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4 Flow at high Reynolds number

4.1 Introduction

In this chapter we will consider ‘fast’ steady 2D flows around rigid obstacles, with flow

predominantly in the positive x direction, such that u → u∞ (a constant) as |x| → ∞:

Consider the vorticity equation

−∂(ψ, ω)

∂(x, y)
= ν∇2ω (1)

(where ω = −∇2ψ as usual, ω = (0, 0, ω) and u = (u, v, 0)). Let L be a typical length-

scale, usually introduced via the boundary conditions, and let U be a typical flow velocity.

Then by ‘fast’ we mean the case Re = UL/ν � 1. For low Re the vorticity equation is

dominated by ν∇2ω as we saw in chapter 2; for high Re it is dominated by the left-hand

side.

4.2 The Euler limit

If we simply put ν = 0, i.e. Re = ∞, then we are left with

∂(ψ, ω)

∂(x, y)
= 0

which implies ∇2ψ = F (ψ) for some function F (ψ) = −ω. So the vorticity is constant on

streamlines ψ = constant. If, for example, ω = 0 at ∞ (which is what we usually assume)

then we would have ω = 0 on all streamlines which come in from infinity. For example,

for an aerofoil shape

we would have ω = 0 on every streamline, which implies ω = 0 everywhere so the flow is

irrotational and u = ∇φ, i.e. this must be a potential flow which satisfies the traditional

equation ∇2φ = 0 from incompressibility, together with the standard boundary conditions

u ·n ≡ n ·∇φ = 0 on the surface S and u → u∞, i.e. φ→ u∞x as |x| → ∞. The solution

to this problem is unique, but has the drawback that it generically will not satisfy the

additional requirement of the no-slip condition on S: the tangential velocity on S is not

zero.

The resolution of this problem is that in fact there must be a layer near the surface

S in which viscous effects remain important, however large Re is, and in which layer the

Euler limit is not valid. From previous examples we might guess that the thickness of this

layer δ = O(ν1/2).

For many high Reynolds number flows, in particular those around ‘bluff bodies’ we find

in practice that the flow is neither steady nor closely resembles the potential flow solution



2 Version date: April 14, 2010

away from the obstacle. Often there are regions of closed streamlines and ‘separation’

occurs: new stagnation points appear on the boundary which divide the flow into different

regions:

Then we may find ω 6= 0 in regions of close streamlines (but ω = 0 in regions connected

to infinity still). In general such problems are extremely difficult to solve analytically (or

numerically).

4.3 The Prandtl limit

Let O be a point on the surface S and take local Cartesian axes Ox tangential to the

surface and Oy normal to the surface:

within the boundary layer at small y we expect that variations in ψ will be much more

rapid in y (approximately across streamlines) than in x (approximately along streamlines):
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(recalle that this kind of argument is reminiscent of lubrication theory).

As a result, ∇2ψ ≈ ∂2ψ/∂y2 = ψyy introducing notation where subscripts mean partial

derivatives. Then the vorticity equation (1) becomes

ψyψxyy − ψxψyyy = νψyyyy

⇒ ψyψxy − ψxψyy = νψyyy +G(x) (2)

where G(x) is a constant of integration after integrating w.r.t. y. Equation (2) is

equivalent to writing

u
∂u

∂x
+ v

∂u

∂y
= G(x) + ν

∂2u

∂y2
(3)

which we will refer to as the boundary layer equation. It is the x-component of the Navier–

Stokes equations with ∇2u replaced by ∂2u/∂y2, provided that we identify G(x) with the

pressure term − 1

ρ
∂p
∂x . Therefore, in the boundary-layer approximation we have that the

pressure gradient is necessarily independent of y, meaing that it must be determined by

conditions outside the boundary layer where y � δ (formally, for y → ∞).
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4.4 A formal derivation of the boundary layer equation

A less hand-waving derivation of (2) can be obtained by rescaling y and ψ appropriately

and then taking the limit of small ν. Returning to the vorticity equation (1), let

ŷ = y/ν1/2 and ψ̂ = ψ/ν1/2 (4)

so that ŷ is O(1) when y = O(ν1/2), i.e. small, and so ∂ψ/∂y = ∂ψ̂/∂ŷ remains O(1).

Substituting this into the vorticity equation we obtain

−
(ν1/2)2∂

(

ψ̂,
(

∂2

∂x2 + 1

ν
∂2

∂ŷ2

)

ψ̂
)

ν1/2∂(x, ŷ)
=

(

∂2

∂x2
+

1

ν

∂2

∂ŷ2

)2

ψ̂.

Now we take the formal limit ν → 0 assuming that ψ̂ and ŷ etc remain O(1) in the limit.

We keep only the leading-order terms to find

−∂(ψ̂, ψ̂ŷŷ)

∂(x, ŷ)
= ψ̂ŷŷŷŷ (5)

in which we note that ν has disappeared - this is an indication that we have found the

correct rescaling. Equation (5) can be integratated once straight away to yield the

rescaled version of (2):

ψ̂ŷψ̂xŷŷ − ψ̂xψ̂ŷŷŷ = ψ̂ŷŷŷŷ

⇒ ψ̂ŷψ̂xŷ − ψ̂xψ̂ŷŷ = ψ̂ŷŷŷ + G̃(x).

Remark: In fact the rescaling (4) is the only rescaling that produces a sensible

boundary-layer equation, in the sense that if we consider the more general rescaling

ŷ = y/νq ans ψ̂ = ψ/νq

so that ∂ψ̂/∂ŷ = ∂ψ/∂y remains unchanged, where 0 < q ≤ 1, then any choice of q < 1

2

gives the Euler limit where we just ignore the viscous term, and any q > 1

2
gives the

Stokes equations limit where we ignore the inertial terms. The choice q = 1

2
, which gives

the Prandtl boundary-layer limit, is the only other choice.

4.5 Uniform steady flow past a semi-infinite flat plate

We consider a flow u = (u, 0) (in Cartesian coordinates) in y > 0 above a rigid plate at

y = 0, x geq0, such that u → (u∞, 0) in y � 1. The Euler limit is trivial in this case: we

would like to set u = (u∞, 0) everywhere. Within the boundary layer we need to solve

the boundary layer equation:

u
∂u

∂x
+ v

∂u

∂y
= G(x) + ν

∂2u

∂y2
.

G(x) is determined by conditions outside the boundary layer where obviously ∂p/∂x = 0

since u → (u∞, 0) constant. Hence G(x) = 0 for this flow. Using the Prandtl rescaling
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from the previous section the equation we wish to solve is (5) after integrating once and

setting the constant of integration G(x) to zero:

ψ̂ŷψ̂xŷ − ψ̂xψ̂ŷŷ = ψ̂ŷŷŷ (6)

which does not contain ν, hence ψ̂ can depend only on u∞, x and ŷ. We now investigate

similarity forms of solution to (6). First we write down the dimensions of each of these

quantities:

[ψ̂] =

[

ψ

ν1/2

]

=
(

L2T−1
)1/2

, [u∞] = LT−1

[x] = L [ŷ] =
[ y

ν1/2

]

= T 1/2

Suppose that η = ŷUa
∞
xb is a dimensionless combination of these variables (without loss

of generality we take η to be linear in ŷ since if η is dimensionless, so is ηq for any exponent

q). Then equating powers of L and T we find

L : a+ b = 0

T : −a+ 1

2
= 0

so the unique dimensionless combination is given by a = 1/2, b = −1/2. So we define

η = ŷ
(u∞
x

)1/2

.

Then, since the streamfunction ψ̂ has units LT−1/2 a similarity solution must take the

form

ψ̂ = (u∞x)
1/2f(η) (7)

for some dimensionless function f . We now substitute the similarity ansatz (7) into (6),

computing the various derivatives carefully, noting that

∂η

∂x
= − ŷu

1/2
∞

2x3/2
, and

∂η

∂ŷ
=
(u∞
x

)1/2

to obtain the Blasius Equation

f ′′′ +
1

2
ff ′′ = 0. (8)

This nonlinear third-order ODE must be solved numerically. The appropriate boundary

conditions can be easily seen by considering u = ψy = ψ̂ŷ = u∞f
′(η): we require f ′(η) → 1

as η → ∞ to match to the Euler limit for the inviscid flow outside the boundary layer. In

addition we require f ′(0) = 0 since ŷ = 0 is a rigid boundary, and f(0) = 0 since ŷ = 0 is

an impermeable boundary, and therefore it is a streamline.

Numerically, the easiest way to solve (8) is therefore a shooting method, varying the

initial guess for f ′′(0) to achieve the far-field boundary condition f ′(η) = 1 as η → ∞.

We find the numerical value f ′′(0) = 0.332....

4.6 Remarks on the boundary layer equation, and matching

The boundary layer equation (3)

u
∂u

∂x
+ v

∂u

∂y
= G(x) + ν

∂2u

∂y2

closely resembles the x-component of the Navier–Stokes equation, except for the following

important differences:
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• ∇2u is approximated by ∂2u/∂y2

• the pressure term − 1

ρ
∂p
∂x appears here as a function G(x) of only the streamwise

coordinate. Moreover, from the condition that we have uniform flow U(x) above

the boundary layer, we can deduce, considering the limit ŷ → ∞, that G(x) = U dU
dx

since in this regime we expect the velocity field u to approach (U(x), 0). This

dependence of G(x) on the free stream velocity (U(x), 0) shows how the pressure

term drives the boundary layer dynamics. Sometimes one says that the external

pressure gradient is ‘impressed upon the boundary layer’.

‘Matching’ refers to the asymptotic procedure by which a solution of the boundary

layer equation (i.e. in the Prandtl limit, ν → 0 taken so that y/ν1/2 remains O(1)) is fitted

to a solution of the Euler limit (ν → 0 taken so that y remains O(1)). We demand that

these solutions agree in the sense that the x-velocity computed as one emerges upwards

from the boundary layer the solution obtained agrees with that found by descending

downwards from the free stream. More mathematically:

lim
ŷ→∞

∂ψ̂

∂ŷ
= lim

y→0

∂ψ

∂y
.

We will not say too much more about the matching process here - there is plenty more

than can be said!

The importance of this link between the free stream and the boundary layer dynamics

emerges as we now consider generalisations of the flow past a flat plate. Geometrically

these will correspond to flow past a wedge and flow around a corner. Mathematically

they can be treated very similarly, and we will derive a generalisation of the Blasius equa-

tion (8) that describes the boundary layer structure: this is the Falkner–Skan equation.

4.7 Flow past a wedge

In this section and the one following we present some of the details of the set-up: prin-

cipally we need to recall the form of the potential flow that we expect far away from the

boundaries. These details are very similar in the two cases, in fact. Then, in section 4.9

we turn to the details of the boundary layer flow. The Blasius equation for the velocity

profile in the boundary layer generalises to the Falkner–Skan equation for these cases.

Consider flow in 0 < θ < (2 − β)π past a wedge of angle πβ:

First we need to determine the Euler limit of the flow, i.e. potential flow. It makes

sense to assume potential flow since the flow arrives from far upstream where there is no

mechanism to introduce vorticity into the flow. Then we are left solving ∇2φ = 0, so that

u = urer + uθeθ = ∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ
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and the boundary conditions (impermeability) are

1

r

∂φ

∂θ
= 0 on θ = 0, π(2 − β)/2 by symmetry.

We try a solution (see an earlier example sheet)

φ = Crλ cosλθ

then computing uθ = (1/r)∂φ/∂θ = −Cλrλ−1 sinλθ we require sinλθ = 0 on θ = π(2 −
β)/2 and hence λ = 2/(2−β). This solves the Euler problem for the potential flow outside

the boundary layer.

We observe that on θ = 0 the radial velocity

ur =
∂φ

∂r
= Cλrλ−1

is exactly the x-velocity that we called u infty previously. In this section we call this

u∞ ≡ U(x) = Axm where m = λ− 1 = β/(2 − β) is a positive parameter.

We make two remarks. Firstly, the pressure gradient −G(x) ≡ ∂p/∂x in the x-direction

can be computed from the x component of the Euler equation which reduces to

G(x) ≡ − ∂p

∂x
= U

dU

dx
= mA2x2m−1, (9)

which is positive and therefore the pressure gradient ∂p/∂x is negative. In this case the

potential flow is said to be ‘favourable’ and it shows that the flow continues to accelerate

as it passes around the wedge.

Secondly, the special case β = 0 corresponds to flow past a semi-infinite flat plate:

m = 0 and U = constant so that the Euler flow is just a uniform stream. This is exactly

the problem we looked at in section 4.5.

4.8 Flow around a corner

In this case we are considering the flow in the region 0 < θ < π(1 + β):

As before we have a the solution φ = Crλ cosλθ to ∇2φ = 0 for the Euler flow. The

boundary conditions

uθ = 0 on θ = 0 and θ = π(1 + β)
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imply that λ = 1/(1+β). As before we calculate the radial velocity on θ = 0: ur = Cλrλ−1

so that U(x) = Axm where m = λ−1 = −β/(1+β) is negative for this case. Interestingly

this implies singular behaviour: U(x) → ∞ as x→ 0. We can also compute the pressure

gradient from the Euler equation which gives (9) as before, but now ∂p/∂x is positive

since m < 0. Therefore the flow is decelerating as x increases and the pressure gradient

is said to be ‘adverse’.

4.9 The Falkner–Skan equation

Both the flow past a wedge and the flow around a corner result in U(x) = Axm as the

‘outer boundary condition’ for the boundary layer, i.e. the flow we should obtain in the

limit ŷ → ∞.

We now use dimensional analysis to propose a form for the streamfunction ψ̂(x, ŷ)

that satisfies both the boundary layer equation and the above outer boundary condition;

∂ψ̂/∂ŷ → U(x) = Axm as ŷ → ∞.

First, note that ŷ and ψ̂ have dimensions as follows:

[ŷ] ≡ [y/ν1/2] =
L

(L2T−1)1/2
= T 1/2

[

ψ̂
]

≡ [ψ/ν1/2] =
L2T−1

(L2T−1)1/2
= (L2T−1)1/2

Since, in the Prandtl limit, the viscosity ν disappears from the boundary layer equa-

tion, the only dimensional parameter available to be combined with x and ŷ to form a

dimensionless combination is A. We observe that

[

Axm+1
]

= velocity × length = L2T−1

[

Axm−1
]

= velocity / length = T−1

so the combination

η = ŷ(Axm−1)1/2

is clearly dimensionless (and it is the only distinct such combination). Then we are led

to the following similarity form for ψ̂:

ψ̂(x, ŷ) = (Axm+1)1/2f(η)

which is equivalent to writing

ψ(x, y) = (νAxm+1)1/2f(η), η = y

(

A

νx1−m

)1/2

. (10)

It is important to note that this argument for a similarity form of solution relies

crucially on the form of U(x) involving only a single dimensional parameter. If, for

example, we had U(x) = A1x
m1 + A2x

m2 then we would only be able to propose a

solution in the form

ψ̂(x, ŷ) = (A1x
m1+1)1/2f

(

η,

(

A1

A2

)
1

m1−m2

x

)

which is far less helpful since now f is a function of two arguments and the problem will

not produce an ODE for f .
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We now proceed in the standard fashion, computing the derivatives of (10) with respect

to x and y and substituting them into the boundary layer equation (3). We have that

∂η

∂y
=

(

A

νx1−m

)1/2

,

∂η

∂x
=

1

2
(m− 1)η/x,

u =
∂ψ

∂y
= (νAxm+1)1/2f ′(η)

(

A

νx1−m

)1/2

= Axmf ′(η), (11)

v = −∂ψ
∂x

= −1

2
(νAxm−1)1/2 [(m+ 1)f + (m− 1)ηf ′] .

Note that (11) implies that we will need the boundary condition f ′(η) → 1 and η → ∞.

Similarly we can then compute that

∂u

∂x
= Axm−1

[

mf ′ +
1

2
(m− 1)ηf ′′

]

∂u

∂y
= Axmf ′′(η)

(

A

νx1−m

)1/2

∂2u

∂y2
= Axmf ′′′(η)

A

νx1−m
=
A2

ν
x2m−1f ′′′(η).

Substituting these expressions into (3) and recalling that G(x) ≡ UdU/dx = mA2x2m−1

we find that we can cancel a factor of A2x2m−1 and we obtain

f ′

(

mf ′ +
1

2
(m− 1)ηf ′′

)

− 1

2
[(m+ 1)f + (m− 1)ηf ′] f ′′ = m+ f ′′′.

We observe that the two terms involving factors of (m − 1) cancel and we are left with

the ODE

f ′′′ +
1

2
(m+ 1)ff ′′ +m(1 − (f ′)2) = 0 (12)

which is the Falkner–Skan equation. It clearly reduces to (8) in the case m = 0. Three

boundary conditions are required, and the natural boundary conditions are to require

f = f ′ = 0 on η = 0 so that there is no slip at the boundary x = 0. The third boundary

condition, as we have already seen, is f ′(η) → 1 as η → ∞ to match to the outer boundary

condition where the flow velocity is U(x).
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4.9.1 m = 0: flat plate

As already remarked, the case m = 0 corresponds to the Blasius boundary layer. In this

case the similarity variable is just η = y(U/(νx))1/2 and the boundary layer ansatz is

valid away from the tip of the flat plate at x = 0, see figure (a) below:

(a) (b) (c)

(a) Boundary layer approximations are invalid near x = 0. (b) Sketch of the solution (obtained

numerically) to the Blasius equation. (c) Velocity profile and definition of η1.

We can define a boundary layer thickness δ(x) by looking for the value of y at which the

velocity u reaches a fixed proportion of the free stream value U . For example, let η1 be

the value at which u/U ≡ f ′(η1) = 0.99. Then we have

δ(x) = η1

(νx

U

)1/2

and we see that the thickness of the boundary layer increases parabolically with down-

stream distance x as sketched in (a) above.

4.9.2 m = 1: stagnation point flow

This case was discussed previously, in chapter 3 (section 3.4).

The free stream flow is given by U = αx and the boundary layer equation is in fact exact

in this case, so the solution of the boundary layer equation gives an exact solution of the

Navier–Stokes equations.

4.9.3 0 < m < 1: flow past a wedge

The wedge has interior angle πβ where m = β/(2− β), or, equivalently, β = 2m/(1+m).

Then the similarity variable

η = y

(

A

νx1−m

)1/2
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so the boundary layer thickness, defined as in subsection 4.9.1, is given by

δ(x) = η1

(

νx1−m

A

)1/2

(13)

i.e. its width grows more slowly than that parabolic profile for the flat plate. We conclude

that the acceleration of the free stream U(x) inhibits the growth of the boundary layer:

4.9.4 mc < m < 0: flow around a slight corner - I

If m is negative but greater than mc ≈ −0.09 then (numerically) solutions of the Falkner–

Skan equation exist for which 0 < f ′(η) < 1 for all 0 < η <∞, i.e. f ′(η) remains positive

and so the flow is always in the positive x direction:

One slightly problematic issue with our solution method is that the section of rigid bound-

ary in x < 0 we did assume to be free slip - we assumed that there was no boundary layer

here and that the boundary layer only started at x = 0. Note that mc = −0.09 corre-

sponds to πβ ≈ 18◦.

Since the boundary layer thickness δ(x) ∼ (x1−m)1/2 and m < 0 we see that the

boundary layer grows more rapidly with increasing x than in the parabolic case: this is

due to the deceleration of the free stream U(x) and so this deceleration promotes the

growth of the boundary layer.

4.9.5 m < mc: flow around a larger corner - II

If m < mc, i.e. πβ greater than around 18◦, then the boundary layer profiles obtained

by numerical solution of the Falkner–Skan equation all have the property that f ′′(0) < 0,

i.e. f is negative over a range of values of η. This indicates that in fact the flow direction

is reversed near the wall:
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This strange flow configuration suggests than in real flows one would in fact observe the

phenomenon of flow separation in which a new stagnation point appears on the rigid

boundary, dividing the fluid into two regions separated by the streamline that emerges

from the stagnation point. Regions of closed streamlines may well result from this, as in

this sketch:

4.10 Flow in a diverging channel

We conclude this chapter with two sections highlighting that the existence and uniqueness

of solutions to the boundary layer equation should not be taken for granted. Caution is

necessary due to the nonlinear nature of the equation.

In this section we consider the flow produced by injecting fluid into the interior of a

wedge of angle β from its point:

This is the case m = −1 where the Euler limit might reasonably be thought to be the

radial flow ur = Q/(βr) due to a line source of strength Q at r0. Taking x to be a

coordinate along the lower plane we then have U(x) = A/x where A = Q/β and so the

pressure term driving the outer flow is

U
dU

dx
= −A

2

x3

indicating a very rapid deceleration of the flow away from x = 0 (a rather singular point!).
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The Falkner–Skan equation for m = −1 is

f ′′′ + (f ′)2 − 1 = 0

⇒ f ′′f ′′′ + f ′′(f ′)2 − f ′′ = 0

⇒ 1

2
(f ′′)2 +

1

3
(f ′)3 − f ′ = const = −2

3

since f ′(η) → 1 as η → ∞. Hence, evaluating this last equation at η = 0 we have

1

2
[f ′′(0)]2 = −2

3

because f ′(0) = 0 (the no-slip boundary condition). The LHS of this equation is clearly

positive and the RHS is negative which is a contradiction. So no solution of the bound-

ary layer equation is possible in this case. We conclude that the assumed Euler

flow for the outer solution to the problem cannot be correct: the associated deceleration

of the free stream U(x) = A/x is too rapid to accomodate a boundary layer.

The typical flow structure found in Navier–Stokes for thie problem does not correspond

to our supposed ’free stream + boundary layer’ approach:

the number of oscillations in the radial velocity profile increases as Re→ ∞ and viscous

effects remain important throughout the domain rather than being confined to near the

boundaries.

4.11 Flow in a converging channel

Finally we consider the effect of substituting the source Q by a sink −Q < 0 in this

problem of flow in the interior of a wedge.

Since Q > 0 we use it to define the similarity variable and streamfunction as before:

η =

(

Q

νβ

)1/2
y

x
, ψ =

(

νQ

β

)1/2

f(η)

so we obtain the Falkner–Skan equation with m = −1 as previously:

f ′′′ + (f ′)2 − 1 = 0

but now the outer boundary condition is f ′(η) → −1 as η → ∞. The other boundary

conditions are of course unchanged: f(0) = f ′(0) = 0. We multiply by f ′′ as previously
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and integrate, using the outer boundary condition to find the constant of integration as

before. Writing F (η) = f ′(η) we then have

1

2
(F ′)2 +

1

3
F 3 − F = +

2

3

⇒ (F ′)2 =
2

3
(1 + F )2(2 − F )

which, happily and unexpectedly, can be integrated again as follows:

I ≡
∫

dF

(1 + F )
√

2 − F
= ±

√

2

3

∫

dη = ±
√

2

3
η +mathrmconst.

Now let 2 − F = 3 tanh2 θ so that 1 + F = 3(1 − tanh2 θ) = 3sech2θ. Then dF/dθ =

−6 tanh θsech2θ so that

I =

∫

− 6

3
√

3
dθ = − 2√

3
θ

so

F (η) = 2 − 3 tanh2

(

η√
2

+ C

)

and the boundary condition F (0) ≡ f ′(0) = 0 implies that the constant C satisfies

tanhC = ±
√

2/3, i.e. C = ±3.04... and there are two possible solutions for the boundary

layer. The intuitively more likely solution corresponds to C = +3.04... and gives a velocity

profile that is monotonic in the boundary layer and looks like

The case C = −3.04... has reversed flow in the boundary layer.

We conclude that life, or at any rate fluid mechanics, is full of surprises.


