MA50215 Specialist Reading Course The Dynamics of Fluids

Example Sheet 7

The generation and diffusion of vorticity

1. (a) Consider solutions of the form

$$\mathbf{u} = u_{\theta}(r, t) \mathbf{e}_{\theta}$$

to the Navier–Stokes equations in cylindrical polar coordinates. Explain why $\partial p/\partial \theta$ must be a function of r and t only, say $\partial p/\partial \theta = P(r,t)$ and hence deduce that P(r,t) must be zero.

(b) Use the result of part (a) to show that the time-dependent line vortex flow

$$\mathbf{u} = \frac{\Gamma(r,t)}{2\pi r} \mathbf{e}_{\theta}$$

in cylindrical polar coordinates (r, θ, z) is an exact solution of the Navier–Stokes equations, provided that Γ obeys the equation

$$\frac{\partial \Gamma}{\partial t} = \nu \left(\frac{\partial^2 \Gamma}{\partial r^2} - \frac{1}{r} \frac{\partial \Gamma}{\partial r} \right). \tag{1}$$

(c) Show that $\eta = r/(\nu t)^{1/2}$ is the only dimensionless combination of r, t and ν and hence find a similarity solution to (1), using the initial condition $\Gamma(r,0) = \Gamma_0 \delta(r)$ in which the vorticity is concentrated at r = 0 and is zero elsewhere, and the boundary condition $\Gamma(0,t) = 0$ in t > 0.

- (d) Find u_{θ} and sketch u_{θ} as a function of r at different times.
- 2. A viscous flow is generated in r > a by a circular porous cylinder of radius a which rotates with constand angular velocity Ω . Suction inside the cylinder generates a radial inflow so that $u_r = -U$ on r = a.
 - (a) Show that

$$u_r = -\frac{Ua}{r}$$
 in $r \ge a_r$

and that

$$r^{2}\frac{d^{2}u_{\theta}}{dr^{2}} + (R+1)r\frac{du_{\theta}}{dr} + (R-1)u_{\theta} = 0,$$
(2)

where $R = Ua/\nu$.

(b) Show that if R < 2 then there is only one solution of (2) that satisfies both the no-slip condition on r = a and that has finite circulation $\Gamma = 2\pi r u_{\theta}$ as $r \to \infty$, but that if R > 2 then there are many such solutions.

- 3. Viscous fluid flows between two rigid boundaries y = 0 and y = h. The lower boundary moves in the x-direction with constant speed U and the upper boundary is at rest. The boundaries are porous and there is an imposed constant vertical flow with velocity -V at each boundary, i.e. fluid is introduced at y = h and removed by suction at y = 0.
 - (a) Show that the resulting steady flow is

$$u(y) = U\left(\frac{e^{-Vy/\nu} - e^{-Vh/\nu}}{1 - e^{-Vh/\nu}}\right), \qquad v = -V.$$

(b) Compute the vorticity, and sketch the horizontal velocity profile u(y) in the cases V = 0 and $Vh/\nu \gg 1$.

(c) Now consider the modified problem where the walls are rigid and stationary (but porous) and in the x-direction the flow is driven by a constant pressure gradient $G = -\partial p / \partial x$.