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Example Sheet 8

Boundary layers

1. Consider the singularly perturbed second-order linear ODE for u(y):

εu′′ + u′ = 1, (1)

where ε > 0 is small and fixed, with boundary conditions u(0) = 0, u(1) = 2.

(a) Show that the exact solution is

u(y) = y +
1− e−y/ε

1− e−1/ε
.

Sketch u(y) carefully. Explain briefly, but carefully, why uBL = 1 − e−y/ε is a ‘good approximation’
when 0 ≤ y < ε and why uM = y + 1 is a ‘good approximation’ to u(y) when ε < y < 1. In the rest of
this question we will explore the meaning of the term ‘good approximation’.

(b) Consider computing a series solution to (1) by writing u(y) = u0(y) + εu1(y) + · · · . Write down
the form of u0 that satisfies the boundary condition u(1) = 2.

(c) Now rescale (1) by changing the independent variable to Y = y/ε. Write down the rescaled
differential equation for ũ(Y ) = u(y). Consider a series solution ũ(Y ) = ũ0(Y ) + εũ1(Y ) + · · · and
show that the form of ũ0 which satisfies the boundary condition ũ(0) = 0 is given by

ũ0 = A(1− e−Y ).

Observe that the matching condition

lim
Y→∞

ũ0 = lim
y→0

u0. (2)

enables the constant A to be determined, and find it.

2. (a) Show that the streamfunction ψ(r, θ) for steady two-dimensional flow of a viscous fluid satisfies the
equation

−1
r

∂(ψ,∇2ψ)
∂(r, θ)

= ν∇4ψ (3)

where ∂(f, g)/∂(x, y) ≡ ∂f/∂x ∂g/∂y − ∂f/∂y ∂g/∂x is the Jacobian of f(x, y) and g(x, y).

(b) Show that (3) admits solutions of the form ψ(r, θ) = νf(θ) as long as

f ′′′′ + 4f ′′ + 2f ′f ′′ = 0.

Hence show that F (θ) = f ′(θ) is given implicitly by∫ (
C1 + C2F − 4F 2 − 2

3
F 3

)−1/2

dF = θ + C3,

where C1, C2, C3 are constants.



3. Consider the steady 2D boundary layer equations near a rigid wall at y = 0:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
, (4)

∂u

∂x
+
∂v

∂y
= 0, (5)

subject to the boundary condition

u→ U(x) as y/δ →∞, (6)

where δ ∝ ν1/2 is a typical measure of the boundary layer thickness. Take the pressure gradient to be
that driven by the free stream acceleration, i.e. set

−1
ρ

dp

dx
= U

dU

dx
. (7)

(a) Consider a general similarity solution in the form

ψ = F (x)f(η), where η = y/g(x)

to (4) - (5). Show that the ‘free stream’ boundary condition (6) demands that F takes the form

F (x) = cU(x)g(x),

where c is a constant that we can (wlog) set to unity.

(b) By substituting into (4) - (5) show that f satisfies the ODE

(f ′)2 −
(

1 +
U

U ′
g′

g

)
ff ′′ = 1 +

νf ′′′

g2U ′
(8)

(note the use of primes to denote either d/dx or d/dη as appropriate). Deduce that a similarity solution
is possible, i.e. (8) is just an ODE for f(η), if (and only if) either

U(x) ∝ (x− x0)m or U(x) ∝ eαx,

where x0, m and α are constants.

(c) In the case U(x) = Axm, A > 0, show that g(x) ∝ x(1−m)/2. Hence demonstrate that by choosing

g(x) =
(

2ν
(m+ 1)Axm−1

)1/2

we can reduce the ODE for f to the form

f ′′′ + ff ′′ +
2m
m+ 1

(
1− (f ′)2

)
= 0.

Explain briefly why appropriate boundary conditions for this third-order ODE are f(0) = f ′(0) = 0
and f ′(η)→ 1 as η →∞.



4. A thin two-dimensional jet of fluid emerges from a narrow slit in a wall at x = 0 into fluid in x > 0
which is at rest. Assuming that the velocity u varies much more rapidly across the jet than along it
we may apply boundary layer theory, i.e.

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(9)

taking the pressure gradient to be zero since the outer fluid velocity is zero, see (7). Suitable boundary
conditions are that u → 0 as we move away from the jet, and ∂u/∂y = 0 at the centre y = 0 of the
narrow slit (by symmetry).

(a) By integrating (9) across the jet, and performing an integration by parts, show that

M ≡
∫ ∞
−∞

u2 dy (10)

is constant (that is, M is independent of x).

(b) Consider similarity solutions in the form

ψ = F (x)f(η), where η = y/g(x)

where, wlog, we choose f to satisfy ∫ ∞
−∞

[f ′(η)]2 dη =
2
3
. (11)

Show that

F (x) =
(

3M
2

)1/2

(g(x))1/2 .

From the boundary layer equation (9) now show that g(x) ∝ x2/3.

(c) Show that the choice g(x) =
(

2
3M

)1/3 (3νx)2/3 reduces the boundary layer equation to the ODE

f ′′′ + ff ′′ + (f ′)2 = 0 (12)

and that the appropriate boundary conditions are f(0) = f ′′(0) = 0 and f ′(η)→ 0 as η →∞.

(d) Integrate (12) three times and deduce that f(η) = 2A tanh(Aη) for some constant A which can
then be determined using (11). Deduce that the velocity profile in the jet is

u =
1
2

(
3M2

4νx

)1/3

sech2
(η

2

)
,

and sketch the velocity profile at two different downstream positions.
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