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Summary. We show that the proportional hazards model of random censorship is too
good to be true as measured by mean squared errors: for estimating the underlying
distribution function F (x) it is better to have a censored sample for a suitable expected
censoring proportion than an uncensored full sample of the same size for any x below
the 0.56-quantile of F .
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1. INTRODUCTION

Let X1, X2, . . . , Xn be independent random variables with a continuous distribution
function F (x) = P{X ≤ x} , x ∈ IR . An independent sequence of independent ran-
dom variables Y1, Y2, . . . , Yn with distribution function G censors them on the right, so
that at each stage n we can only observe Zj = min(Xj , Yj) and δj = I{Xj ≤ Yj} ,
j = 1, . . . , n , where I{A} stands for the indicator of an event A . Let H be the dis-
tribution function of Z , where (Z, δ) = (Z1, δ1), so that 1 − H = (1 − F )(1 − G) and
p = P{δ = 1} = H̃(∞) is the expected proportion of uncensored observations, where
H̃(x) = P{Z ≤ x , δ = 1} =

∫ x

−∞[1−G−(y)] dF (y), x ∈ IR , with the left-continuous ver-
sion G− of G . This is the widely used random censorship model, in which considerations
are centered around properties of the celebrated Kaplan – Meier product-limit estimator
F̂n of F . The literature is enormous; for many of the standard references and the latest
developments the reader is referred to Csörgő (1997).

The special proportional hazards submodel of random censorship is defined by the
existence of a positive constant c such that 1 − G(x) = [1 − F (x)]c for all x ∈ IR , so
that the censoring and censored cumulative hazard functions ΛG = − log(1 − G) and
ΛF = − log(1− F ) are proportional: ΛG = cΛF . This submodel, in which p = 1/[1 + c]
and 1 − F = [1 − H]p , has been popular for theoretical purposes since it allows calcu-
lations for the investigation of properties of F̂n which are easier to derive and are more
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readily interpretable than in the general censorship model. It has also been repeatedly
recommended as an intuitively appealing and potentially useful applied scenario. This
orientation in the literature has become particularly pronounced with the appearance of
the Abdushukurov – Cheng – Lin estimator Fn(x) = 1 − [1 − Hn(x)]pn of F (x), where
pn = n−1

∑n
j=1 δj and Hn(x) = n−1

∑n
j=1 I{Zj ≤ x} is the sample distribution function

of the minimum observations, x ∈ IR . Most of the relevant literature up to 1987 has
been summarized by Csörgő (1988), though it turned out that an unpublished preprint
of Hollander, Proschan and Sconing (1985) also derived Fn , and investigated some of its
appealing properties, independently of the papers by Abdushukurov (1987) and Cheng
and Lin (1987). (Due to a mistake of one of the present writers, the submodel is often
inappropriately referred to as the Koziol – Green model; cf. the corresponding remarks
in Csörgő (1988).) The literature on various aspects of estimation and testing in the
proportional hazards submodel and its slight extensions or variants has become quite
sizable following 1988; see, for example, Csörgő and Mielniczuk (1988), Ghorai (1989 a,
b, 1991 a, b), Gijbels and Veraverbeke (1989), Hollander and Peña (1989), Dikta and
Ghorai (1990), Mi (1990, 1996), Gijbels and Klonias (1991), Rao and Talwalker (1991),
Ghorai and Pattanaik (1991, 1993), Beirlant, Carbonez and van der Muelen (1992), Dhar
(1992), Herbst (1992 a, b, 1993, 1994), Janssen and Veraverbeke (1992), Stute (1992),
Peña and Rohatgi (1993), Veraverbeke (1994) and Dikta (1995).

Quite naturally, most of these papers are concerned with the superiority of proce-
dures for estimation and testing within the submodel which are based on Fn rather than
the product-limit estimator F̂n . Indeed, the success is spectacular at times, and it is in
this sense that the submodel is usually meant to represent a form of informative censoring.
In the simplest situation, if the submodel holds, the asymptotic squared error of Fn(x) is
strictly less than that of F̂n(x) for any x ∈ IR for which 0 < F (x) < 1; cf. Abdushukurov
(1987), Cheng and Lin (1987), Hollander, Proschan and Sconing (1985), or Csörgő (1989).
Of course, if the data (Z1, δ1), . . . , (Zn, δn) from the general censorship model do not fol-
low the proportional hazards submodel, these procedures may be very bad: Fn still
estimates 1− [1−H]p , but this is no longer F .

How frequent is the submodel in practice? It holds if and only if Z and δ are
independent (cf. Csörgő (1988) for references), and this fact is what makes the superior
Fn possible in it. However, the same fact already makes its regular occurrence in real
data doubtful. Csörgő (1989) has derived some omnibus large-sample tests for testing
for the submodel, which have quite reasonable small-sample properties. Going through
a number of published data sets available at the time, he did find one famous data set
which follows the proportional hazards submodel quite closely: the Channing House data
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discussed by Efron (1982). His findings are fully corroborated by Henze (1993). This
is sometimes taken as an encouraging sign that the submodel may indeed be practically
useful quite widely. But, to the best of our knowledge, this is the only censored data set
known to be of the proportional hazards type.

The presence of random censorship is naturally associated with loss of information:
one cannot observe the full sample X1, . . . , Xn uncensored, so one loses information
to properly estimate F (x) by the unavailable empirical distribution function F ∗n(x) =
n−1

∑n
j=1 I{Xj ≤ x} ; instead, one is relegated to the use of F̂n(x) or Fn(x), x ∈ IR .

This is well understood for the relation between F̂n and F ∗n for the general model. Here√
n [F̂n(x)−F (x)] is asymptotically N (0, v2(x)) for some function v(·), while, if the full

sample is known,
√

n [F ∗n(x)−F (x)] is asymptotically N (0, F (x)[1−F (x)]) as n →∞ ,
where N (0, σ2) denotes the normal distribution with mean 0 and variance σ2 , and
v2(x)/{F (x)[1−F (x)]} > 1 for all meaningful x if p < 1; cf. Csörgő (1997) for instance.

The aim of the present note is to point out that, with goodness measured by mean
squared errors, this is not so with the proportional hazards submodel of random cen-
sorship: up to a strange quantile beyond the median, one may be better off having a
censored sample than the uncensored full sample! This paradoxical nature of the model
partly explains its rarity: it is too informative, it is in fact too good to be frequently true
in practice.

2. THE PARADOXICAL NATURE OF THE MODEL

Suppose the great Maker∗ shows Peter the censored data (Z1, δ1), . . . , (Zn, δn) with the
extra information that it is from a proportional hazards model of random censorship with
some untold p ∈ (0, 1). “Himself all-wise, all-powerful and good,” he however reveals to
Paul, his favorite to all appearance, the full data set X1, . . . , Xn uncensored.

Suppose first that Peter and Paul wish to estimate the density function f(·) of F (·),
assumed to exist for the moment. Peter then forms the obvious kernel estimator fn(x)
based on Fn , while Paul, using the same kernel and bandwidth bn , forms the classical
kernel estimator f∗n(x) based on the full sample distribution function F ∗n known to him.
Let F−1(s) = inf{y : F (y) ≥ s} , 0 < s < 1 denote the corresponding quantile function.
Under standard smoothness conditions and the usual conditions on bn to make both
estimators asymptotically normal with zero mean, Csörgő and Mielniczuk (1988) have

∗ Abraham de Moivre: The Doctrine of Chances, Third Edition, London, 1756; page
252.
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shown that the limiting variance of fn(x) is strictly smaller than the limiting variance of
f∗n(x) for any x < F−1(1− e−1), provided Peter is allowed to use a suitable p depending
on x . Interestingly, the optimal p = p¦(x) for which the ratio of the former to the latter
is the smallest is ΛF (x), and this minimal ratio is given in Figure 1 there.

This finding may not be impressive in that that it is achieved by suitable choices
of the bandwidth parameters that make it possible to ignore the bias of the estimators
asymptotically; the bias is present in all finite samples for both estimators.

Suppose now that Peter and Paul set out to estimate F . Naturally, Peter will use Fn

and Paul will use F ∗n , both asymptotically optimal, with generally optimal small-sample
properties, from their respective vantage points. Then

√
n [Fn(x) − F (x)] is asymptot-

ically N (0, σ2
F (x)) and

√
n [F ∗n(x) − F (x)] is asymptotically N (0, F (x)[1 − F (x)]) as

n →∞ , where, setting log2 y = [log y]2 , y > 0,

σ2
F (x) = [1− F (x)]2

{
p2 H(x)

1−H(x)
+ p(1− p) log2(1−H(x))

}

= [1− F (x)]2
{

p2 1− [1− F (x)]1/p

[1− F (x)]1/p
+

1− p

p
log2(1− F (x))

}

for any −∞ ≤ lims↓0 F−1(s) = F−1(0) < x < F−1(1) = lims↑1 F−1(s) ≤ ∞ , from
Abdushukurov (1987), Cheng and Lin (1987), Hollander, Proschan and Sconing (1985),
or from (2.6) in Csörgő (1988).

Therefore, the ratio R(F (x), p) = σ2
F (x)/{F (x)[1−F (x)]} is a measure of the relative

asymptotic performance of Peter and Paul, where

R(s, p) = p2 1− s

s

[
1

(1− s)
1
p

− 1
]

+
1− p

p

1− s

s
log2(1− s)

= p2

[
1

s(1− s)
1
p−1

− 1− s

s

]
+

1− p

p

1− s

s
log2(1− s), 0 < s < 1.

This would be expected to be greater than 1, on the basis of superficial general intuition
that censoring is loss of information, with R(1, p) = lims↑1 R(s, p) = ∞ for any p ∈ (0, 1).
Indeed, the latter is true from the second formula: Paul is asymptotically far better off
than Peter at large quantiles x = F−1(s). However, from the first formula, R(0, p) =
lims↓0 R(s, p) = p for every expected proportion p ∈ (0, 1) of uncensored observations.
Hence for the s∗(p)-quantile F−1(s∗(p)) of the estimated distribution, where s∗(p) ∈
(0, 1) is the unique quantity s for which R(s, p) = 1, Peter is asymptotically better off
than Paul for all x in the whole half-line (−∞, F−1(s∗(p))). In fact, s∗(0.1) ≈ 0.09324,
s∗(0.3) ≈ 0.24555, s∗(0.5) ≈ 0.36340, s∗(0.7) ≈ 0.45619, s∗(0.9) ≈ 0.53038, s∗(0.95) ≈
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0.55658, s∗(0.99) ≈ 0.55896, s∗(0.999) ≈ 0.56167, and, with the s∗(p) values projected
down to the horizontal axis, Figure 1 contains the curves R(s, p), 0 ≤ s ≤ s∗1.2(p), for
p = 0.1, p = 0.3, p = 0.5, p = 0.7, p = 0.9 and p = 0.95, where s∗1.2(p) > s∗(p) is
the unique quantity s for which R(s, p) = 1.2 . The horizontal line at height 1, from
which the projections are done, is of course the graph of R(s, 1) = 1, 0 ≤ s ≤ 1, for
p = 1. Our new intuition now, given the evidence, is that when estimating F (x) at a
small quantile x , proportional hazards censoring is advantageous since a small fraction
of large observations gets replaced by almost the same but smaller observations and their
knowledge is independent of the knowledge of whether they are censored or not.
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Figure 1. The functions R(s, p), 0 ≤ s ≤ s∗1.2(p), where R(0, p) = p , for
p = 0.1, p = 0.3, p = 0.5, p = 0.7, p = 0.9, p = 0.95 and p = 1.

Peter’s gain in asymptotic efficiency is considerable for small p , albeit only for small
quantiles. While his interval of advantage is longer, his gain is not that much for a large p .
Suppose, however, that for each s -quantile x = F−1(s), s ∈ (0, 1), the all-wise Maker

allows Peter to choose the best possible p = p∗(s) ∈ (0, 1], to “compensate” him for his
initial illusory disadvantage. (Peter still does not know the numerical value of p∗(s),
he only obtains the proportional-hazards censored data as before with this p = p∗(s)
to estimate F (x) for x = F−1(s). Otherwise he would use the even better estimator
F̃n(x) = 1− [1−Hn(x)]p∗(s) for this x .) Thus, for each s ∈ (0, 1), the unique quantity
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p∗(s) ∈ (0, 1] is for which R∗(s) = R(s, p∗(s)) < R(s, p) for any p ∈ (0, 1], p 6= p∗(s),
where the choice p∗(s) = 1 for some s ∈ (0, 1) forces δ1 = 1, δ2 = 1, . . . almost surely; the
choice of the same uncensored sample that Paul has. Peter now is wise enough himself
not to choose hastily p = 1 for all s ∈ (0, 1). By differentiation, for any fixed s ∈ (0, 1)
his choice p∗(s) ∈ (0, 1] is the p ∈ (0, 1] for which dR(s, p)/dp = 0, that is, for which

2p− 2p(1− s)1/p + log(1− s)− p−2(1− s)1/p log2(1− s) = 0.

The critical quantile s∗ = sup{s ∈ (0, 1) : R∗(s) < 1} below which Peter has an advantage
by using data from a proportional hazards censoring model is obtained by letting p ↑ 1
in the equation above: it is the solution s ∈ (0, 1) of the equation

2s + log(1− s)− (1− s) log2(1− s) = 0.

Alternatively, s∗ = limp↑1 s∗(p). We obtain s∗ ≈ 0.56197. For x = F−1(s) with s ≥ s∗ ,
Peter wants to use p∗(s) = 1, i.e. the uncensored full sample that Paul has. Figure
2 depicts Peter’s optimal choice p∗(s), in the solid line, and his gain with this choice
is shown by the corresponding graph of the optimal ratio R∗(s), in the dashed line,
s ∈ (0, 1). The gain for smaller quantiles is considerable.
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Figure 2. The functions p∗(s) (solid curve) and R∗(s) (dashed curve), 0 < s < 1.
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It may be thought at this point that Peter can use his advantage, given to him
by the Maker and represented in Figure 2, only for very large sample sizes. The above
considerations are asymptotic in nature and disregard issues of bias: while for each fixed n

the mean squared error of Paul’s unbiased estimator F ∗n(x) is M∗
n(x) = F (x)[1−F (x)]/n ,

the corresponding mean squared error Mn(x) = [E(Fn(x)− F (x))]2 + n−1Var(Fn(x)) =
[E([1−Fn(x)]− [1−F (x)])]2 + n−1Var(1−Fn(x)) for Peter’s biased estimator Fn(x) is
far more complicated. Since Hn(x) and pn are independent, conditioning on the latter,
we obtain E([1− Fn(x)]α) = Bn,α(F (x)) for every α > 0, where

Bn,α(s) =
n∑

k=0

(
n

k

)
pk(1− p)n−k

n∑

j=0

(
j

n

)kα/n(
n

j

)
(1− s)j/p

[
1− (1− s)1/p

]n−j

for all s ∈ (0, 1). This was noticed already by Hollander, Proschan and Sconing (1985).
Hence the ratio Rn(F (x), p) = Mn(x)/M∗

n(x) for sample size n , corresponding to the
limiting R(F (x), p) above can be obtained by substituting s = F (x) ∈ (0, 1) into

Rn(s, p) =
n[Bn,1(s)− (1− s)]2 + [Bn,2(s)−B2

n,1(s)]
s(1− s)

.

One can then define s∗(n) = sup{s ∈ (0, 1) : Rn(s, p∗(s; n)) < 1} , for sample size n , as
the analogue of s∗ above, where p∗(s;n) is the value which minimizes Rn(s, p) for any
given s ∈ (0, 1).

We find s∗(2) ≈ 0.18767, s∗(3) ≈ 0.39991, s∗(4) ≈ 0.47482, s∗(5) ≈ 0.51141,
s∗(6) ≈ 0.53226, s∗(7) ≈ 0.54500, s∗(8) ≈ 0.55301, s∗(9) ≈ 0.55812, s∗(10) ≈ 0.56139,
s∗(11) ≈ 0.56348, s∗(12) ≈ 0.56480, s∗(13) ≈ 0.56563, s∗(14) ≈ 0.56615, s∗(15) ≈
0.56645, s∗(16) ≈ 0.56661, s∗(17) ≈ 0.56668, s∗(18) ≈ 0.56670, s∗(19) ≈ 0.56667,
s∗(20) ≈ 0.56685. Hence Peter may estimate the median better than Paul already with
sample size n = 5. Furthermore, not only the qualitative findings for n = ∞ set in
already at n = 10, but in fact s∗(n) overshoots s∗ = s∗(∞) ≈ 0.56197 a little for
n ≥ 11. Thus, when estimating F (x) for any x below the 0.56-quantile, Peter will be
better off with a censored sample from a suitable proportional hazards model than Paul
with the full uncensored sample for any sample size n ≥ 10.

We do not have an intuitive explanation neither for the value of the critical quantile
s¦ = 1 − e−1 ≈ 0.63212 for density estimation, nor for the value of the critical quantile
s∗ ≈ 0.56197 in the present situation when estimating a distribution function. Regardless
of the values themselves, we do not even have any heuristics to explain why s∗ < s¦ .
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