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We link continuum models of reaction–diffusion systems that exhibit
diffusion-driven instability to constraints on the particle-scale interactions
underpinning this instability. While innumerable biological, chemical and
physical patterns have been studied through the lens of Alan Turing’s
reaction–diffusion pattern-forming mechanism, the connections between
models of pattern formation and the nature of the particle interactions
generating them have been relatively understudied in comparison with the
substantial efforts that have been focused on understanding proposed con-
tinuum systems. To derive the necessary reactant combinations for the
most parsimonious reaction schemes, we analyse the emergent continuum
models in terms of possible generating elementary reaction schemes. This
analysis results in the complete list of such schemes containing the fewest
reactions; these are the simplest possible hypothetical mass-action models
for a pattern-forming system of two interacting species.
1. Introduction
The spontaneous emergence of structure is a widely recognized and central
aspect of spatially distributed complex systems, relevant to fields from cos-
mology [1] to polymer physics [2,3] to biology [4,5]. Turing’s strikingly
simple model for spontaneous pattern formation in a system of two chemical
species via the interplay between reaction and diffusion continues to have a
defining influence on the field [6–8]. Natural patterns that have been analysed
using Turing’s instability include digit formation in vertebrates [9,10],
fingerprint formation [11], animal skin pigmentation patterning [12,13], non-
equilibrium chemical dynamics [14,15] and vegetation distributions [16].
However, very few of the popular and widely used canonical mathematical
pattern-forming models, such as those associated with Prigogine & Lefever
[17], Schnakenberg [18] and Gray & Scott [19], correspond directly (without
invoking additional assumptions) to a set of chemical reactions involving indi-
vidual particles. Such model equations therefore cannot immediately be used to
generate direct illustrations of particle-scale chemical reaction schemes that
correspond to continuum models undergoing a Turing instability. To remedy
this situation, here we derive, for the first time, the complete list of the most
parsimonious reaction schemes which do this (i.e. that lead to continuum
models which are able to exhibit Turing patterns).

Although there are 31 qualitatively different individual reactions up to
second order (figure 1), and therefore several thousand possible combinations
of sets of three or four of them, we show that out of this plethora of possibilities
there are in fact only 25 such qualitatively distinct minimal reaction schemes.
Intriguingly, we find that two-species Turing patterns in which the concentration
peaks are spatially in-phase can result from sets of only three reactions, while, in
contrast, four reactions are required to generate patterns in which the concen-
tration peaks are in spatial anti-phase. This reveals a new fundamental
difference between these two cases, which hitherto have been presented as
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Figure 1. Classification of elementary reactions for two species into 31 qualitatively different kinds. Rows and columns separate reactions into those that increase,
preserve, or decrease the number of particles of species U and V respectively. Interactions that do not change either U or V cannot be considered to be meaningful
reactions; hence in the central grid element we list the various constraints on the integer numbers of particles produced (i.e. the stoichiometric coefficients) which
are designated n, n0, n00, m, m0, m00 and ℓ. Reactions have been coloured according to the number of reacting particles (the reaction ‘order’) blue, zeroth order;
green, first order; yellow, second order.
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equally complex alternatives. Our new catalogue establishes,
in terms of chemical reactions, the precise conditions under
which Turing patterns form, links particle-scale and conti-
nuum models directly, explains the minimal ingredients
required and informs the design of sensible stochastic simu-
lations for pattern formation. As a whole, it provides a new
level of fundamental clarity and insight into pattern formation
that applies across scientific domains.

From a historical perspective, our motivation in ground-
ing Turing instabilities in elementary reactions follows
in Turing’s own footsteps [6,20,21]. By ‘elementary’, we
mean that we consider only zeroth-, first- or second-order
(pseudo-)reactions [22], where we equate the order of the
reaction with the number of reacting particles. For example,
the zeroth-order reaction ; ! nU should be interpreted as
the supply of n particles of reagent U from a large reservoir
where the supply rate is constant. Our focus on elementary
reactions excludes mass-action laws that contain cubic or
higher-order nonlinearities, or non-polynomial terms: cubic
terms would naturally be interpreted as trimolecular inter-
actions, while non-polynomial terms in reaction equations
can arise from attempting to model systems containing
ad hoc reaction rates, catalysts, saturation effects or the
formation of complexes (e.g. through dimerization or trimer-
ization) that equilibrate on much faster time scales; these can
often be derived under limiting assumptions from larger sys-
tems with polynomial reaction terms of the kind we consider,
but they are not in themselves minimal examples by our defi-
nition. Also following Turing, we consider diffusion to
be isotropic, reaction kinetics to be well described by mass-
action laws (for example, omitting finite-size effects [23]),
and reactions to involve only two chemical species. Given
these natural simplifying assumptions, we achieve a complete
enumeration of the minimal models for Turing patterns. This
catalogue reveals the fundamental necessary and sufficient
ingredients for Turing instability, at the particle scale, and
thereby provides new insights into pattern formation via
reaction–diffusion mechanisms.
In §2, we introduce the general form of partial differential
equation (PDE) reaction–diffusion model which will be our
analytical starting point along with its relation to underlying
particle interactions, and we present the classical conditions
for such a PDE model to exhibit Turing instability. In §3,
we leverage the Turing instability conditions to derive
simple stoichiometric constraints on the types of reactions
present in the underlying reaction scheme, such that the cor-
responding PDE model can exhibit Turing instability for
some choice of rate- and diffusivity-parameter values. In §4,
we complete the analysis for reaction schemes of few reac-
tions exhibiting one particular type of Turing instability: we
derive sufficient stoichiometric constraints on the reaction
scheme such that the corresponding PDEs exhibit Turing
instability for appropriate choices of parameter values, and
we present a classification of all such schemes up to a quali-
tative equivalence which is described in §2. We also discuss
the reduction, in terms of the linearized non-dimensionalized
dynamics, of all of these classes to a single regime diagram,
which is shown in figure 5.
2. Model set-up and definitions
We consider two populations of particles, labelled U and V,
which react according to reactions {Ri}

N
i¼1 each described

symbolically in the standard way,

Ri: piU þ qiV �!ri niU þmiV, ð2:1Þ
where ri > 0 is the reaction rate parameter, pi, qi are the (non-
negative) integer stoichiometric reactant coefficients, and ni,
mi are the (non-negative) integer stoichiometric product coef-
ficients. We define the net stoichiometric effects si1 :¼ ni � pi,
si2 :¼ mi � qi, and note that si1≥−pi and si2≥−qi. Such a set
of reactions {Ri}

N
i¼1 constitutes a reaction scheme, and the com-

bined effects of the individual reactions and diffusion yields a
PDE model for the space- and time-dependent concentrations
u(x, t) and v(x, t). Supposing that reactions take place locally
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in space, between large numbers of particles of U and V in a
manner such that mass-action laws apply, and that diffusion
is isotropic, the generic form that such PDEs take is

@tu ¼ Dur2uþ F(u, v) ð2:2aÞ
and

@tv ¼ Dvr2vþ G(u, v), ð2:2bÞ
where

F(u, v) ¼
X
i

risi1upivqi , G(u, v) ¼
X
i

risi2upivqi :

Confining attention to elementary (i.e. at most bimolecu-
lar) reactions, we restrict pi + qi≤ 2, and thus the reaction
terms take the form of quadratic polynomials

F(u, v) ¼ a1 þ a2uþ a3vþ a4u2 þ a5uvþ a6v2 ð2:3aÞ
and

G(u, v) ¼ b1 þ b2uþ b3vþ b4u2 þ b5uvþ b6v2, ð2:3bÞ
which are subject to a number of constraints, both implicit and
explicit. The major implicit constraint is that for the model to
be well-posed, non-negative initial conditions must always
yield non-negative concentrations at later times. Explicitly, of
the 12 coefficients {aj, bj} six must be non-negative: a1, a3,
a6 > 0 and b1, b2, b4 > 0 due to the constraints (respectively) si1
≥−pi and si2≥−qi for each reaction Ri.

To the authors’ knowledge, there appear to be only two
published models of Turing instability that use a mass-
action reaction scheme having only quadratic nonlinearities
[24,25]. The first of these (by Levin and Segel [24]) is essen-
tially an extension of the well-known Lotka–Volterra system
and corresponds to the coefficient choices a2, a4, b5 > 0 and
a5, b6 < 0, with all other coefficients set to zero. The second
(by Woolley, Krause and Gaffney [25]) is given as one of
two sets of PDEs for which a pattern emerges in a specific
subset of parameter space.

The Turing instability conditions, as we shall consider
them, for the PDE system (2.2)–(2.3) are well known and
we summarize them as follows:

1. The system supports a positive spatially uniform steady
state: there exist positive concentrations u* > 0, v* > 0
satisfying F(u*, v*) =G(u*, v*) = 0.

2. The uniform steady state is linearly stable to spatially
uniform perturbations: under the assumption of spatial
uniformity, the Jacobian evaluated at the steady state,

J� ¼ J�11 J�12
J�21 J�22

� �
:¼ @uF @vF

@uG @vG

� �����
(u,v)¼(u� ,v�)

,

must satisfy the Routh–Hurwitz linear stability criteria
tr(J*) < 0 and det(J*) > 0

J�11 þ J�22 , 0 ð2:4Þ

and

J�11J
�
22 � J�12J

�
21 . 0: ð2:5Þ

3. The uniform steady state is linearly unstable to spatially
non-uniform perturbations. Including diffusion and
expanding a spatial perturbation (~u, ~v) in the eigenbasis
of the diffusion operator, in one spatial dimension this
requires that the wavenumber-dependent Jacobian,

~J(k) :¼ J� � k2
Du 0
0 Dv

� �
,

must satisfy det(~J(k)) , 0 for some k> 0, (since tr(~J(k)) �
tr(J�) , 0). Written out explicitly, this inequality takes
the form

DuDvk4 � (J�11Dv þ J�22Du)k2 þ (J�11J
�
22 � J�12J

�
21) , 0

for some k . 0:
ð2:6Þ

We note that in higher spatial dimensions, k2 is replaced
by |k|2 where k is the wavevector of the plane wave
perturbation to the spatially uniform state.

A necessary condition for inequality (2.6) to be satisfied is
that J�11Dv þ J�22Du . 0, from which—in conjunction with
the trace condition (2.4)—we deduce that exactly one of J�11
and J�22 must be positive and the other negative. Thus, we
recast condition (2.5) as the stricter necessary condition

J�12J
�
21 , J�11J

�
22 , 0, ð2:7Þ

from which we infer that J�12 and J�21 have different signs.
In particular, inequality (2.7) implies the established result
[5] for two-component Turing systems that the signs of the
entries of J* must match one of the following patterns:

J� � þ �
þ �

� �
, þ þ

� �
� �

, � þ
� þ

� �
or � �

þ þ
� �

:

We draw attention to the commonality between these four
cases that, at the uniform steady-state concentrations (u*, v*),
to leading order one species behaves as an auto-activator and
the other as an auto-inhibitor, i.e. the diagonal elements have
opposite signs. That is, either

@

@u
F(u,v)

����
(u� ,v�)

. 0 and
@

@v
G(u,v)

����
(u� ,v�)

, 0,

or

@

@u
F(u,v)

����
(u�,v�)

, 0 and
@

@v
G(u,v)

����
(u�,v�)

. 0:

By swapping the labels U and V, without loss of generality
we may consider just the first of these two cases.

We refer to a reaction scheme (2.1) as Turing-unstable if the
corresponding PDE model (2.2)–(2.3) admits a positive steady
state (u*, v*) at which the Jacobian J* satisfies conditions (2.4)
and (2.7) for some reaction rate parameters {ri} in an open
subset of RN

þ . These together guarantee that condition (2.6)
holds for diffusivities (Du, Dv) in an open subset of R2

þ
given by

ffiffiffiffiffiffi
Dv

Du

s
.

ffiffiffiffiffi
dc

p
¼ 1

J�11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(J�)

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�J�12J

�
21

p� �
: ð2:8Þ

The unstable wavenumbers are those in the interval k− <
k < k+, where

k2+ ¼
DvJ�11 þDuJ�22 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(DvJ�11 þDuJ�22)

2 � 4DuDvdet(J�)
q

2DuDv
,

ð2:9Þ
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Figure 2. Two types of Turing patterns: spatially in-phase or anti-phase. (a)
Phase plane schematics for the non-spatial dynamics of systems close to a
steady state that supports Turing patterns of type I (in-phase, left) or type
II (anti-phase, right). Solid and dashed lines, respectively, mark the nullclines
∂tu = 0 and ∂tv = 0; arrows signify the flow of solutions (u(t), v(t)). (b)
Illustrative spatial profiles of u(x, t) (solid lines) and v(x, t) (dashed lines)
for type-I and type-II patterns.
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and the corresponding perturbations have linearized growth
rate λ given by

l(k2) ¼ 1
2

�
J�11 þ J�22 � (Du þDv)k2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((Dv �Du)k2 þ J�11 � J�22)

2 þ 4J�12J
�
21

q �
: ð2:10Þ

In an infinite spatial domain, the above Turing instability
conditions are sufficient for the homogeneous steady state
(u*, v*) to be rendered unstable to spatial perturbations: for
short times the state loses stability to a dominant sinusoidal
waveform with wavenumber k that maximizes the real part
of the growth rate λ. In practice, on finite domains boundary
criteria impose selection mechanisms on the set of possible
wavenumbers, which can prevent the instability if no poss-
ible wavenumber lies in the interval (k−, k+). However, for
simplicity we do not consider this effect in this paper
except implicitly in relation to our numerical simulations.

We also note that instability of the homogeneous steady
state does not at all imply asymptotic stability of a regular
spatio-temporal patterned state at nearby parameter values.
Further, various other dynamical effects and secondary bifur-
cations may also be manifest at later times; while important
in gaining a fuller understanding of the implications of our
results these also are not explored in this paper and are
likely to vary in subtle ways across the sets of parameter
values within each minimal scheme, and from one minimal
scheme (with its specific PDE model) to another.

We will classify reaction schemes in the following way.
We say that two reactions Ri, Rj are qualitatively equivalent if
( pi, qi, sign(si1), sign(si2)) = ( pj, qj, sign(sj1), sign(sj2)). Other-
wise, we consider two reactions to be qualitatively distinct.
This yields 31 qualitatively distinct types of reactions that
are of second-order or lower; these are summarized in the
stoichiometric equations displayed in figure 1. We say that
two reaction schemes S1 ¼ {R(1)

i }Ni¼1, S2 ¼ {R(2)
i }Ni¼1 are qualitat-

ively equivalent if, up to some reordering of the reactions, R(1)
i

is qualitatively equivalent to R(2)
i for each i = 1,… , N. In this

paper, we seek to enumerate the classes of reaction schemes
(up to the above qualitative equivalence) that admit any
Turing-unstable reaction schemes, under the restriction that
the size of the reaction scheme (i.e. the number of reactions
N ) be as small as possible. Our analysis presents a systematic
and complete exploration of when the PDEs (2.2) satisfy the
Turing instability conditions (2.4) and (2.7) under suitable
constraints on the coefficients of the reaction kinetics, with
the ‘minimality’ of schemes imposing a constraint on the
number of non-zero coefficient pairs (ai, bi).
3. Necessary but insufficient reactions
It is well known [25,26] that there are two distinct types of
Turing patterns for two species: type I (in which concentration
peaks are spatially aligned—‘in-phase’), also referred to as
‘pure activator–inhibitor’ dynamics, and type II (in which
peaks in one species correspond to troughs in the other—
‘anti-phase’), also referred to as ‘cross activator–inhibitor’
dynamics, figure 2b. The form of interactions between the
species when the system is close to the spatially homogeneous
steady state determines which pattern type arises in any par-
ticular model. Mathematically, the entries in the Jacobian
matrix J* (i.e. the linearization of the reaction polynomials
F(u, v) and G(u, v) around the uniform equilibrium) must
have one of the following two sign patterns:

type I: J� � þ �
þ �

� �
ð3:1aÞ

and

type II: J� � þ þ
� �

� �
: ð3:1bÞ

The linearized dynamics in the phase space, ignoring the
spatial diffusion terms, are then mirror images of each other,
shown schematically in figure 2a.

Despite the apparent symmetry between the linearized
dynamics, type-I and type-II patterns are in fact fundamen-
tally different in terms of required particle interactions.
Type-II patterns are more complex, and this is revealed by
elucidation of the particle reactions necessary to generate
them. Supposing the existence of a positive uniform steady
state (u*, v*), the general form for the non-spatial Jacobian is

J� ¼ J�11 J�12
J�21 J�22

� �
¼ a2 þ 2a4u� þ a5v� a3 þ a5u� þ 2a6v�

b2 þ 2b4u� þ b5v� b3 þ b5u� þ 2b6v�

� �
:

Combining the conditions for Turing instability gives con-
straints on the signs of some of the coefficients {ai, bi},
necessitating that reactions of certain qualitative types be
included in the reaction scheme. For type-I patterns there
are two necessary reactant combinations, for type-II patterns
there are three, which we now describe.

3.1. Reactions involving two U particles
For both type-I and type-II patterns, a necessary condition is
J�11 . 0. Using the steady-state equation for u,

0 ¼ F(u�, v�) ¼ a1 þ a2u� þ a3v� þ a4(u�)
2 þ a5u�v� þ a6(v�)

2,

we may rewrite

J�11 ¼ a2 þ 2a4u� þ a5v� ¼ a4u� � 1
u�

(a1 þ a3v� þ a6(v�)
2):

Since a1, a3 and a6 are non-negative, positivity of J�11
requires a4 > 0. This requires that at least one reaction with
reactant combination 2U and a positive stoichiometric effect
on species U be included in the reaction scheme.
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3.2. Reactions involving one particle of each species
For type-I patterns, a necessary condition is
J�12 ¼ a3 þ a5u� þ 2a6v� , 0. Since a3 and a6 are non-negative,
negativity of J�12 requires a5 < 0. This requires that at least
one reaction with reactant combination U +V and a negative
stoichiometric effect on species U be included in the
reaction scheme. For type-II patterns, a necessary condition is
J�21 ¼ b2 þ 2b4u� þ b5v� , 0. Since b2 and b4 are non-negative,
negativity of J�21 requires b5 < 0. This requires that at least
one reaction with reactant combination U +V and a negative
stoichiometric effect on species V be included in the
reaction scheme.

In each case, a reaction with reactant combination U +V
must be included in the reaction scheme. Further, if only
one of a5 and b5 is negative—i.e. if the net contribution of
all reactions with reactant combination U +V decreases the
number of particles of only one species—then we can
deduce the type of the pattern: if a5 < 0≤ b5 then it is of
type I, if a5≥ 0 > b5 then it is of type II.
 1:20230490
3.3. Reactions involving one U particle
For type-II patterns, J�11 . 0 and J�12 . 0 are both necessary
conditions. We may compute that

u�J�11 þ v�J�12 ¼ a2u� þ a3v� þ 2a4(u�)2 þ 2a5u�v� þ 2a6(v�)2

¼ 2F(u�,v�)� (2a1 þ a2u� þ a3v�)
¼ �2a1 � (a2u� þ a3v�):

Since a1 and a3 are non-negative, simultaneous positivity
of J�11 and J�12 requires a2 < 0. This requires that at least one
first-order reaction with reactant U and a negative stoichio-
metric effect on species U be included in the reaction scheme.

Thus, a reaction scheme for type-I patterns requires at
least two specific reactant combinations: the reaction
scheme must contain reactions of the form 2U→⋯ and
U +V→⋯, whereas a reaction scheme for type-II patterns
requires at least three: 2U→⋯, U +V→⋯ and U→⋯. We
now show that, in order to satisfy all the necessary conditions
for Turing instability, at least one further reaction is required
in both cases.

Type I: For a scheme of reactions with only reactant
combinations 2U and U +V, the interaction terms are

F(u, v) ¼ a4u2 þ a5uv,

and

G(u, v) ¼ b4u2 þ b5uv:

Assuming the existence of a positive steady state (u*, v*),
using the steady-state equations we may rewrite the Jacobian

J� ¼ 2a4u� þ a5v� a5u�

2b4u� þ b5v� b5u�

� �
¼ �a5v� a5u�

�b5v� b5u�

� �
,

yielding det(J*) = 0. This violates the necessary condition that (u*,
v*) be strictly linearly stable to spatially uniform perturbations.

Type II: For a scheme of reactions with only reactant
combinations 2U, U +V and U, the interaction terms are

F(u, v) ¼ a2uþ a4u2 þ a5uv,

and

G(u, v) ¼ b2uþ b4u2 þ b5uv:
Assuming the existence of a positive steady state (u*, v*),
using the steady-state equations we may rewrite the Jacobian

J� ¼ a2 þ 2a4u� þ a5v� a5u�

b2 þ 2b4u� þ b5v� b5u�

� �
¼ a4u� a5u�

b4u� b5u�

� �
,

and thus J�21 � 0 (since b4 is necessarily non-negative). This vio-
lates the necessary condition for type-II patterns that J�21 , 0.

Hence, overall a type-I pattern requires at least three dis-
tinct reactions, while a type-II pattern requires at least four
reactions. What we refer to as minimal schemes for each pat-
tern type are those Turing-unstable reaction schemes
comprising the smallest number of reactions. We will demon-
strate that for type-I patterns it is sufficient to have three
reactions, while for type-II patterns it is sufficient to have
four reactions, and thus these are, respectively, the sizes of
the minimal schemes for patterns of types I and II.
4. Minimal schemes
An exhaustive analysis of reaction schemes that satisfy the
conditions for Turing instability using the fewest number of
reactions yields 11 qualitatively distinct minimal schemes
for patterns of type I (which we derive in detail in this sec-
tion) and 14 qualitatively distinct minimal schemes for
patterns of type II (derived in electronic supplementary
material, text section A). These minimal schemes are
summarized in figures 3 and 4, respectively. In a separate
analysis, for each scheme, we compute the parameter
values for the diffusion coefficients Du and Dv for which a
Turing instability arises. In every case, we find an open set
of parameter values which demonstrates that the instability
is structurally robust in the sense that it will generically per-
sist in the presence of small perturbations to the reaction rates
and diffusion coefficients.

There are four options for reactants for a third reaction
(with a different reactant combination) in addition to the
necessary 2U→ · · · and U +V→ · · · reactions for type-I pat-
terns: ;, U, V or 2V. We work through each of these
possibilities in turn, either deriving the constraints on the
qualitative reaction types or checking that the reaction
scheme is not Turing-unstable. It transpires that, for all mini-
mal schemes for type-I patterns, the Jacobian determinant
and sign conditions (2.6), (3.1) amount to constraints on the
stoichiometric product coefficients only, while the Jacobian
trace condition (2.3) imposes a constraint on the reaction
rate parameters. In total, we find 11 classes of qualitatively
distinct reaction schemes that contain some schemes satisfying
the conditions for a Turing pattern instability. These are pre-
sented in figure 3, and their derivation comprises the bulk of
this section.

For type-II minimal schemes, the analysis becomes more
complicated since there are often two positive homogeneous
steady states, only one of which can undergo a Turing
instability, and there is a third dimensionless parameter
group, formed from the reaction rate constants. Further
details and commentary are provided in the electronic
supplementary material, text section D.
4.1. Third reaction of order zero
If we choose the third reaction to be of zeroth order, existence
of a positive steady state requires that the bimolecular U +V



2U ��n1�U + m1V

2U ��n1�U + m1V
2U ��n1�U + m1V

U + V ��m2�V
V ��

U ��n3�U 

V ��n3U 
V ��n3U 
V ��n3U + V
V ��n3U + m�3V

U ��n3�U  + m3V

U + V �

U + V ��V

0

V � 0 0
V � 0

+ one of

+ one of

0 ��n3U
0 ��n3U + m3V

(d )

(g)
(h)

(i) (k)

( j)

(c)

(a)
(b)

(e)
( f )

Figure 3. The 11 qualitatively distinct classes of reaction schemes that contain the fewest number (three) of elementary reactions and admit Turing patterns of type
I. Each class is contained within a separate column and left braces indicate a choice of reactions, so that the left-hand column comprises eight distinct classes, the
central column two classes, and the right-hand column a single class. Following the convention set out in figure 1, the stoichiometric coefficients are labelled with
apostrophes to indicate different constraints: nj, mj must be positive, n0j , m

0
j . 1, and n00j , m

00
j . 2, for any j. Hence in every case the 2U→ · · · reaction must

increase the numbers of particles of both U and V, while the U + V→ · · · reaction must decrease the number of particles of U. Moreover, the third reaction cannot
decrease the number of particles of U. Reactions have been coloured according to the number of reacting particles (the reaction ‘order’) blue, zeroth order; green,
first order; yellow, second order.

2U ��n1�U + m1V

2U ��n1�U + m1V

2U ��n1�U + m1V 2U ��n1�U + m1V 2U ��n1�U + m1V 2U ��n1�U

V ��n4U + m�4V

V ��n4U + m�4V V ��n4U + m�4V 2V ��n4U + m�4V 2V ��n4U + m�4V

2V ��n4U + m�4V
V ��n4U + m�4V V ��n4U + m�4V
2V ��n4U + m�4V V � m�4V

2U ��n1�U + m1V2U ��n1�U

2U ��n1�U
U + V ��n2�U

U + V ��U

U + V ��UU + V ��

U + V ��U U + V ��n2�U

U + V ��n2�U
U ��0 U ��0

U ��0

+ one of

+ one of + one of

+ one of

+ one of

0
0

��m4V
��n4U + m4V

0
0

��m4V
��n4U + m4V

U � m3V U � m3V

0 U + V ��0 U + V ��0
U ��0 U �� U ��m3V U ��m3V0

(d )
(c)(a)

(b)

(e)

(k) (l) (m) (n)

(g) (i)
( j)(h)( f )

Figure 4. The 14 qualitatively distinct classes of reaction schemes of four elementary reactions admitting Turing patterns of type II. Classes are contained within a
grid box and left braces indicate a choice of one out of a pair of possible reactions, leading to two distinct classes in each of the five boxes in the upper rows.
Following the convention set out in figure 1, the stoichiometric coefficients are labelled with apostrophes to indicate different constraints: nj, mj must be positive,
n0j , m

0
j . 1 and n00j , m

00
j . 2, for any j. Hence in every case the 2U→ · · · reaction must increase the number of particles of U, while the U + V→ · · · reaction

must decrease the number of particles of V. The third reaction must decrease the number of particles of U. The fourth reaction must increase the number of particles
of V and cannot decrease the number of particles of U. Reactions have been coloured according to the number of reacting particles (the reaction ‘order’) blue, zeroth
order; green, first order; yellow, second order.
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reaction must also decrease the number of particles of species
V, determining the qualitative type of this reaction. We may
then write our reaction scheme as

2U!r1 n1U þm1V

U þ V!r2 ;
;!r3 n3U þm3V

8><
>: ,

with corresponding reaction terms

F(u, v) ¼ r3n3 þ r1(n1 � 2)u2 � r2uv
and

G(u, v) ¼ r3m3 þ r1m1u2 � r2uv,

where n1 > 2, and m1, n3 and m3 are non-negative but are as
yet otherwise unconstrained. Supposing the existence of a
uniform steady state, we find

det(J�) ¼ 2r1r2(m1 � (n1 � 2))(u�)2,

and so for linear stability we require m1 > n1− 2 > 0 and thus
the qualitative type of the 2U reaction is determined. Solving
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the steady-state equations, we find a positive steady state
only if n3 >m3,

u� ¼
ffiffiffiffi
r3
r1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 �m3

m1 � (n1 � 2)

r
,

v� ¼
ffiffiffiffiffiffiffiffi
r3r1

p
r2

n3m1 �m3(n1 � 2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n3 �m3)(m1 � (n1 � 2))

p ,

and this is then the unique positive steady state. This yields

J�12 ¼ J�22 ¼ �r2

ffiffiffiffi
r3
r1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 �m3

m1 � (n1 � 2)

r

and

J�21 ¼ 2r1m1u� � r2v� . 2r1(n1 � 2)u� � r2v� ¼ J�11,

hence J* fully matches the required sign pattern if and only if
J�11 . 0,

J�11 . 0 , 2(n1 � 2)u� . r2v�

, (n3 �m3)(n1 � 2) . n3(m1 � (n1 � 2)):

The last condition for Turing instability is the trace con-
dition (2.3) for linear stability of the homogeneous state to
uniform perturbations,

tr(J�) , 0 , r2
r1

.
(n3 �m3)(n1 � 2)� n3(m1 � (n1 � 2))

n3 �m3
,

which may be satisfied for any choices of stoichiometric pro-
duct coefficients if r2 is sufficiently large. Thus, this choice of
third reactant combination yields two qualitatively distinct
Turing-unstable reaction schemes,

2U �!r1 n001U þm1V

U þ V �!r2 ;
; �!r3 n3U

8><
>: and

2U �!r1 n001 U þm1V

U þ V �!r2 ;
; �!r3 n3U þm3V

8><
>: ,

where n001 . 2, and m1, n3, m3 > 0. The first is Turing-unstable
if and only if

2(n001 � 2) . m1 . n001 � 2,

while the second is Turing-unstable if and only if

m1 . n001 � 2, n3 . m3 and

2(n001 � 2)n3 . m1n3 þ (n001 � 2)m3:

4.2. Third reaction with reactant U
If we choose the third reaction to have reactant U, existence of
a positive steady state again requires that the bimolecularU +
V reaction must decrease the number of particles of species V,
determining the qualitative type of this reaction. We may
then write our reaction scheme as

2U �!r1 n1U þm1V

U þ V �!r2 ;
U �!r3 n3U þm3V

8><
>: ,

with corresponding reaction terms

F(u,v) ¼ r3(n3 � 1)uþ r1(n� 2)u2 � r2uv

and

G(u, v) ¼ r3m3uþ r1m1u2 � r2uv,

where n1 > 2, and m1, n3 and m3 are non-negative but are
(for the moment) otherwise unconstrained. Supposing the
existence of a uniform steady state, we find

det(J�) ¼ r1r2(m1 � (n1 � 2))(u�)2,

and so for linear stability we require m1 > n1− 2 > 0, deter-
mining the qualitative type of the 2U reaction. Solving the
steady-state equations, we find a positive steady state only
if n3− 1 >m3,

u� ¼ r3
r1

� � ðn3 � 1Þ �m3

m1 � (n1 � 2)
,

v� ¼ r3
r2

� �
m1(n3 � 1)� (n1 � 2)m3

m1 � (n1 � 2)
,

and this is the only non-negative steady state. The signs of
J* are guaranteed to match those required for type-I patterns,
and so the last condition to satisfy is the trace condition (2.3),

tr(J�) , 0 , r2
r1

. n1 � 2,

which may be satisfied for any choice of n1 if r2 is sufficiently
large. Thus we have two qualitatively distinct Turing-
unstable reaction schemes,

2U �!r1 n001U þm1V

U þ V �!r2 ;
U �!r3 n03U

8><
>: and

2U �!r1 n001U þm1V

U þ V �!r2 ;
U �!r3 n03U þm3V

8><
>: ,

where n001 . 2, n03 . 1, and m1, m3 > 0. The first is Turing-
unstable if and only if m1 . n001 � 2, while the second is
Turing-unstable if and only if m1 . n001 � 2 and n03 � 1 . m3.

4.3. Third reaction with reactant V
Choosing the third reaction to be a first-order interaction with
reactant V yields the largest number of options for Turing-
unstable reaction schemes. For convenience, we divide this
case into three sub-cases according to the qualitative type
of the U +V reaction.

4.3.1. Interspecific reaction removing both species
(U þ V ! ;)

In the first sub-case, we may write the reaction scheme as

2U �!r1 n1U þm1V

U þ V �!r2 ;
V �!r3 n3U þm3V

8><
>: ,

with corresponding interaction terms

F(u, v) ¼ r3n3vþ r1(n1 � 2)u2 � r2uv

and

G(u, v) ¼ r3ðm3 � 1Þvþ r1m1u2 � r2uv,

where n1 > 2, and m1, n3 and m3 are non-negative but are
otherwise as yet unconstrained. These interaction terms
admit a unique non-zero steady state,

u� ¼ r3
r2

m1n3 � (n1 � 2)(m3 � 1)
m1 � (n1 � 2)

,

v� ¼ r1r3
r22

(m1n3 � (n1 � 2)(m3 � 1))2

(m1 � (n1 � 2))(n3 � (m3 � 1))
,

which yields

det(J�) ¼ r1r2(m1 � (n1 � 2))(u�)2:
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For linear stability, we require m1 > n1− 2, and then for
positivity of the steady state we require n3 >m3− 1. The
signs of J�12 and J�22 match those required for type-I patterns;
the steady state admits J�21 . J�11, and so J* fully matches the
required sign pattern if and only if J�11 . 0,

J�11 . 0 , 2(n1 � 2)n3 . m1n3 þ (n1 � 2)(m3 � 1):

In particular, if n3 = 0 then we require m3 = 0. The trace
condition (2.3) is

r2
r1
.
(m1n3�(n1�2)(m3�1))(2(n1�2)n3�m1n3�(n1�2)(m3�1))

m1(m1�(n1�2))(n3�(m3�1))2
,

which can be satisfied for any choice of the stoichiometric
product coefficients by taking r2 to be sufficiently large.
Thus, this case yields four qualitatively distinct Turing-
unstable reaction schemes,

2U �!r1 n001 U þm1V

U þ V �!r2 ;

(
,

together with one of

ðiÞ V!r3 ;
n

, ðiiÞ V �!r3 n3U
n

,

ðiiiÞ V �!r3 n3U þ V
n

, ðivÞ V �!r3 n3U þm0
3V

n
,

where n001 . 2, m0
3 . 1 and m1, n3 > 0. From the sign constraint

on J�11, option (i) is Turing-unstable if and only if

m1 . n001 � 2;

option (ii) is Turing-unstable if and only if

m1 . n001 � 2 and (n001 � 2)(2n3 þ 1) . m1n3;

option (iii) is Turing-unstable if and only if

m1 . n001 � 2 and 2(n001 � 2) . m1;

option (iv) is Turing-unstable if and only if

m1 . n001 � 2, n3 . m0
3 � 1 and

2(n001 � 2)n3 . m1n3 þ (n001 � 2)(m0
3 � 1):

4.3.2. Interspecific reaction removing species U and preserving
species V (U + V→ V )

In the second sub-case, existence of a positive steady state
requires that the interaction with reactant V must reduce
the number of particles of species V while the 2U reaction
must increase the number of particles of V. We may then
write our reaction scheme as

2U �!r1 n1U þm1V

U þ V �!r2 V
V �!r3 n3U

8><
>: ,

with corresponding interaction terms

F(u, v) ¼ r3n3vþ r1(n1 � 2)u2 � r2uv

and

G(u, v) ¼ �r3vþ r1m1u2,

where n1 > 2 and m1 > 0 and n3 is non-negative but is other-
wise as yet unconstrained. This yields a unique positive
steady state,

u� ¼ r3
r2

m1n3 þ n1 � 2
m1

, v� ¼ r1r3
r22

(m1n3 þ n1 � 2)2

m1
,

which satisfies det(J*) > 0, J�12 , 0, J�21 . 0 and J�22 , 0.
We find

J�11 ¼
r1r3
r2

(n1 � 2�m1n3)
m1n3 þ n1 � 2

m1
,

and thus the sign pattern condition on J* is satisfied if and
only if n1− 2 >m1n3. Lastly, the trace condition (2.3) yields

tr(J�) , 0 , r2
r1

.
(n1 � 2)2 �m2

1n
2
3

m1
,

which may be satisfied for any choice of the stoichiometric
product coefficients provided that r2 is sufficiently large.
Thus, this case yields two qualitatively distinct Turing-
unstable reaction schemes,

2U �!r1 n001 U þm1V

U þ V �!r2 V
V �!r3 ;

8><
>: and

2U �!r1 n001 U þm1V

U þ V �!r2 V
V �!r3 n3U

8><
>: ,

where n001 . 2, and m1, n3 > 0. The first is Turing-unstable for
all choices of n001 and m1, while the second is Turing-unstable
if and only if n001 � 2 . m1n3.
4.3.3. Interspecific reaction removing species U and increasing
species V (U þ V ! m0

2V)
In the third sub-case, existence of a positive steady state
requires that the interaction with reactant V must reduce
the number of particles of species V. We may then write
our reaction scheme as

2U �!r1 n1U þm1V

U þ V �!r2 m2V

V �!r3 n3U

8><
>: ,

with corresponding interaction terms

F(u, v) ¼ r3n3vþ r1(n1 � 2)u2 � r2uv

and

G(u, v) ¼ �r3vþ r1m1u2 þ r2(m2 � 1)uv,

where n1 > 2, m2 > 1 and m1, n3 are non-negative but are
as yet otherwise unconstrained. Supposing the existence of
a positive steady state, to satisfy J�12 , 0 we must have

r3n3 , r2u�,

and to satisfy J�22 , 0 we must have

r2(m2 � 1)u� , r3:

These two inequalities can only be satisfied simul-
taneously if n3 = 0, thus the third reaction is of the type
V ! ;. Solving the steady-state equations we find a unique
positive steady state,

u� ¼ r3
r2

n1 � 2
m1 þ (n1 � 2)(m2 � 1)

,

v� ¼ r1r3
r22

(n1 � 2)2

m1 þ (n1 � 2)(m2 � 1)
:

At this steady state, we have det(J*) > 0 and

Tr(J�) , 0 , r2
r1

.
(n1 � 2)2

m1
:
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The signs of J�11, J
�
12 and J�21 match those required for type-I

patterns, while J�22 , 0 if and only if m1 > 0—which finally
determines the qualitative type of the reaction with reactant
combination 2U. Accordingly, this yields only one qualitative
type of Turing-unstable reaction scheme,

2U �!r1 n001 U þm1V

U þ V �!r2 m0
2V

V �!r3 ;

8>><
>>: ,

which is Turing-unstable for all choices of n001 . 2, m0
2 . 1 and

m1 > 0.
ρc ρ = 
r2
r1

Figure 5. Phase diagram of the linear stability of the homogeneous steady
state for the minimal Turing-unstable reaction schemes for patterns of type I.
The parameters r1 and r2 are the rate constants for the 2U→ · · · and U +
V→ · · · reactions, respectively. The values of ρc and δc(ρ)/ρ depend on the
choice of minimal reaction scheme and the stoichiometric product coefficients,
as collated in section G of the electronic supplementary material. When ρ <
ρc (region marked ‘unstable’, pink) the spatially uniform equilibrium is
unstable to uniform disturbances. In the Turing instability regime a spatial
pattern emerges as δ increases above δc.

if
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21:20230490
4.4. Third reaction with reactant combination 2V
We now turn to the case in which the third reaction has the
reactant combination 2V which yields the interaction terms

F(u, v) ¼ a4u2 þ a5uvþ a6v2

and

G(u, v) ¼ b4u2 þ b5uvþ b6v2,

and supposing the existence of a positive steady state (u*, v*)
we find

J� ¼ 2a4u� þ a5v� a5u� þ 2a6v�

2b4u� þ b5v� b5u� þ 2b6v�

� �

¼
� v�

u�
(a5u� þ 2a6v�) a5u� þ 2a6v�

� v�

u�
(b5u� þ 2b6v�) b5u� þ 2b6v�

0
B@

1
CA,

and thus det(J*) = 0. Hence we reject this choice of third
reactant combination as it violates the condition of strict
linear stability of (u*, v*), and thus offers no Turing-unstable
reaction schemes.
4.5. Linear stability boundaries for type-I minimal
schemes

A complete analysis of the linear instability behaviour for the
minimal type-I schemes is provided in electronic supplemen-
tary material, text section B. Remarkably, it turns out that the
minimal schemes of type I can all be described in terms of a
single regime diagram, shown in figure 5. The first thing to
note is that each type-I minimal scheme admits a unique posi-
tive homogeneous steady state; bistability is not possible.
Next, our results reveal that the onset of the Turing instability
depends on only two parameter ratios: the ratio of diffusiv-
ities δ: =Dv/Du (a crucial parameter in determining the
existence of instability in Turing’s classic analysis) and the
ratio ρ := r2/r1 where r1 and r2 are, respectively, the rates of
the intraspecific (2U→ · · ·) and interspecific (U +V→ · · ·)
bimolecular reactions, having first non-dimensionalized
these rates by fixing the rate of the third reaction to be
unity. In every case Turing instability arises only when the
ratio ρ := r2/r1 lies above a threshold value ρc, and then
when δ > δc(ρ) where this boundary depends linearly on ρ
and has a gradient that can be computed explicitly in terms
of the stoichiometric coefficients in a particular reaction
scheme. This reduction to a single regime diagram allows
direct comparisons between the 11 cases; for example, com-
putation of the lowest possible value for the minimum
diffusivity ratio δc as the stoichiometric coefficients change.
A canonical criticism of the Turing mechanism is that the
PDE system (2.2) may require an order of magnitude (or
greater) disparity between the diffusivities Du and Dv in
order to satisfy the conditions for Turing instability. This is
rarely observed in real-world systems where interacting
species typically diffuse through the same medium and are
often of comparable sizes—thereby if motion is accurately
modelled by isotropic diffusion, we expect species to have
similar diffusivities. As a reference example, in modelling
the chlorite–iodide–malonic acid–starch system, Lengyel &
Epstein [15] determined the diffusivities of the interacting
species to differ by no more than a factor of 2: in practice, a
binding gel was introduced to drastically reduce the diffusiv-
ity of one species, and more recent work [27] has analysed the
dynamical effects of allowing reactants to bind to an
immobile substrate. With this in mind, we might ask what
the smallest possible value of δc(ρc) is for each class: these
being the smallest necessary disparities in the diffusivity par-
ameters required for Turing instability. In electronic
supplementary material, text section C, we tabulate the func-
tions ρc(n, m) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(n,m)

p
for each class, given by

rc(n,m) ¼ J�11
�J�22

r and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(n,m)

p
¼ 1

J�11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(J�)

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�J�12J

�
21

p� �
r�

1
2,

respectively. We also present there the corresponding
functions

ffiffiffiffiffiffiffiffiffiffiffiffi
dc(rc)

p ¼ ffiffiffiffiffiffiffiffi
Hrc

p
. In general,

ffiffiffiffiffiffiffiffiffiffiffiffi
dc(rc)

p
does not

have a defined minimum value over the integers {ni, mi}
within the constraints for Turing instability, but is monotoni-
cally decreasing as one or more of the variables becomes
arbitrarily large. For each class δc(ρc) does have an infimum,
and these are also presented. For all but three classes, it tran-
spires that inf(δc(ρc)) = 1, but we reiterate that this is in general
an infimum and not an achievable minimum; for δc to take
values arbitrarily close to its infimum, it may be necessary
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for one or more of the stoichiometric product coefficients
to be arbitrarily large, which may present a challenge
in terms of a physical or biological interpretation of such a
reaction scheme.

Numerical simulations of the onset of instability in
example Turing-unstable schemes from each class for type-I
are shown in figure 6, and similarly for type II in figure 7.
All simulation parameters and details are given in electronic
supplementary material, text section E.
5. Outlook
In summary, we have, for the first time, enumerated all possible
Turing-unstable reaction schemes with the fewest number of
elementary (i.e. at most biomolecular) reactions under our par-
simonious and physically reasonable modelling assumptions.
Given that there are over 5000 possible qualitatively distinct
schemes of three elementary reactions, and over 45 000 schemes
for four reactions, the numbers of minimal Turing-unstable
schemes are surprisingly small. This demonstrates that physical
constraints (such as the existence of a spatially uniform equi-
librium at positive concentrations) combined with the Turing
instability conditions can indeed be satisfied but require
specific, carefully designed reaction schemes.

In contrast to existing popular baseline models of pattern
formation which typically employ third-order interactions
(see the Brusselator [17], Schnakenberg [18] or Gray–Scott
[19] models) or rational nonlinearities (for example, the
Gierer–Meinhardt [28] short-range activator long-range
inhibitor models), we have established the complete
catalogue of minimal models with at most quadratic poly-
nomial nonlinearities that are sufficient to exhibit Turing’s
reaction–diffusion instability.

Where previous studies of minimal Turing-unstable
models have employed more context-specific assumptions
and required computationally automated parameter sweep-
ing to approximately identify Turing instabilities [29], our
assumptions yield models with direct particle-scale inter-
pretations which are also amenable to exact analysis,
enabling our definitive list of minimal reaction schemes,
which we propose as the simplest theoretical models for
Turing instability. Our analysis allows us to separate out
the distinct contributions made by (i) different kinds of
particle interactions (i.e. reagents), (ii) reaction rates and
(iii) stoichiometry of the reaction products, in determining
where in parameter space we expect patterns to arise. This
clear separation of these three elements of the reaction
scheme is novel in its clarity.

Although it has long been assumed that an auto-catalytic
reaction is necessary for Turing instability, our analysis is
novel in being able to confirm this and, further, to identify
the following essential particle interactions: (i) a multi-
molecular reaction for species U that increases the number
of particles of U and (ii) a multi-molecular interspecific reac-
tion which decreases the number of particles of one or both
species. For type-I patterns, there must also be at least one
reaction of zeroth or first order, while for type-II patterns,
there must be both a first-order reaction that decreases the
number of particles of U, and also another reaction that
spontaneously generates particles, or has only particles of
species V as its reactants. These stand as generic design
principles with which we might better identify natural
Turing-unstable systems, or design artificial ones [30],
while addressing systematically issues of robustness and
genericity of mechanism.

All the analysis in this paper is concerned with linear
theory—applicable to these reaction–diffusion systems only
when perturbations to the homogeneous steady state are
small, and typically only for short times. Nonlinear theory
is essential in order to be able to understand, and to predict,
the dynamics at later times [5,31]. In particular, nonlinear
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theory is needed to understand whether or not, for particular
parameter values close to the Turing bifurcation point,
stable small-amplitude periodic patterns exist. The details
of the nonlinear behaviour will also depend significantly on
the choices for parameter values: the reaction stoichiometry,
reaction rates and diffusion rates.

An example of a set of parameter values for which
one minimal reaction scheme exhibits a small-amplitude
stable periodic pattern is shown in figure 8. A typical
weakly nonlinear analysis in one spatial dimension close to
the Turing bifurcation point, introducing long space and
time scales (X, T ), generically allows for the derivation of a
real Ginzburg–Landau equation

@TA ¼ @XXAþ mA� kAjAj2

for the leading-order amplitude A(X, T ) of a monochromatic
perturbation from the homogeneous steady state, where the
coefficient κ is a function of the reaction rates and stoichiometry.
If κ > 0, then, generically, we would expect stable small ampli-
tude patterned states to exist close to the Turing bifurcation
point. Preliminary analysis of the type-I minimal schemes
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reveals that the sign of κ depends in subtle ways on the choice
of stoichiometry. Each of the classes of type-I minimal scheme
contain some Turing-unstable reaction schemes for which κ >
0, except for classes c. and d. for which κ appears to uniformly
vanish—and so perhaps a different scaling is required in the
nonlinear analysis. For the classes of type-II minimal schemes,
and in two or more spatial dimensions, the analysis is more
complicated. Given the high-dimensional nature of the par-
ameter space, and that the nonlinear behaviours will differ
from one reaction scheme to the next, we will defer presentation
of further results to future work. A much more thorough
exploration of the nonlinear behaviour of both the type-I and
type-II minimal schemes is, however, clearly warranted, but
lies beyond the scope of this paper due to our focus here on
the purely linear instability problem. Wewill return to the ques-
tion of nonlinear behaviour in future work and hope there to
carry out the much more comprehensive investigation that
is required.

The literature on the general analysis of stoichiometry-
based criteria for particular dynamic behaviours in reaction
networks is large [32–34]. Providing detailed connections
between our results and those more general criteria is
beyond the scope of this work. Here we have constructed
the complete set of the simplest possible reaction schemes
rather than an analysis of the most general situation. Our
minimal schemes can naturally be embedded within more
complicated sets of reactions involving more species, or inter-
mediate products; however, the inclusion of even one more
species makes the range of patterning behaviour much
richer [35,36]. Naturally, the minimal schemes presented
here do not necessarily capture the full dynamics of any
real system. The converse problem of reducing a complex
model to a smaller one that still exhibits Turing instability
entails its own difficulties [37]. Our analysis provides signifi-
cant new clarity for a long-standing and widely used
mechanism; it opens up promising new lines of theoretical
work since it enables a principled and complete study of
the stochastic dynamics of these minimal particle-based
schemes as the simplest settings in which one can compare
the results of stochastic analysis and simulation with results
for the mass-action models. This will allow us to understand,
with much greater clarity, the effects of stochasticity on
Turing pattern formation in these minimal, and physically
achievable, cases.

More broadly, as both deterministic and stochastic models
for Turing patterns continue to fascinate and provide food for
thought in biology, physics, engineering and many other fields
besides, we expect that study of these new minimal models
will aid the development of concepts and quantitative
modelling across many areas of natural science.
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