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Abstract

The admixture test for the detection of linkage under heterogeneity is considered. We show
that the null distribution of this test statistic has half its weight concentrated on zero and the other
half on a complicated distribution that can be approximated by max(X1,X2) whereX1 andX2 are
independentχ2

1 variables. We also give exact critical values for small samples and show that
the power of this test to detect linkage is generally greater than the standard test that assumes
homogeneity.
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1 INTRODUCTION

We consider the detection of linkage when linkage heterogeneity exists, that is when only a frac-
tion of sibships may be linked to a given genetic marker. Smith(63) introduced the admixture
model based on the recombination fraction and the proportion of linked families. Ott(83,85) and
Risch(88) consider tests forheterogeneitybased on this model, whereas Hodge et. al.(83) and
Risch(89) consider tests forlinkagebased on this same model. The latter is discussed here. Mar-
tinez & Goldin (89) discuss sample sizes needed for such tests.

The test for linkage is one-sided since recombination fractions greater than one half make no
biological sense and should its estimated value be greater than one half, one would not take this
as evidence of linkage. Hence, the true null distribution of the admixture statistic has half its
weight concentrated at zero and the other half on some other distribution which is the subject of
our interest here. Because of the symmetry of the problem, its convenient and notationally simpler
to just compute the null distribution for the two-sided test statistic to discover the aforementioned
distribution. Bear in mind that, although we shall be concerned with the two-sided test statistic in
what follows, the true null distribution is as above.

Hodge claimed that the asymptotic (as the number of sibships becomes large) null distribution
of the (two-sided) admixture test statistic wasχ2

1 but Risch conjectured it wasχ2
2. We claim here

that neither is correct and that the true asymptotic distribution is quite complicated but can be
adequately approximated by the max(X1,X2) whereX1 andX2 are independentχ2

1 variables. This
distribution lies somewhere between the two previous claims and thus this result is of more than
just technical interest given the popularity of the test. Ghosh & Sen(85) study the asymptotic
distribution of the likelihood ratio test statistic for a mixture model that is similar to the one here
and obtained a result similar in form to ours.

2 DISTRIBUTION OF THE TEST STATISTIC

Let the recombination fraction beθ, the proportion of linked sibships beα and the sibship size be
s. Let the number of sibships ben and letXi be the number of recombinant gametes out ofs for
sibshipi.

Thus the likelihood for this set of sibships would be

L(θ,α) =
n

∏
i=1

[
αθXi(1−θ)s−Xi + (1−α)(1/2)s]

Note that if we mapXi 7→ s−Xi (producing an outcome that has equal probability under the
hypothesis of no linkage) andθ 7→ 1−θ then the likelihood stays the same. This symmetry allows
us to consider the two-sided test statistic in our computation of the actual one-sided admixture test.
If we wish to test for linkage, the natural null and alternative hypotheses are

H0 : θ = 1/2 HA : θ < 1/2

and the maximum likelihood-ratio test statistic is

T = 2log(L(θ̂, α̂)/L(1/2, α̃))
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whereθ̂ andα̂ are the maximum likelihood estimates(m.l.e) under the alternative hypothesis
andα̃ is the m.l.e. under the null. Note that whenθ = 1/2, α is unidentifiable i.e any value ofα
produces the same likelihood so the actual value ofα̃ is immaterial, although this unidentifiability
is the source of the difficulty in determining the distribution ofT. We use natural logs here for
statistical convenience; lod scores will be discussed later. So

T = 2max
α,θ

T(α,θ) = 2max
α,θ

n

∑
i=1

log
[
α(2sθXi(1−θ)s−Xi −1)+1

]

where0≤ α≤ 1 , 0≤ θ≤ 1
Unfortunately, the asymptotic distribution under the null is not simplyχ2

1 as it would be if the
usual theory were applicable. This is because a regularity condition regarding the identifiability
of the parameters is not satisfied; see Wald(1949). This means the asymptotic distribution ofT
must be derived by other means. We give a heuristic justification of our result and verify it by
simulation.

Sinceα is unidentifiable at the null, the likelihood will be rather flat in theα direction and since
the range ofα is restricted, the value ofα maximizingT will tend to occur at the boundary of the
range ofα for largen. To see this, expandT in θ about 1/2, withα bounded away from 0,

T(α,θ)≈−8α
n

∑
i=1

(Xi−s/2)(θ− 1
2
)+4α[(1−α)

n

∑
i=1

(2Xi−s)2−ns](θ− 1
2
)2

(where≈ means approximately) Maximizing overθ gives

max
θ

T(α,θ)≈ 4α[∑n
i=1(Xi−s/2)]2

ns−4(1−α)∑n
i=1(Xi−s/2)2 (†)

Let Z = ∑n
i=1(Xi−s/2) andS2 = ∑n

i=1(Xi−s/2)2 and now differentiating with respect toα

d
dα

max
θ

T(α,θ)≈ −8Z2(4S2−ns)
(ns−4S2(1−α))2

which will be positive or negative depending on whetherS2 is less or more thanns/4, independent
of the value ofα so forn sufficiently largeT will be maximized atα = 1 or for α small (T = 0
whenα = 0). SinceS2→ ns/4 asn→∞, both cases will be roughly equally likely. So we consider
the distribution ofmaxθ T(α,θ) for α = 1 and forα small.

Whenα = 1, maxθ T(1,θ)≈ 4
ns[∑

n
i=1(Xi−s/2)]2 using(†). SinceEXi = s/2 andVar Xi = s/4,

maxθ T(1,θ) is asymptoticallyχ2
1, just applying the central limit theorem.

However, whenα is small the distribution of T is not so clear:
Write k j= {number ofXi = j} for j = 0,1, ...s then

T = 2max
α,θ

s

∑
i=0

ki log
[
α(2sθi(1−θ)s−i−1)+1

]

Now sinceα is small, we can expand log in terms ofα (log(1+x)≈ x−x2/2):

T ≈ 2max
α,θ

s

∑
i=0

ki

[
α(2sθi(1−θ)s−i−1)− 1

2
α2(2sθi(1−θ)s−i−1)2

]
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and maximizing this overα gives

T ≈max
θ

[
∑s

i=0ki(2sθi(1−θ)s−i−1)
]2

∑s
i=0ki [2sθi(1−θ)s−i−1]2

Now under the nullθ = 1/2, and soEki = n
(s

i

)
2−s so replacingki by it’s expectation and then

by applying the binomial theorem, we see that the numerator is approximately

s

∑
i=0

n

(
s
i

)
2−s[2sθ̂i(1− θ̂)s−i−1

]2
= n

[
(θ2 +(1−θ)2)s2s−1

]

Hence

T ≈max
θ

[
s

∑
i=0

kici(θ)

]2

where

ci(θ) =
(2sθi(1−θ)s−i−1)√

n[(θ2 +(1−θ)2)s2s−1]

The distribution of this cannot be explicitly stated for generals, but given thatki is asymptot-
ically normal asn→ ∞, ∑s

i=0kici(θ) is asymptotically a weighted sum of normals and is hence
normal for givenθ. This might suggest aχ2

1 as a possible approximation and simulation shows that
this is indeed a good fit but it should be emphasized that this is not the exact distribution.

Now when T is maximized forα small, T is a weighted sum of theki and when maximized
for α = 1, T is a function of the sample mean, so the maximizing values at these two points
will be tend to be independent especially for larges. This suggests a distribution for T as the
maximum of two independently distributedχ2

1 variables. Again, this is not an exact result but
simulation indicates that it is a good approximation. The true asymptotic distribution a function
of the maximum of a particular Gaussian process but since this cannot be explicitly calculated, the
suggested approximation will be of more practical utility.

To check the validity of this suggested approximating distribution, consider the following sim-
ulation results: With sibship sizesset to 3 and the number of sibships set to 100, 100,000 datasets
were generated with the trueθ = 1/2. The likelihood was maximized by first transformingα and
θ to a logit scale (x 7→ log(x/(1−x))) so that the constraints onα andθ can be removed and then
using the Nelder-Mead simplex method described in Press et al. (1988) to find the maximum. The
maximum atα = 1 andα small as indicated in the discussion above was also calculated.

The quantiles of the suggested distribution of T may be simply calculated by noting that

P(T < q) = P(χ2
1 < q)2

In figure 1, we show a quantile-quantile plot of the simulated test-statistic against it’s claimed
distribution. We have converted to a lod scale and focused only on the upper tail (the largest 284
observations) of the distribution since this is the area of most interest and the fit is good for the rest
of the distribution anyway.
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Figure 1: A Q-Q plot showing the upper tails of the distributions of the simulated and theoreticalT on a lod
scale

The agreement between the simulated and theoretical distributions is good. Any divergence
from a perfect match can reasonably be attributed to simulation sampling error and that for finite
n, T is discrete. Similar results have been observed for other small values ofsand the fit improves
asn gets larger.

3 CRITICAL VALUES

Recall that ifθ̂≥ 0.5 we have no evidence for linkage, otherwise we can determine the significance
of the observedT by referring to the approximate null distribution that we have calculated. If lod
scores are preferred, one would use

T ′ = 2log(10)T

If the same level of test is desired as for aχ2
1 distributed statistic, lod scores of 2,3 and

5 correspond to scores forT ′ of 2.28,3.28 and 5.27 respectively. (Compare the values given by
Risch(89) of 2.62,3.70 and 5.80 respectively).

This result is asymptotic in nature and may not be good for the small samples used in
practice. It should be noted that it is computationally feasible to calculate exact critical values for
small samples. To guarantee at least the same level of test corresponding to using a lod score of
3 as a criterion (a significance level of approximately 0.02144%), the null hypothesis should be
rejected whenT ′ exceeds the critical values given in the following table:
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Table I
sibship Number of families
size 2 3 4 5 6 7 8 9 10
2 - - - - - 4.05 3.59 3.58 3.29
3 - - - 3.98 3.40 3.45 3.44 3.22 3.16
4 - - 3.59 3.50 3.30 3.25 3.20 3.45 3.29
5 - 3.98 3.55 3.32 3.16 3.06 3.35 3.40 3.18
6 - 2.79 3.30 3.21 3.43 3.37 3.25 3.31 3.23

Table I: Critical lod scores for the admixture statistic corresponding to a nominal lod score of 3
No entry (-) indicates that the maximum possible value ofT ′ has a probability exceeding the

stated significance level and so under these conditions there is insufficient data - the null hypothesis
will never be rejected. The critical values fluctuate but approach the expected 3.28 asn gets larger.
Note that there is one value less than 3, which may seem odd, but remember these are exact values,
and this happens to be the critical value corresponding to the stated level of significance.

4 POWER

Risch(89) compared the power of the heterogeneity test against the standard test where homo-
geneity is assumed (α = 1), and concluded that the homogenous test was more powerful in most
circumstances. Contrary to this, we demonstrate here, by using the correct critical value and com-
puting the power exactly, that the heterogenous test is generally preferable.

Exact critical values for a significance level corresponding to a lod of 3 for both tests were
computed and the exact power to detect linkage was calculated for a range of values ofα from 0
to 1 and ofθ from 0 to 1/2. Figure 2 shows the power of the heterogenous test minus that of the
homogenous test. The lines show contours of equal difference in power (probability expressed as
a percentage) and “=” denotes the region where there is a less than a 0.01 difference in the power.
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Figure 2: Contour plots showing the difference in power between the heterogenous test and the homoge-
neous test

In the case of sibship size 2 and 50 sibships, the homogenous test exceeds the power of
heterogenous test by no more than 0.01 and can be 0.1 less powerful whenα=0.4 andθ=0. When
the sibship size is 5 and with 20 sibships, the heterogenous test exceeds the power of homogenous
test by 0.37 whenα=0.3 andθ=0. The region where the homogenous test is mildly preferable is
confined to an area of low mixing and moderate linkage. Other comparisons show that the region
where the heterogenous test is clearly preferable expands with sibship size and number of sibships.
Even when there is no mixing the homogenous test is only mildly more (0.05-0.1 at best) powerful
than the heterogenous test, but if there is some mixing the heterogenous test can be substantially
more powerful.

5 DISCUSSION

We have approximated the null distribution of the admixture test for the detection of linkage and
demonstrated that if the possibility of heterogeneity exists, this admixture test is generally more
powerful than the usual test which takes no account of heterogeneity.

We have considered constant sibship size here for simplicity of the exposition but this is
not crucial and the same asymptotic result would follow even if the sibship size were allowed to
vary. Furthermore, the same result holds even when the meioses are not completely informative.
For the least informative, phase unknown, case, the test statistic is

T = max
α,θ

n

∑
i=1

log
[
α(2s−1{θXi(1−θ)s−Xi +θs−Xi(1−θ)Xi}−1)+1

]
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and a similar reasoning to the one above may be used to get the same result.
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