Example Sheet 2

Streamlines, particle paths

- 1. A steady 2D 'pure straining' flow is given by $u = \alpha x$, $v = -\alpha y$ with $\alpha > 0$ and constant.
 - (i) Find the equation for a general streamline of the flow, and sketch typical streamlines.
 - (ii) At t = 0 the fluid particles on the curve $x^2 + y^2 = a^2$ are marked with dye without disturbing the flow. Find the equation for this material fluid curve for t > 0.
 - (iii) Does the area within the curve change in time, or not? Why?

Streamfunctions and velocity potentials

- 2. A 2D flow is represented by a streamfunction $\psi(x, y)$ with $u = \partial \psi / \partial y$ and $v = -\partial \psi / \partial x$. Show that
 - (i) the streamlines are given by $\psi = \text{const.}$,
 - (ii) $|\mathbf{u}| = |\nabla \psi|$ so that the flow is faster where streamlines are closer together,
 - (iii) the volume flux crossing any curve from a point \mathbf{x}_0 to a point \mathbf{x}_1 is given by $\psi(\mathbf{x}_1) \psi(\mathbf{x}_0)$, *Hint: take* $\mathbf{n} \, ds = (dy, -dx)$
 - (iv) $\psi = \text{const}$ on any *stationary* boundary.
- 3. Verify that the 2D flow given in Cartesian coordinates by

$$u = \frac{y-b}{(x-a)^2 + (y-b)^2}, \quad v = \frac{a-x}{(x-a^2 + (y-b)^2)}$$

is incompressible. Find the streamfunction $\psi(x, y)$ such that $u = \partial \psi / \partial y$ and $v = -\partial \psi / \partial x$. Sketch the streamlines.

- 4. A 2D irrotational flow occupies the half-space y < 0 and is given by the velocity potential $\phi = e^{ky} \sin kx$, for k > 0. Show that the flow is incompressible. Calculate the velocity field $\mathbf{u}(x, y)$ and the streamfunction $\psi(x, y)$. Sketch the streamlines.
- 5. Verify that the 2D flow given in plane polar coordinates (r, θ) by

$$u_r = U\left(1 - \frac{a^2}{r^2}\right)\cos\theta, \qquad u_\theta = -U\left(1 + \frac{a^2}{r^2}\right)\sin\theta$$

is incompressible. Find the streamfunction $\psi(r, \theta)$. Sketch the streamlines and describe the flow. *Recall that:*

$$\nabla \cdot \mathbf{u} = \frac{1}{r} \frac{\partial}{\partial r} (r u_r) + \frac{1}{r} \frac{\partial u_\theta}{\partial \theta}, \quad \text{and} \quad u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u_\theta = -\frac{\partial \psi}{\partial r}$$

- 6. Do the following velocity potentials describe incompressible flows or not?
 - (a) $\phi = C(x^2 + y^2)$ (b) $\phi = C(x^2 - y^2)$

If so, determine the corresponding streamfunction. Sketch the streamlines in all cases, and the lines of constant potential ϕ .

7. Do the following streamfunctions describe irrotational flows or not?

(a)
$$\psi = C(x^2 + y^2)$$

(b) $\psi = C(x^2 - y^2)$

If so, determine the corresponding velocity potentials. Sketch the streamlines in all cases and the lines of constant potential ϕ wherever possible.

8. In spherical polar co-ordinates (r, θ, z) the velocity potential $\phi = -kr^2P_2(\cos\theta)$ represents the axisymmetric flow produced by the confluence of two equal and opposite streams. Sketch the streamline pattern in a plane containing the axis of symmetry.

An impermeable sphere of radius a is now placed in this flow, with its centre at the origin. How is the velocity potential modified? Determine the velocity and pressure over the surface of the sphere.