right hand with respect to the wrist for de-
livery motions to a target shelf high and to the right of
the subject (target no.25 in figure) where the object de-
livered was a vertical cylinder. Using the tangential map-
ping technique, we mapped the quaternion data in S3 to
the tangent space, IR3. Regression splines were fit to
each observation using eight basis functions thus giving
us eight trivariate spline control points. Stacking these
control points on top of one another we obtain a vector
of length 24 which becomes our response. A multivari-
ate regression was then fit with gender, stature and sta-
tus(control/spinal cord injury(SCI)/lower back pain(LBP))
as predictors. Status was found to be significant with the
SCI and LBP group having a different orientation motion
as compared to the control group.

Figures 7-21 show five freeze frames of the predicted ori-
entation motion of the right hand with respect to the wrist
for a male of the same stature from each group. We can
see a difference between the control group and the SCI or
LBP groups.

CONCLUSIONS AND FUTURE WORK

It is well known that Euler angles suffer from many prob-
lems which make it ill suited for the task of modelling hu-
man motion. Quaternions provide an elegant alternative
that is free of such problems but because of the partic-
ular mathematics involved requires new methodology for
statistical modelling.

We have introduced a list of potential strategies one can
use but more work must be done for us to be able to com-
pare and rate which method is the best. As stated before
we would like to find a way to fit a regression model with
the restriction that we must have unit quaternions. The
proposed strategy of mapping to a tangent space is not
ideal and it would be much better if we did not have to
leave quaternion space during our calculations. For func-
tional quaternion regression we require an elegant way
of handling the matrix-variate response produced by the
B-spline approximation.
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Figure 7: CTL no.1 Figure 8: SCI no.1 Figure 9: LBP no.1

Figure 10: CTL no.2 Figure 11: SCI no.2 Figure 12: LBP no.2

Figure 13: CTL no.3 Figure 14: SCI no.3 Figure 15: LBP no.3

Figure 16: CTL no.4 Figure 17: SCI no.4 Figure 18: LBP no.4

Figure 19: CTL no.5 Figure 20: SCI no.5 Figure 21: LBP no.5
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