MA50215 Specialist Reading Course The Dynamics of Fluids

Example Sheet 5

Suffix notation question

1. (a) Recall the definitions

$$e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
 and $\omega_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)$

Show that the vorticity tensor ω_{ij} is related to the vorticity vector $\boldsymbol{\omega}$ by

$$\omega_k = -\epsilon_{kpq}\,\omega_{pq},$$

and hence show that

$$\omega_{ij} = -\frac{1}{2}\epsilon_{ijk}\omega_k.$$

(b)We have defined the rate of energy dissipation by viscosity to be

$$\Phi = 2\mu \int_V e_{ij} e_{ij} \, dV.$$

Show that an equivalent expression is given by

$$\Phi = \mu \int_{V} |\boldsymbol{\omega}|^2 \, dV$$

where $\boldsymbol{\omega}$ is the vorticity vector.

Flows without inertia

2. Fluid flows steadily through a rigid cylindrical tube parallel to the z-axis with velocity

$$\mathbf{u} = (0, 0, w(x, y)),$$

- in Cartersian co-ordinates, under a uniform pressure gradient $G = -\partial p/\partial z$.
- (a) Show that the Navier–Stokes equations are satisfied provided

$$\nabla^2 w = -G/\mu,$$

and state the appropriate boundary condition for the flow.

(b) Suppose that the tube has an elliptical cross-section with semi-major axes a and b. Show that

$$w(x,y) = w_0 \left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}\right).$$

Find w_0 , and also show that the volume flux Q (i.e. the volume of fluid passing any cross-section of the tube in unit time) is given by

$$Q = \frac{\pi a^3 b^3 G}{4(a^2 + b^2)\mu}.$$

3. Viscous fluid is confined in the space a < r < b between two infinitely long concentric coaxial rigid cylinders. The inner cylinder rotates with constant angular velocity Ω about its axis, and the outer cylinder is at rest.

(a) Consider steady solutions of the Navier–Stokes equation in the form $\mathbf{u} = (0, v(r), 0)$ in cylindrical polar co-ordinates r, θ, z). Derive the second-order linear ODE that v(r) must satisfy, and state the relevant boundary conditions.

(b) Look for solutions to this ODE in the form $v(r) \propto r^{\alpha}$ and hence find v(r).

(c) Show that the torque (per unit length in z) that must be applied to the inner cylinder to maintain the motion is

$$T \equiv -\int_{0}^{2\pi} 2\mu \, e_{r\theta} \, a^{2} d\theta = \frac{4\pi\mu\Omega a^{2}b^{2}}{b^{2} - a^{2}}$$

where, for this flow, $e_{r\theta} = \frac{r}{2} \frac{d}{dr} \left(\frac{v}{r}\right)$.

4. Two infinite plates are hinged together at r = 0 and open slowly over time with angular velocities $\pm \Omega$, so that their positions are $\theta = \pm \Omega t$. The space $-\Omega t < \theta < \Omega t$, $0 < r < \infty$ between them is filled with very viscous fluid.

(a) Write down the boundary conditions satisfied by u_r and u_{θ} at $\theta = \pm \Omega t$ and hence write down the boundary conditions for the streamfunction $\psi(r, \theta, t)$.

(b) Discuss the assumptions behind the derivation of the (approximate) slow flow equation

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)^2\psi = 0.$$

Solve this equation by examining possible solutions of the form $\psi = r^{\alpha} f(\theta)$, and derive the solution

$$\psi = -\frac{\Omega r^2}{2} \left(\frac{\sin 2\theta - 2\theta \cos 2\Omega t}{\sin 2\Omega t - 2\Omega t \cos 2\Omega t} \right)$$
(1)

(c) Show that when $2\Omega t = \pi/2$ the (instantaneous) streamlines are rectangular hyperbolas.

(d) Use (1) to make rough order-of-magnitude estimates of the terms $\partial \mathbf{u}/\partial t$, $\mathbf{u} \cdot \nabla \mathbf{u}$ and $\nu \nabla^2 \mathbf{u}$ and hence deduce that the slow flow approximation is only valid if

$$\frac{\Omega r^2}{\nu} \ll 1.$$

Discuss the validity of the solution (1) for small and large r.