Example Sheet 4

Complex potentials

1. (Acheson, page 125). Check (by careful differentiation!) the derivation of the first equality in equation (4.15), i.e. that the complex potential $\Phi = \phi + i\psi$ satisfies

$$\frac{d\Phi}{dz} = \frac{\partial\phi}{\partial x} + \mathrm{i}\frac{\partial\psi}{\partial x}$$

- 2. Compute the potential ϕ and streamfunction ψ for the complex potentials
 - (i) $\Phi = Uze^{-i\alpha}$, (ii) $\Phi = \frac{1}{2}\beta z^2$, (iii) $\Phi = -\frac{i\Gamma}{2\pi}\log(z-z_0)$ (line vortex), (iv) $\Phi = \frac{Q}{2\pi}\log(z-z_0)$ (line source).

In each case sketch the streamlines.

For (iii) show that the circulation $\oint_C \mathbf{u} \cdot \mathbf{dx}$ around *any* simple closed curve *C* containing z_0 is Γ . For (iv) show that the mass flux $\oint_C \mathbf{u} \cdot \mathbf{n} \, ds$ across *any* simple closed curve *C* containing z_0 is *Q*.

- 3. Consider the complex potential $\Phi = Az^{\lambda}$. Sketch streamlines and qualitatively describe the flows in the cases $\lambda = 3, 2, 3/2, 1, 2/3$ and 1/2.
- 4. Consider the complex potential

$$\tilde{\Phi}(z, z_0) = \frac{Q}{2\pi} \left(\log(z - z_0) - \log z \right)$$

for Q > 0, which corresponds to a source at z_0 and a sink at the origin. Sketch streamlines of the flow.

Now let $z_0 = r_0 e^{i\theta_0}$ and let $Q = k/r_0$. Show that

$$\tilde{\Phi}(z,z_0) = \frac{k \mathrm{e}^{\mathrm{i}\theta_0}}{2\pi} \left(\frac{\log(z-z_0) - \log z}{z_0} \right)$$

Compute the potential $\Phi(z) = \lim_{z_0 \to 0} \tilde{\Phi}(z, z_0)$ in which the source and sink merge. Sketch the streamlines of the complex potential $\Phi(z)$. [This flow is called a 'doublet' of strength k.]

5. Construct the complex potential for the flow in $x \ge 0$ produced by a line source at (0, d) near an impermeable wall at x = 0. Hint: by linearity we can consider superpositions of line sources.

Show that the pressure along x = 0 attains a minimum at $y = \pm d$ and increases monotonically to a constant p_{∞} when |y| > d.

6. Describe the flow given by the complex potential $\Phi = U(a^2 + z^2)^{1/2}$. Hints: (i) taking the appropriate branch of the square root we can say that Φ is real on z = iy for -a < y < a; (ii) consider what streamlines must look like near $z \approx \pm ia$, and for |z| large.

March 1, 2010