
ARTICLE IN PRESS
0021-9290/$ - se

doi:10.1016/j.jb

�Correspond

+1 513 556 339

E-mail addr
Journal of Biomechanics ] (]]]]) ]]]–]]]

www.elsevier.com/locate/jbiomech
Technical note

A computer algorithm for representing spatial–temporal structure of
human motion and a motion generalization method

Woojin Parka,�, Don B. Chaffinb, Bernard J. Martinb, Julian J. Farawayc

aDepartment of Mechanical, Industrial, and Nuclear Engineering, University of Cincinnati, University and Campus Drive-626 Rhodes Hall,

Cincinnati, OH 45221-0072, USA
bDepartment of Industrial and Operations Engineering, The University of Michigan, 1205 Beal Avenue, Ann Arbor, MI 48109, USA

cDepartment of Statistics, The University of Michigan, 459 West Hall, 550 East University, Ann Arbor, MI 48109-1092, USA

Accepted 23 September 2004

www.JBiomech.com
Abstract

Inspired by the generalized motor program (GMP) theory, this study presents a symbolic motion structure representation

(SMSR) algorithm that identifies a basic spatial–temporal structure of a human motion. The algorithm resolves each joint

angle–time trajectory of a multi-joint motion into a sequence of elemental motion segments and labels each motion segment with a

symbol representing its shape (‘U’: monotonically increasing; ‘D’: monotonically decreasing; ‘S’: stationary). By concatenating

symbols according to their order in time, the spatial–temporal structure of a joint angle–time trajectory is represented as a symbolic

string. The structure of a multi-joint motion is then represented as a set of symbolic strings. A sample motion, whose structure is

identified by the SMSR algorithm, can be generalized to produce an infinite number of similar motion variants. To generate a

variant of a sample motion, segment boundary points of the sample motion are first relocated to new locations in the angle–time

space, and then individual motion segments of the original joint angle trajectories are shifted and proportionally rescaled to fit the

new segment boundary points. This motion generalization method provides a basis for developing GMP-based motion simulation

models, and exploring ideas and hypotheses related to the GMP theory through simulation. As an application of the motion

generalization method, a motion modification (MoM) algorithm is presented, which adapts existing reach motions for new target

locations. Some examples generated by the MoM algorithm are illustrated.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The human motor system is able to generalize
previously acquired motor skills to plan novel motions.
The notion of generalized motor programs (GMPs) has
been theorized to account for this capability (Schmidt
and Lee, 1999; Schmidt, 1975). A GMP is portrayed as a
sequence of preplanned motor commands structured in
memory and is believed to serve as a template for
planning a class of motions. This generalization is
e front matter r 2004 Elsevier Ltd. All rights reserved.
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achieved through the use of parameters and is guided by
invariant features. Parameters refer to changeable
aspects of a GMP, such as overall duration and overall
magnitude of motion. Invariant features are fixed
aspects of a GMP, such as order of elements, phasing,
and relative magnitude, and define the spatial–temporal
structure of motions. Parameters can be altered to
produce motion variants that exhibit similar patterns in
space and time. Given a specific task, parameters of a
GMP are determined by a set of rules (referred to as a
schema) to meet the particular needs (Schmidt, 1975).

The goal of our research is to develop human motion
simulation models, which utilize GMP-like templates for
motion planning. Such templates are obtained by
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analyzing real human motion samples. As the first step,
this study developed (1) a computer algorithm (symbolic
motion structure representation (SMSR) algorithm) that
identifies the basic spatial–temporal structure of a
human motion, and (2) a method for generalizing a
sample motion into a class of motions through para-
meterization. As an application of the proposed
methods, a motion modification (MoM) algorithm is
introduced to alter existing reach motions for new target
locations.
2. Method

2.1. Symbolic motion structure representation algorithm

The SMSR algorithm analyzes a sample human
motion (motion capture data) to identify its basic
spatial–temporal structure. A sample motion is assumed
to be associated with a linkage system that consists of N

rigid body link segments L ¼ ½l1 � � � ln � � � lN � and J

locally defined joint angles h ¼ ½y1 � � � yj � � � yJ �: Thus, a
sample motion is described as a set of J joint angle–time
trajectories hðtÞ ¼ ½y1ðtÞ � � � yjðtÞ � � � yJ ðtÞ�; where t

represents time in [0;T ]. Note that the SMSR algorithm
is not specific to a particular linkage system but can be
applied to any two- or three-dimensional linkage
systems and motions provided that joint angles are
locally defined.

The SMSR algorithm resolves each joint angle–time
trajectory yjðtÞ ð j ¼ 1; . . . ; JÞ into a sequence of ele-
mental motion segments in the angle–time domain.
Each elemental joint motion corresponds to a mono-
tonically increasing (U), a monotonically decreasing
(D), or a stationary (S) motion segment. The algorithm
labels each segment with a symbol U, D, or S according
to its shape. By concatenating the symbols according
to their order in time, the structure of a joint
angle trajectory yjðtÞ is represented by a symbolic
string. Successive application of the SMSR algorithm
to each of the J joint angle trajectories reveals the
structure of a multi-joint motion hðtÞ as a set of J

symbolic strings.
The SMSR algorithm consists of the four steps

described below. A sample joint angle trajectory
obtained from a motion capture experiment (a left
elbow flexion/extension angle–time trajectory during a
manual handling activity) was used as an example to
illustrate each step (Fig. 1a).

2.1.1. Step (1) landmark identification

A joint angle–time trajectory yjðtÞ; where 0ptpT is
represented as a one-dimensional time-series when
obtained from a motion capture experiment. Let us
denote such time-series by yjðk � DtÞ; where k ¼ 0; . . . ;K :
Each point in the time-series, ðk � Dt; yjðk � DtÞÞ; is
examined as to whether it can be tentatively selected
as a segment boundary point (a beginning or end of an
elemental motion segment). Such candidates for seg-
ment boundary points are called landmarks.

The initial and the last point of the time-series are
selected as landmarks. All extremes in the time-series are
selected as landmarks, as they may be the beginning or
end of a monotonically increasing or decreasing
segment. A point ðk � Dt; yjðk � DtÞÞ is determined as an
extreme when the value of ðyjðk � DtÞ � yjððk � 1Þ �
DtÞÞ � ðyjððk þ 1Þ � DtÞ � yjðk � DtÞÞ has a negative sign.
Also, all points that may be at the beginning or end of a
stationary segment are selected as landmarks. A point
ðk � Dt; yjðk � DtÞÞ is determined as such landmark, if and
only if one of the two slopes, ðyjðk � DtÞ � yjððk � 1Þ �
DtÞÞ=Dt and ðyjððk þ 1Þ � DtÞ � yjðk � DtÞÞ=Dt; is zero or
close to zero (within a user-specified threshold �slope

from zero).
Landmarks were identified for the example joint angle

trajectory (Fig. 1b). �slope was set at 11/min, which is just
below the threshold of human proprioception of joint
angular motion (Clark et al., 1985, 1986).
2.1.2. Step (2) selection of segment boundary points

Landmarks that reflect noise in a time-series do not
qualify as segment boundary points. For example, in
Fig. 1b, there are dense clusters of landmarks in
plateaus. Demarcating motion segments using all these
landmarks would produce too many small segments that
merely represent noise. Therefore, segment boundary
points are selected from landmarks such that each of the
resulting elemental motion segments has a duration
longer than a predetermined threshold �time:

The first and the last landmarks are selected as
segment boundary points. Each landmark between the
first and the last is examined consecutively in time as to
if:


 it is located farther than �time from at least one of the
adjacent landmarks in time, and


 it is located farther than �time from the nearest
segment boundary point in time.

A landmark is selected as a segment boundary point if
it satisfies the two conditions listed above. The first
condition ensures that a segment boundary point
adjoins at least one segment. The second ensures that
no two consecutive segment boundary points are too
close to each other in time.

Segment boundary points were identified for the
example joint angle trajectory (Fig. 1c). �time was set at
1
6
s: This forces an elemental motion segment to have a

duration longer than or equal to 1
6
s and allows at

maximum six motion segments within a 1 s time period.
The threshold value of 1

6
s is thought to be sufficiently
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Fig. 1. SMSR algorithm: (a) an example joint angle trajectory, (b) landmark detection, (c) segment boundary point selection, (d) symbol assignment,

and (e) redundancy elimination.
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small to capture important changes in a normal-paced
joint angular motion, as 1 s time period is generally
known to allow no more than two movement correc-
tions (Wickens, 1986).
2.1.3. Step (3) symbol assignment

One of the three symbols, ‘U’, ‘D’, or ‘S’, is assigned
to each motion segment, according to the associated
angular displacement. If the displacement is greater than
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or equal to a user-defined threshold �Dx; ‘U’ is assigned
to the segment. If the displacement is less than or equal
to ��Dx; ‘D’ is assigned to the segment. Finally, ‘S’ will
be given, if the displacement is between ��Dx and �Dx:

Symbol assignment for the example joint angle
trajectory is illustrated in Fig. 1d. �Dx was set at 11 to
take into account that angular displacements associated
with a ‘U’ or ‘D’ segment must be large enough to be
perceived by the performer. Indeed, studies on proprio-
ceptive perception have indicated that minimum detect-
able joint angular displacements vary in the range of
0.3–0.71 across different body joints (Laidlaw and
Hamilton, 1937; Grigg et al., 1973).
Time

Fig. 2. An example of deriving a variant from a single joint angle

trajectory. The solid curve represents an original joint angle trajectory.

The filled-in circles represent the segment boundary points of the

original joint angle trajectory. The empty circles represent new

locations of the segment boundary points. The dashed curve represents

a derived variant. The variant maintains the structure (‘SDSDUSU’)
2.1.4. Step (4) elimination of possible redundancies in a

symbolic string

The symbolic string formed in Step (3) may contain
redundancies. Indeed, the example joint angle trajectory
was described as ‘SDDSDUSU’, which can be further
simplified to ‘SDSDUSU’ (Fig. 1e). Redundancies are
eliminated by merging consecutive segments with
identical symbols.
of the original.
2.2. Motion generalization method

Once a sample motion hðtÞ is analyzed by the SMSR
algorithm, it can be generalized to produce an infinite
number of similar motion variants. This generalization
is based on parametric deformations of the sample
motion’s joint angle–time trajectories. The segment
boundary points identified by the SMSR algorithm are
utilized as control parameters for such deformations.

To generate a variant from a sample motion hðtÞ;
segment boundary points of the sample motion are first
moved to new locations in the angle–time space, and
then individual segments of the original joint angle
trajectories are shifted and proportionally rescaled to fit
the new segment boundary points. This deformation
method based on ‘local proportional scaling’ (Kanatani-
Fujimoto et al., 1997) can be mathematically described
as follows: let ðT

j
i ;B

j
iÞ and ðtj

i ; b
j
iÞ be the original and the

new segment boundary point locations in the angle–time
space, respectively, where j ¼ 1; . . . ; J and i ¼ 1; . . . ; I j : i

is the index of the segment boundary points and I j

denotes the number of segment boundary points in the
jth joint angle trajectory yjðtÞ: New joint angle trajec-
tories ŷjðtÞ’s at a given time t (tj

iptptj
iþ1) can be

represented by

ŷjðtÞ ¼ bj
i þ

bj
iþ1 � bj

i

B
j
iþ1 � B

j
i

yj T
j
i þ

T
j
iþ1 � T

j
i

tj
iþ1 � tj

i

ðt � tj
iÞ

 !
� B

j
i

 !

when B
j
iþ1 � B

j
ia0; and

ŷjðtÞ ¼ bj
i when B

j
iþ1 � B

j
i ¼ 0: ð1Þ
An example that illustrates deformation of a single
joint angle trajectory based on the above method is
provided in Fig. 2. Zhang (2002) used a similar
proportional scaling method to alter reach motions
and nullify hand position errors.

The new locations of segment boundary points,
ðtj

i ; b
j
iÞ’s; are bound by a motion structure preservation

constraint. A new motion ĥðtÞ ¼ ½ŷ1ðtÞ � � � ŷJðtÞ� must
maintain the structure of hðtÞ to qualify as a variant of
hðtÞ: That is, each ŷjðtÞ must be identical to yjðtÞ in the
symbolic string representation. This constraint forces a
class of motions derived from a sample motion to retain
the sample motion’s basic structure in the joint
angle–time trajectories.
3. Motion modification algorithm

3.1. Motion modification (MoM) algorithm

The MoM algorithm (Park et al., 2004) adapts an
existing target reach motion for newly given target
locations. The algorithm can be used as a general
motion simulation method provided that a motion
library or a motion database exists. Three types of
input data are assumed to be given for an MoM
problem: (1) anthropometric body segment dimensions,
L ¼ ½l1 � � � ln � � � lN �; (2) a sample motion, hðtÞ ¼
½y1ðtÞ � � � yjðtÞ � � � yJðtÞ�; where 0ptpT ; (3) a new target
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location, E: The goal is to modify hðtÞ to derive a new
motion that attains the new target position E:

The sample motion hðtÞ is first analyzed by the SMSR
algorithm to identify the structure and the segment
boundary points, ðT

j
i ;B

j
iÞ’s (j ¼ 1; . . . ; J and

i ¼ 1; . . . ; I j). The output motion to be generated is a
modification of hðtÞ; ĥðtÞ ¼ ½ŷ1ðtÞ � � � ŷjðtÞ � � � ŷJðtÞ�; where
0ptpT : As described in Section 2.2, ĥðtÞ is obtained by
relocating ðT

j
i ;B

j
iÞ’s to new locations ðtj

i ;b
j
iÞ’s and

deforming hðtÞ accordingly, based on Eq. (1). Therefore,
solving an MoM problem amounts to determining
ðtj

i ;b
j
iÞ s (j ¼ 1; . . . ; J and i ¼ 1; . . . ; I j).

The output motion ĥðtÞ must satisfy the following
constraints:


 Target acquisition constraint: ĥðtÞ must locate the
hand at the intended position E: That is,

FðĥðTÞ;LÞ ¼ E; (2)

where F represents the forward kinematics equation
for calculating hand position.


 Joint range of motion constraint: Each joint angle
trajectory of ĥðtÞ must reside within the joint angle’s
normal range of motion. This is expressed by

LjpŷjðtÞpUj for j ¼ 1; . . . ; J and 0ptpT ; (3)

where Lj and Uj represent the lower and the upper
limit of the jth joint angle value, respectively. Normal
joint range of motion data are extracted from Webb
Associates (1978).


 Body balance maintenance constraint: A static balance
condition is employed as a constraint to ensure body
balance maintenance of the output motion. To
maintain balance, the vertical projection of the
whole-body center of mass must reside within the
base of support (BoS) formed by the feet. This static
balance condition is expressed by

PcomðĥðtÞ;LÞ 2 BoS for 0ptpT ; (4)

where Pcom and BoS represent the vertical projection
of the whole-body center of mass on the floor and the
BoS defined by the feet, respectively. Dempster (1955)
provides body segment mass distribution and center
location data necessary for computing PcomðtÞ as a
function of a posture ĥðtÞ at time t:


 Motion structure preservation constraint: The symbolic
string representation of ĥðtÞ must be identical to that
of hðtÞ:

STRING ðŷjðtÞÞ ¼ STRING ðyjðtÞÞ for all j: (5)

The above constraints (Eqs. (2)–(5)) in general do not
j j
completely determine ðti ;biÞ’s: In other words, there
exists an infinite number of possible ways for locating
ðtj

i ;b
j
iÞ’s that satisfy the above constraints. To resolve

this indeterminacy, an optimization-based approach was
devised (Park et al., 2004). First, the final posture of the
new motion ĥðTÞ; which is the set of the very last
boundary points ½b1

I1
� � �bj

I j
� � � bJ

IJ
�; is determined by

solving the following minimization problem:

Minimize
PJ
j¼1

ðŷjðTÞ � yjðTÞÞ
2

s:t: the four constraints shown in Eqs: ð2Þ2ð5Þ:

(6)

The new final posture ĥðTÞ determined by the above
method resembles the original motion’s final posture
hðTÞ the most. Once the new final posture ĥðTÞ is
determined, the new joint angle trajectories that link the
initial posture hð0Þ to the new final posture ĥðTÞ are
determined by solving the following minimization
problem for ðti

j ;b
i
jÞ’s for each j (i ¼ 1; . . . ; ðI j � 1Þ):

Minimize
R T

0 ð
_̂yjðtÞ � _yjðtÞÞ

2 dt

s:t: ŷjð0Þ ¼ yjð0Þ;

ŷjðTÞ is given as a constant

by solving Eq: ð6Þ;

(7)

where
_̂yjðtÞ and _yjðtÞ denote the first time derivatives of

ŷjðtÞ and yjðtÞ:
The new motion ĥðtÞ determined by the above method

resembles the original motion hðtÞ the most in the joint
angular velocity domain. Nonlinear optimization meth-
ods used for solving the minimization problems shown
above have been previously described (Park et al., 2004).

3.2. Motion modification examples

Two sample reach motions (right-handed standing
reaches) were modified by the MoM algorithm for new
target locations. The sample motions were extracted
from an existing motion database (Chaffin, 2001). The
first motion (Fig. 3a) was a side reach performed by a
male subject (177 cm, 81 kg). The second motion
(Fig. 3b) was a forward, downward reach performed
by another male subject (191 cm, 76 kg).

The motions were recorded at a sampling frequency of
25 Hz, using a custom motion capture system, utilizing
both the optical MacReflexTM and the electromagnetic
Flock-of-BirdsTM system (Fig. 4a). Internal joint center
locations were derived from marker position and
orientation data to construct a kinematic linkage system
(Fig. 4b). The linkage system consisted of 17 constant-
length body segment links and 39 local Euler angles.
While performing the reaches, the subjects were asked to
maintain the left ball-of-foot at a fixed position on the
floor, which served as the origin of the linkage system.

Each motion was modified for six new target
locations, which were 30 cm away from the original in
different directions: upward, downward, forward, back-
ward, and sideways. This set of new target locations
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Fig. 3. Two sample reach motions: (a) a side reach and (b) a forward, downward reach. The crosshairs represent the reach targets.

3

1

End-
effector

Origin 

33 3
2 2

1

3
33 3

22

1 1

1

3 3

(a) (b)

Fig. 4. Surface marker locations and resulting kinematic linkage: (a)

the circles and squares represent 10 optical and five electromagnetic

markers, respectively, and (b) derived internal joint centers, link

segments, and joint degrees of freedom.

x 

z 

y 
x 

y 

z 

(0,0,0)
(0,0,0)

 

(a) (b)

Fig. 5. Six new target locations for MoM: (a) a side reach (b) a

forward, downward reach. The initial standing postures at t ¼ 0 are

depicted. The thick crosshair in the middle represents the original

target location. The thin crosshairs represent new target locations

30 cm away from the original.

W. Park et al. / Journal of Biomechanics ] (]]]]) ]]]–]]]6
tested the robustness of the MoM algorithm in
producing realistic motion variants for novel scenarios
(Fig. 5).

MoM results are presented in Figs. 6 and 7 for the
side and forward–downward motions, respectively. The
original reaches (a) are followed by the six modifications
(b–g).
4. Discussion

Inspired by the GMP theory, the current study
presented a SMSR algorithm for identifying basic
spatial–temporal structure of human motion and a
method for motion generalization. An MoM algorithm
that alters reach motions for new target locations was
developed based on the SMSR algorithm and the
motion generalization method. Two MoM examples
(Figs. 6 and 7) demonstrated that the MoM algorithm
can generate realistic motion variants for various new
scenarios.

The proposed SMSR algorithm and the motion
generalization method provide a basis for developing
various GMP-based motion simulation models and
exploring ideas and hypotheses related to the GMP
theory through simulation. Of particular interest is the
question of how a schema (Schmidt, 1975) can be
modeled. The MoM algorithm employed a schema that
determines parameters for novel task requirements by
minimizing deviations from existing sample motions in
the final posture and the joint angular velocity profiles
(Eqs. (6) and (7)). This human performance imitation
approach was found to produce realistic motion
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Fig. 6. A side reach (a) and its variants generated for new target locations (b–g). The thick crosshairs represent the original target location. The thin

crosshairs represent the new target locations.
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variants, as shown in Figs. 6 and 7. Nonetheless, various
kinematic and biomechanical criteria, including mini-
mum jerk (Flash and Hogan, 1985), minimum torque
change (Uno et al., 1989), and minimum energy
(Alexander, 1997), may be able to simulate human
reach motions in a robust manner when utilized as
possible schemata. These methods assume a control of
an ‘‘output’’ variable while our method assumes
implicitly a control of movement parameters, which
is compatible with the frequent absence of minimi-
zation in voluntary human movements. A simple
example of no-minimization is illustrated by radical
alternatives such as stoop and squat lifting that
can be used to perform the same task. Nevertheless,
comparison of alternative schemata in terms of
robustness and extrapolation capabilities may provide
further insights into the principles of human motion
planning.

The methods proposed in the present study could be
related to the Kendama (a cup-and-ball game) learning
algorithm developed by Miyamoto et al. (1996), which
utilizes existing human motion data to teach an
anthropomorphic robot arm to play the game. Given a
sample human motion, the algorithm first extracts a set
of via-points by analyzing the hand position and
orientation time trajectories. Then, the motion data
are adjusted to fit the robot arm geometry. Finally,
spatial and temporal positions of the via-points are
adjusted by supervised learning until the recalculated
robot arm motion fulfills the task goal. Via-points are
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Fig. 7. A forward, downward reach (a) and its variants generated for new target locations (b–g). The thick crosshairs represent the original target

location. The thin crosshairs represent the new target locations.
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similar to segment boundary points in that they
characterize fundamental motion structure and are
utilized as control parameters for modifying motions.
However, the methods proposed in this study and the
Kendama algorithm differ in the domain of motion
structure representation. The former represents motion
structure in the angle–time space while the latter is based
on hand motion over time. Comparison of the two
methods in the performance of human motion predic-
tion and robot learning may provide further insights
into the advantages and disadvantages of each motion
representation scheme. Despite the difference, the two
approaches collectively support the notion of GMP-
based motion simulation and parametric motion plan-
ning.
The SMSR algorithm uses three user-defined para-
meters: �slope; �time; and �Dx: Although the current study
provided suggested values for the three parameters
(�slope¼ 1�=min; �time ¼

1
6
s; and �Dx¼ 1�), they are

applicable mainly for normal-paced motions in daily
or work activities. Depending on the motion type (e.g.,
high-speed sports or dance movements), the parameter
values can be adjusted.
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