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3 Generation and diffusion of vorticity

3.1 The vorticity equation

We start from Navier–Stokes:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (1)

where we have not included a term describing a body force, since the usual ones that we

consider will, if present, be conservative (i.e. F = ∇V ) and therefore can be absorbed

into the pressure term.

Recall the vector identity (one of those listed in the vector calculus appendix in the

book by Acheson)

u× ω ≡ 1

2
∇(u2) − u · ∇u

which implies

∂u

∂t
= u × ω − 1

ρ
∇

(

p+
1

2
ρu2

)

+ ν∇2u.

Then, taking the curl of this equation (and noting that ∇2 commutes with taking the

curl) we obtain the vorticity equation:

∂ω

∂t
= ∇× (u × ω) + ν∇2

ω. (2)

A second very useful vector identity (also in the appendix to Acheson) is

∇× (u× ω) ≡ ω · ∇u− u · ∇ω + u(∇ · ω) − ω(∇ · u).

Clearly the last two terms on the RHS are zero, from the definition of ω and by incom-

pressibility. So we have the equivalent forms of the vorticity equation

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2

ω

or
Dω

Dt
= ω · ∇u + ν∇2

ω

Remarks:

• when ν = 0, vortex lines are ‘frozen into’ the fluid and the circulation κ is

conserved for every material circuit (Kelvin’s theorem, see earlier):

κ =

∮

C

u · dx =

∫

S

ω · n dS

is the flux of vorticity through the surface S.

• the term u · ∇ω represents ‘advection of vorticity by the velocity field’

• the term ω · ∇u represents ‘rotation and stretching of vortex lines’, although this

term really cannot be separated from the u · ∇ω term since they arrive together.
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Two-dimensional flow

In the case of 2D flow the vorticity ω reduces to a scalar quantity, closely related to the

streamfunction ψ(x, y, t), since

u = (∂ψ/∂y,−∂ψ/∂x, 0)

⇒ ω = (0, 0,−∇2ψ) = (0, 0, ω)

defining the scalar ω to be the only non-zero (i.e. third) component of ω. For 2D flow we

can compute that

ω · ∇u = −∇2ψ
∂

∂z
u = 0

and also that

u · ∇ω = (0, 0,u · ∇ω)

so the vorticity equation simplifies to the scalar equation

Dω

Dt
≡ ∂ω

∂t
+ u · ∇ω = ν∇2ω

where the u ·∇ω term represents advection and the term on the RHS represents diffusion

of vorticity. Therefore, this kind of PDE is called an ‘advection–diffusion’ equation. In

this case the PDE is inherently nonlinear since u and ω are related.

One further manipulation is useful in 2D:

u · ∇ω =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
≡ −∂(ψ, ω)

∂(x, y)
= −J(ψ, ω)

which is a Jacobian quantity: these are often written even more compactly as J(ψ, ω)

where the order of the two arguments clearly matters. So a final way of writing the

vorticity equation (in 2D) is

∂ω

∂t
− ∂(ψ, ω)

∂(x, y)
= ν∇2ω. (3)

The inviscid limit ν = 0

If ν = 0 and the flow is steady, i.e. ∂ω/∂t = 0, then (3) reduces to

∂(ψ, ω)

∂(x, y)
= 0

which implies that there is a (possibly nonlinear) functional relationship ω = F (ψ) be-

tween ω and ψ. Then ψ satisfies the equation ∇2ψ = −F (ψ).

In particular, ψ being constant implies ω is constant, so along streamlines we must

have ω constant.

3.2 An impulsively started plate - the ‘Rayleigh problem’

Vorticity is often generated at rigid boundaries. To illustrate the generation and diffusion

of vorticity in the simplest possible case, we consider a stationary fluid with a boundary

that is impulsively instantaneously accelerated from rest to a constant velocity U =

(U, 0, 0):
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More precisely, suppose that for t < 0 the fluid and the plate at y = 0 are at rest. For

t ≥ 0 the plate moves with velocity U = (U, 0, 0). We compute the velocity field u for

y > 0 and t > 0.

Physical intution suggests that the flow is only in the x-direction and is independent

of x: u = (u(y, t), 0, 0) with boundary conditions

u(0, t) = 0 for t < 0, and

u(0, t) = U for t ≥ 0,

u(y, t) → 0 as y → ∞, for all t

and initial condition u(y, 0) = 0 in y > 0.

Since we anticipate that streamlines are y = constant and therefore are straight lines,

we suppose that the inertia term is identically zero:

u · ∇u = u
∂

∂x
u(y, t) = 0

so the Navier–Stokes equation (1), in components, becomes

∂u

∂t
= −

1

ρ

∂p

∂x
+ ν∇2u,

0 = −1

ρ

∂p

∂y
,

0 = −1

ρ

∂p

∂z
.

So we must have p = p(x, t), then, since p → ∂0 (a constant) as y → ∞, in fact it must

be the case that p = p0 for all x and t. So we are left with

∂u

∂t
= ν

∂2u

∂y2
(4)

which is the usual linear diffusion equation. By linearity, u(y, t) must depend linearly

on the driving velocity U , i.e. u(y, t) = Uf(y, t; ν) where the function f must be dimen-

sionless. It follows that f is a function of dimensionless combinations of the remaining

variables in the problem: y, t and ν. In terms of units we have [y] = L, [t] = T and

[ν] = L2T−1 so there is only one dimensionless combination of these three variables:

y/
√
νt. We define the new dimensionless variable η by

η =
y

2
√
νt

where the factor 2 is for later convenience. Thus η is another example of a similarity

variable. Let u(y, t) = Uf(η). Then

∂η

∂t
= −1

2

η

t
and

∂η

∂y
=

1

2
√
νt
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so we have

∂u

∂t
= Uf ′(η)

(

−1

2

η

t

)

and
∂2u

∂y2
= Uf ′′(η)

1

4νt
.

Substituting these into (4) we obtain

f ′′ + 2ηf ′ = 0

which is an ODE that can be integrated once after dividing by f ′ to obtain

f ′ = C exp
(

−η2
)

which implies

f(η) = C

∫ η

0

e−ξ2

dξ +D

where C and D are constants of integration. From the boundary and initial conditions

we have that (being careful with limits)

• At any fixed t > 0, on y = 0 we have u(0, t) = U which implies at η = 0 we have

f = 1, hence D = 1.

• At t = 0, at any fixed y > 0 we have u(y, 0) = 0 which implies that limη→∞ f(η) = 0,

so

C

∫

∞

0

e−ξ2

dξ = −1

hence C = −2/
√
π.

So the solution is

f(η) = 1 − erf(η) where erf(η) =
2√
π

∫ η

0

e−ξ2

dξ

erf(η) is the ‘error function’ - the incomplete integral of the Gaussian function. Often

1 − erf(η) is called erfc(η), the complementary error function:

The function erfc(η) has a characteristic shape, and the value of η = η∗ at which erfc(η) =
1
2 is η∗ ≈ 0.48. This gives a characteristic length for the diffusion process: y = 2

√
νtη∗ ≈

0.96
√
νt.

The velocity profile therefore evolves with increasing time by smoothing out the im-

posed step change in the velocity on the boundary:
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and at a given time t the velocity of the fluid has reached U/2 at a distance y = 2
√
νtη∗

from the plate.

So far we have not discussed the vorticity of the flow. A simple calculation gives

ω = ∇× u =

(

0, 0,−∂u
∂y

)

so let us define the usual scalar vorticity

ω(y, t) = −∂u/∂y = −Uf
′(η)

2
√
νt

=
U√
πνt

e−y2/(4νt).

This expression shows that the vorticity distribution is initially δ-like and concentrated

on the boundary y = 0 but then evolves into an increasingly flat Gaussian profile: it is

clear that the vorticity enters the flow ‘through’ the boundary.

A further short computation of interest is to compute the total vorticity in the flow,

for fixed t > 0:

∫

∞

0

ω dy =

∫

∞

0

−∂u
∂y

dy = [u]∞0 = U

So the vorticity of the flow changes discontinuously at t = 0 and then diffuses into the in-

terior of the flow. The characteristic ‘thickness’ of the viscous boundary layer so generated

is δ(t) ≈ 0.96
√
νt.

3.3 The suction boundary layer

In this section we solve a steady-state problem for which a boundary layer is clearly

generated and maintained close to a boundary.

We consider flow over a porous boundary through which fluid flows by suction:

Suppose that we extract fluid at a constant velocity (0,−V, 0) on the boundary y = 0,

and that u ∼ (U, 0, 0) at y = ∞. Again, the problem set-up implies that a solution exists

that does not depend on x, so we look for a steady solution u = (u(y), v(y), 0).
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Incompressibility ∇ · u = 0 implies that dv/dy = 0 throughout the domain, hence

v(y) = constant = −V

(since v(0) = −V ). Now we consider (steady) Navier–Stokes:

u · ∇u = −1

ρ
∇p+ ν∇2u

and the inertial term is

u · ∇u =

(

u
∂

∂x
+ v

∂

∂y

)

(u(y),−V, 0) =

(

−V du
dy
, 0, 0

)

which gives, for the components of the Navier–Stokes equation:

−V
du

dy
= −

1

ρ

∂p

∂x
+ ν

d2u

dy2

0 = −1

ρ

∂p

∂y

0 = −1

ρ

∂p

∂z

So p = p(x) = p0 constant by the same argument as in the previous subsection: the

pressure is independent of y and constant at y = ∞.

From the x-component of Navier–Stokes we have, integrating once,

−V u = ν
du

dy
+ constant = −V U at y = ∞

since u = U at y = ∞. Hence

u(y) = U
(

1 − e−V y/ν
)

which satisfies the boundary conditions u(0) = 0 and u(∞) = U .

Hence −ω(y) = (UV/ν) exp(−V y/ν):

The interpretation is then that vorticity is generated at the boundary y = 0 and tries

to diffuse away, but it is prevented from doing so by the applied suction. Notice the

appearance of the dimensionless group V y/ν in the solution.

3.4 Stagnation point boundary layer

In this subsection we return to consideration of the flow near a stagnation point at x =

y = 0, for which the corresponding inviscid flow is straightforward: we would have the

streamfunction ψ = αxy in suitable coordinates (suppose α > 0), with the velocity field

u =
∂ψ

∂y
= αx, and v = −∂ψ

∂x
= −αy
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Now we consider the case of a viscous fluid with a rigid boundary at y = 0, such that the

flow far from the boundary is the inviscid one we thought of earlier: ψ ∼ αxy as y → ∞.

Can we propose a solution to this modified problem in the form

ψ(x, y) = αxf(y)?

Actually, no, on dimensional grounds - we would be forced back into the inviscid solution.

The way around this is to introduce a new parameter which incorporates viscosity ν. Let

us first consider the dimensions of the quantities we have introduced so far:

[ν] = L2T−1, [α] = [u/x] = T−1, [x] = [y] = L

so we can define the new lengthscale

δ =
( ν

α

)1/2

(5)

which does incorporate viscosity. So, the combination η = y/δ is dimensionless, and a

modification of the inviscid streamfunction which is dimensionally correct is to write

ψ = αxδF (η)

where F is now a dimensionless function of a dimensionless argument. We can use this

ansatz to investigate whether solutions of the vorticity equation of this form as possible.

First we compute the velocity components

u =
∂ψ

∂y
= αxδF ′(η)

1

δ
= αxF ′(η)

v = −∂ψ
∂x

= −αδF (η)

from the form of u and v we deduce the boundary conditions for F (η): we need u → αx

as η → ∞ (i.e. y → ∞), hence

F ′(η) → 1 as η → ∞. (6)

We also require u = v = 0 on y = 0, which implies

F (0) = F ′(0) = 0. (7)

Returning to the velocity components, we now compute the vorticity

ω = (0, 0,−∇2ψ) = (0, 0, ω)

where

ω = −αxδ
δ2

F ′′(η)
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so the steady (scalar) vorticity equation u · ∇ω = ν∇2ω becomes

(

αxF ′(η)
∂

∂x
− αδF (η)

∂

∂y

)

(

−αx
δ
F ′′(η)

)

= ν

(

−αx
δ

1

δ2
F ′′′′(η)

)

⇒ −F ′F ′′ + FF ′′′ = −F ′′′′ (8)

after cancellations. This is a nonlinear ODE for F (η). It can be integrated once, adding

and subtracting −F ′F ′′ + F ′F ′′ to the LHS of (8). We then have

(F ′)2 − FF ′′ − F ′′′ = constant

and this constant is 1 by applying boundary condition (6). No analytical methods are

available to integrate this third-order nonlinear ODE further, so we resort to numerical

solutions which satisfy the remaining boundary conditions (7) and which therefore look

roughly like

The interpretation is that vorticity, created at y = 0 via the rigid boundary, diffuses away

from the boundary into y > 0 but it is advected back towards y = 0 by the y-component

∼ −αy of the velocity field.

3.5 The bathtub vortex

Our last example again illustrates the existence of steady states in which the diffusion and

advection of vorticity are balanced against each other. In the bathtub vortex we consider

a superposition of a uniform strain flow

u1 = (−αx,−αy, 2αz)

(where we take α > 0), in Cartesian coordinates (ex, ey, ez). This flow is axisymmetric

and incompressible. In cylindrical polar coordinates (r, θ, z) we have

u1 = (−αr, 0, 2αz) (9)

with respect to unit vectors (er, eθ, ez). Note that this flow is irrotational: ∇× u1 = 0.

Now suppose that we superpose a swirling velocity field u2 = (0, v(r), 0) so that the

total velocity field u = u1 + u2. Then the vorticity ω is

ω = ∇× (u1 + u2)

= ∇× u2

=
1

r

∣

∣

∣

∣

∣

∣

∣

er reθ ez
∂
∂r

∂
∂θ

∂
∂z

0 rv(r) 0

∣

∣

∣

∣

∣

∣

∣

=
1

r

∂

∂r
(rv(r))ez ≡ ω(r)ez
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showing that the vorticity is everywhere in the z-direction.

Now we consider what the form of v(r) must be in order for this flow field to be a

steady solution of the vorticity equation

0 = ∇× (u× ω) + ν∇2
ω

where u = (−αr, v(r), 2αz), and ω = (0, 0, ω(r)) in (er, eθ, ez) coordinates. Then

(u1 + u2) × ω = (vω, αrω, 0)

⇒ ∇× ((u1 + u2) × ω) =
1

r

∣

∣

∣

∣

∣

∣

∣

er reθ ez
∂
∂r

∂
∂θ

∂
∂z

vω αr2ω 0

∣

∣

∣

∣

∣

∣

∣

=
1

r

∂

∂r
(αr2ω)ez.

Therefore the z-component of the vorticity equation is

0 =
1

r

∂

∂r
(αr2ω) +

ν

r

∂

∂r

(

r
∂ω

∂r

)

which integrates once immediately to give

αr2ω + νr
∂ω

∂r
= C.

for some constant of integration C. Natural boundary conditions to apply in this case

are that the vorticity field is localised around the orgin, i.e. ω → 0 and ∂ω/∂r → 0 as

r → ∞. This implies C = 0, so

dω

dr
+
α

ν
rω = 0

which can be solved by separation of variables:

logω = −αr
2

2ν
+ constant

⇒ ω(r) = ω0e
−αr2/(2ν)

From the initial axisymmetric strain flow (9) we see that [α] = T−1 so [ν/α] = L2 and

hence we can define a lengthscale δ by δ2 = 2ν/α to write ω(r) in the form

ω(r) = ω0e
−(r/δ)2

which shows that the distribution of vorticity is Gaussian, with a characteristic width

δ which is the unique lengthscale that can be formed as a ratio of the strengths of the

outward diffusion of vorticity and the inward advection by the strain flow. We finish by

computing the swirling velocity field v(r) and the total circulation of the vortex.

Since

ω(r) =
1

r

∂

∂r
(rv(r))

⇒ rv(r) =

∫ r

0

ω0r̃e
−(r̃/δ)2 dr̃

⇒ v(r) =
ω0ν

αr

(

1 − e−αr2/(2ν)
)

.

Equivalently we can write this as

v(r) =
Γ

2πr

(

1 − e−αr2/(2ν)
)

.



10 Version date: March 22, 2010

where Γ = 2πω0ν/α is the total circulation of the vortex: check that

Γ =

∫

∞

0

ω(r)2πr dr.

Note that for small r we have v(r) ≈ 1
2ω0r and for large r we have v(r) ≈ Γ/(2πr).

As already mentioned, the interpretation is the balance between outward diffusion of

vorticity and inward advection.

Remarks:

1. Although the velocity v(r) goes to zero at the centre of the vortex, the pressure

attains its minimum there: consider the er component of the Navier–Stokes

equation:

u · ∇u = −
1

ρ
∇p+ other terms

and

u · ∇u = −v
2

r
er

which is the usual ‘centrifugal force’ term familiar from rigid body motion in a

circle. So

∂p

∂r
=

1

r
ρv2 + other terms

⇒ p = p0 +

∫ r

0

1

r
ρv2 dr

⇒ p(r) = p0 + ρ
ω2

0

8
r2 +O(r4)

for small r.

2. As a result of the low pressure at the vortex centre, experimentally, vorticies in

liquids can be visualised by introducing small air bubbles which therefore migrate

towards the centres of the vortices (particles denser than the liquid would be

‘thrown outwards’).


