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The emergence of a coherent structure
for coherent structures: localized states

in nonlinear systems
BY J. H. P. DAWES*

Department of Mathematical Sciences, University of Bath, Claverton Down,
Bath BA2 7AY, UK

Coherent structures emerge from the dynamics of many kinds of dissipative, externally
driven, nonlinear systems, and continue to provoke new questions that challenge our
physical and mathematical understanding. In one specific subclass of such problems, in
which a pattern-forming, or ‘Turing’, instability occurs, rapid progress has been made
recently in our understanding of the formation of localized states: patches of regular
pattern surrounded by the unpatterned homogeneous background state. This short review
article surveys the progress that has been made for localized states and proposes three
areas of application for these ideas that would take the theory in new directions and
ultimately be of substantial benefit to areas of applied science. Finally, I offer speculations
for future work, based on localized states, that may help researchers to understand
coherent structures more generally.

Keywords: pattern formation; Turing instability; bifurcation; homoclinic snaking

1. Introduction

Encouraged by the success of low-dimensional dynamical systems theory in the
1980s in explaining the origin of complicated behaviour in nonlinear ordinary
differential equations, researchers in what might be called ‘nonlinear science’
are attempting to carry through a similar programme for spatially extended
systems of many kinds. In this review, I will restrict attention to systems that
are internally dissipative and externally driven; ‘nonequilibrium’ in the physics
terminology. More precisely, such systems (for example, chemical and biological
kinetics, viscous fluid mechanics, frictional solid mechanics) equilibrate at a
level of activity sufficient to provide a global energy balance. Commonly this
involves the formation of spatial structure with a single well-defined lengthscale.
The bifurcations in which such a patterned state is born out of a homogeneous
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state are known, naturally enough, as spontaneous pattern-forming, or ‘Turing’,
instabilities (Turing 1952). Spontaneity is important here: the external driving
is still imposed in a spatially uniform fashion, so the emergence of structure is a
clear symmetry-breaking transition.

Well-known examples of spontaneous pattern formation include Rayleigh–
Bénard convection, in a layer of viscous fluid heated from below, Faraday
surface waves on a the surface of a vertically shaken liquid or granular
layer, and reaction–diffusion dynamics, proposed for example to organize many
processes in developmental biology (Cross & Hohenberg 1993; Murray 2003;
Hoyle 2006).

The theoretical analysis of ‘pattern-forming instabilities’ of these kinds in fluid
mechanical problems can be traced back to the early twentieth century in the
case of Rayleigh–Bénard convection (Rayleigh 1916). The subsequent emergence
of mathematical biology as a distinct area within applied mathematics has meant
that the demonstration by Turing (1952) that such patterns could result from
a more general, and biologically relevant, mechanism of local activation coupled
with longer range inhibition has continued to have a significant impact in shaping
our understanding of mechanisms for morphogenesis.

Turing’s original observation—that spontaneous pattern formation may arise
through a linear instability due to coexisting diffusive effects that operate on
sufficiently different spatial scales even when the homogeneous state is stable in
the absence of diffusion—has been made mathematically precise, and forms the
basis for arguments about the generic nature of such instabilities and the typical
patterns which result.

More recently, it has become clear that a pattern-forming or ‘Turing’ instability
can also result in the formation of spatially localized states, even if the system
remains driven in a spatially uniform fashion. These localized states resemble a
number of periods of the periodic pattern that we might expect, but surrounded
by the spatially uniform background state rather than extending to fill the whole
spatial domain. The two key ingredients for the formation of localized states near
Turing instabilities are (i) bistability and (ii) pinning.

Bistability means that the spatially uniform state and the patterned state
are stable to small disturbances over a single range of values of the system
parameters. In the language of bifurcation theory, bistability occurs when the
Turing instability is subcritical, creating a small amplitude unstable pattern
which exists alongside a larger amplitude stable pattern as well as the stable
trivial unpatterned state.

Pinning refers, by analogy with the motion of defects in crystals, to the
local energy well in which the localized state sits: there is an energetic
barrier to overcome in order either for the localized patch of pattern to
propagate further into the surrounding background state or, conversely, for the
background state to be able to swamp the localized state and remove it. In
spatially continuous systems, described by partial differential equations (PDEs),
the periodicity of the pattern itself provides this pinning effect: pinning is
therefore a generic feature for these systems. In spatially discrete dissipative
systems, where the discrete nature of the system is modelled in ways that
are closely analogous to those used in atomic lattices (such as the Frenkel–
Kontorova model), the discrete nature of the system generates pinning also in
a generic fashion.
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Recent mathematical work has proved that localized states arise generically
near Turing instabilities, and has greatly clarified their existence and bifurcations
in model equations such as the one-dimensional bistable Swift & Hohenberg
(1977) equation

ut = ru − (1 + v2
x)

2u + N (u; s), (1.1)

where u(x , t) is a scalar variable and r < 0 < s are parameters, and N (u; s) refers
to the choice of nonlinear terms that give rise to the subcritical bifurcation
of small amplitude states and subsequence re-stabilization of the dynamics at
larger amplitudes. Popular choices are N1(u; s) = su2 − u3 and N2(u; s) = su3 −
u5. The resulting bifurcation structure of localized states has a characteristic
structure containing two intertwining curves of solutions and as a result the
process of formation of these families of localized states is frequently referred
to as ‘homoclinic snaking’. While it is not a normal form in the strict sense,
equation (1.1) is often taken in the literature as a canonical model equation for
homoclinic snaking, and recent investigation through a combination of numerical
and analytic approaches supports its employment as a generic model equation.

The structure of this review is as follows. In §2, I list physical systems in
which localized states have been observed, in either laboratory or numerical
experiments, beforel discussing analytical approaches to the dynamics of equation
(1.1). Section 3 presents three areas in which both bistability and pinning effects
are likely to be present and hence the theory of localized states should be an
important part of our understanding of the problem. Conclusions and wilder
speculations for future research directions are contained in §4.

2. Recent progress

In this section, I first summarize a number of areas in which localized states have
been observed, either in laboratory experiments or in theoretical modelling work
(§2a). Then I very briefly outline the dynamics of the canonical one-dimensional
Swift–Hohenberg model (§2b), before discussing additional issues.

(a) Motivations

Localized patterns have been described in experiments and models in an
extremely wide variety of fields. The literature on the localization of buckling
patterns of elastic beams and shells is particularly rich (Potier-Ferry 1983;
Hunt et al. 2000); localized states have also been analysed in fluid
mechanics (in particular in doubly diffusive convection problems; Riecke (1999);
Riecke & Granzow (1999); Batiste & Knobloch (2005)) and magnetoconvection
(Blanchflower 1999; Dawes 2007, 2008); nonlinear optics (Akhmediev &
Ankiewicz 2005); gas discharge systems (Purwins et al. 2005); vertically oscillated
granular and viscoelastic media (Umbanhowar et al. 1996; Lioubashevski et al.
1999); ferrofluid instability (Richter & Barashenkov 2005), surface catalysis,
mathematical neuroscience, developmental biology and many others.

The study of localized states is therefore of fundamental importance to research
in all these fields. However, it is only recently that the mathematical structure and
organization of localized states has become completely understood even in the
simplest, one-dimensional, case. Alongside this mathematical structure, recent
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Figure 1. Bifurcation diagrams for (a) the Swift–Hohenberg equation (2.1) solved in the domain
0 ≤ x ≤ L = 10p and (b) the Ginzburg–Landau equation (2.2) solved in the domain 0 ≤ X ≤ 10p,
both using periodic boundary conditions. The vertical line segment of the curve in (b) indicates
the Maxwell point mmx around which the snaking curves in (a) open up and intertwine.

work has exploited the existence of numerical continuation packages such as
AUTO (Doedel 2007). The resulting bifurcation diagrams that can be compiled
clarify hugely the organization, existence and stability of localized patterns and
have contributed to a resurgence of interest in the area.

(b) The Swift–Hohenberg model

The simplest pattern-formation situation in which localized states appear is
given by considering a single scalar PDE for a quantity u(x , t) that is posed on
the real line −∞ < x < ∞. We assume that the trivial state u(x , t) ≡ 0 exists
for all parameter values and is linearly stable when a parameter r is negative.
We further assume that it first loses stability, at r = 0, to Fourier modes eikx

with k near unity. We take the PDE to be first-order in time and left–right
reflection symmetric, i.e. unchanged under the operation (x , u) → (−x , u). This
latter condition (a ‘reversibility’) implies that terms in the PDE contain even
numbers of x-derivatives. The simplest canonical model equation with these
properties is the cubic–quintic fourth-order Swift–Hohenberg equation

ut = ru − (1 + v2
x)

2u + su3 − u5. (2.1)

For s > 0 the instability of the state u(x , t) = 0 at r = 0 is to modes ∼ eikx with
k near unity, and this instability is subcritical. As a result, there is a region of
bistability between stable large amplitude space-periodic solutions and the trivial
solution u = 0 (Sakaguchi & Brand 1996) (figure 1a).

Equation (2.1) can be analysed from two points of view. One is the asymptotic
reduction of equation (2.1) to a Ginzburg–Landau equation via a multiple-
scales expansion. The second is to consider equilibria of the fourth-order spatial
dynamical system in x given by setting ut = 0 in which localized states correspond
to trajectories homoclinic to u = 0.

Phil. Trans. R. Soc. A (2010)
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(i) Asymptotics

In the Ginzburg–Landau approach near the codimension-two point where
r = s = 0 it is appropriate to introduce the scaled variables m and ŝ defined by
r = e2m, s = e2ŝ, and the long length and time scales X = e2x and T = e4t. We
look for steady solutions to equation (2.1) perturbatively with the multiple-
scales expansion u(x , t) = e(A(X , T )eix + c.c.) + e2u2(x , X , t, T ) + O(e3), where
c.c. denotes the complex conjugate. We substitute this ansatz into equation (2.1)
and solve at successive orders in e, applying a ‘solvability condition’ at each order
to eliminate secular terms that would otherwise disrupt the asymptotic ordering
of the solution in powers of e. From the solvability condition at O(e5) we deduce
the cubic–quintic Ginzburg–Landau equation for the complex-valued envelope
A(X , T ),

AT = mA + 4AXX + 3ŝA|A|2 − 10A|A|4. (2.2)

Two distinct constant solutions A = A±
0 exist for −9ŝ2/40 < m < 0 with the smaller

(larger) amplitude state being unstable (stable), respectively. These correspond
to exactly periodic solutions for u(x) (figure 1b).

There are also non-constant solutions which correspond to localized states: at
small amplitudes |A| � 1 the balance between the first three terms on the right-
hand side of equation (2.2) indicates that non-constant equilibrium solutions also
exist, with a profile that is close to a ‘sech’ function. As m decreases, the solution
profile broadens and more closely resembles a pair of ‘tanh’-like fronts connecting
the constant solutions A = A+

0 and A = 0. At the Maxwell point m = −27ŝ2/160
these two constant solutions are energetically equal (note that equations (2.2)
and (2.1) are variational) and so a front between them remains stationary. Hence
it looks possible that stationary solutions for u(x) can be constructed which
consist of a patch of almost uniform pattern surrounded by the trivial state
u = 0. That this indeed occurs rests on Pomeau’s observation (Pomeau 1986)
that such a front between the periodic pattern and the trivial solution u = 0
is pinned by the periodicity of the pattern itself. The pinning effect emerges
through the interaction of the long-wavelength envelope scale X and the original
pattern scale x . Since these are decoupled at every order in the multiple-scales
perturbation theory, this interaction must necessarily be a ‘beyond-all-orders’
effect. The relevant exponentially small terms, discussed qualitatively by many
authors, have only recently been calculated correctly (Chapman & Kozyreff 2009).
Pinning expands the region of existence of the localized states from a single line
into a cusp-shaped wedge in the (r , s) plane. Within the cusp-shaped pinning
region the two curves of localized states intertwine in a characteristic fashion,
which gives rise to the term ‘homoclinic snaking’, as shown in figure 1a. For the
cubic–quintic Swift–Hohenberg equation (2.1) localized states on the two curves
are odd and even, respectively, as illustrated in figure 2. The short horizontal lines
in figure 1a between the snaking curves represent ‘ladder’ branches of asymmetric
(i.e. neither odd nor even) localized states.

(ii) Spatial dynamics

A different approach to equation (1.1) is to neglect the time derivative and
take the spatial coordinate to be the time-like evolution variable; this framework
is therefore often referred to as ‘spatial dynamics’. In this framework the
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Figure 2. Localized states on the odd and even snaking curves shown in figure 1a, corresponding
to the labels a, b, c and d. (a) and (c) lie on the even-symmetric branch and (b) and (d) on the
odd-symmetric branch.

pattern-forming instability that occurs at r = 0 is, owing to the reversibility, a
Hamiltonian–Hopf bifurcation (a.k.a. a 1 : 1 resonance). The normal form analysis
of this Hamiltonian–Hopf bifurcation was carried out by Iooss & Pérouème (1993)
and later extended by Woods & Champneys (1999), Coullet et al. (2000) and
Burke & Knobloch (2006); taken together, these papers establish many features
of the bifurcation problem. For example, the existence in the normal form of
small amplitude localized states near the bifurcation point and that two of these
states are then guaranteed to exist along bifurcating solution branches away from
r = 0: it is these branches that correspond to the commonly identified localized
patterns. The characteristic intertwined wiggling of the snaking branches arises
from the generic behaviour of the unstable and stable manifolds of the origin as
they pass through a heteroclinic tangle.

In the resulting bifurcation diagram the secondary branches are sometimes
referred to as ‘ladders’. That such asymmetric branches should exist generically
can be deduced both from a general bifurcation-theoretic approach (Beck
et al. 2009) and from the exponential asymptotics results of Chapman & Kozyreff
(2009).

(c) Effects of a finite domain

The ‘spatial dynamics’ approach to homoclinic snaking necessarily deals with
homoclinic orbits: solutions on the real line. Practical applications, though,
necessarily demand finite domains and suitable boundary conditions. Numerical
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investigation of the Swift–Hohenberg equation in finite domains (Bergeon et al.
2008; Dawes 2009) illustrates how the homoclinic snaking persists when the
domain is large and finite, and how the snake winds up or unravels as the domain
size increases or decreases, respectively.

As illustrated in figure 1a, in a finite domain the snaking curves bifurcate
directly from the periodic pattern close to, but not exactly at, r = 0. As the
localized state expands to fill the domain it ceases to be localized and eventually
the snaking curve reconnects to the periodic pattern near the saddle-node point on
the periodic branch. The details of this reconnection are more complicated than
one might perhaps expect, particularly when a second parameter, for example the
domain size L, is allowed to vary. It appears that the reconnection of the snaking
branch is organized by a mode interaction between the n-roll and n + 1-roll
branches of periodic patterns which move close to each other as L increases from
2pn to 2p(n + 1) (Dawes 2009).

(d) Large-scale modes

In a subset of the application areas listed in §2, it has been realized
that the pattern-forming instability is coupled to a large-scale mode which is
neutrally stable at long wavelengths. Such a mode arises naturally in some
situations owing to a conservation law (Matthews & Cox 2000), and cannot
be ignored in a weakly nonlinear analysis. The effect of such a neutral mode
is to ‘stretch out’ the homoclinic snaking in parameter space, in a way that
can be captured by a more subtle asymptotic analysis that leads naturally
to Ginzburg–Landau-type equations that contain non-local terms. The large-
scale field causes stable localized states to exist over a greater parameter range
than just near the Maxwell point, and in many cases localized states exist
more subcritically than might be expected, as illustrated in figure 3b. Recent
work (Dawes 2007, 2008; Dawes & Lilley 2010) provides both a physical and
a mathematical mechanism that resolves differences between the traditional
homoclinic snaking bifurcation diagram (figure 1a) and the ‘slanted snaking’
that arises in the large-scale-mode case. Intriguingly, similar mechanisms operate
in several different application areas: models for magnetoconvection (Dawes
2007, 2008) and nonlinear optics (Firth et al. 2007), and experimental results
obtained both for dielectric gas discharge (H.-G. Purwins, unpublished data)
and for vertically vibrated layers of granular material; see Umbanhowar et al.
(1996), from which figures 3a and 4d are reproduced. Figure 4 also shows
experimental observations of oscillons in a viscoelastic fluid; the corresponding
regime diagram is qualitatively very similar to figure 3a. Asymptotic analysis
of a model problem (proposed by Tsimring & Aranson 1997) for the vertically
shaken granular layer case shows (figure 3b), in agreement with experimental
results (figure 3a), that the localized states can exist more subcritically than the
uniform periodic pattern. The uniform periodic pattern is indicated by the thick
grey line in figure 3b and bifurcates subcritically before turning around at finite
amplitude, but the snaking curves are not constrained to lie only between the
linear instability and the saddle-node point at the leftmost extreme of the grey
curve: they appear at lower values of the bifurcation parameter g because of the
large-scale mode.
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Figure 3. (a) Experimentally determined regime diagram from Umbanhowar et al. (1996) showing
that oscillons (i.e. localized states), which exist only in the ‘bubble’, exist more subcritically than
extended patterns, which exist only above the triangles. G is the dimensionless acceleration (driving
parameter) and f is the frequency of the sinusoidal vertical motion of the granular layer. Copyright
Nature Publishing Group (1996). (b) Bifurcation diagram for slanted snaking in the oscillon model
(Dawes & Lilley 2010) showing localized states (intertwined thin black curves) existing for g(∼ G)
more negative than patterned states (grey curve), corresponding to (b) around f = 25 Hz. The
vertical axis N2 is a solution norm.

(a) (b) (c) (d)

Figure 4. Experimentally observed oscillons in layers of vertically shaken material: (a–c) in a
viscoelastic clay suspension of density r = 1.28 g cm−3; (a) a single oscillon at f = 14 Hz, (b) an
oscillon pair at f = 20 Hz, (c) an oscillon triad at f = 25 Hz. Frames are equally spaced in time
and cover two periods of the vertical forcing, showing the subharmonic nature of the localized
response (Lioubashevski et al. 1999). (d) Sideview of a localized state in a layer of bronze spheres
of diameter ≈ 0.16 mm, approximately 17 particles deep (Umbanhowar et al. 1996). Again, the
response is subharmonic: after one period of the forcing the peak will have collapsed to a crater,
re-forming a peak after a second period of the forcing has passed. (a–c) Reprinted with permission
from Lioubashevski et al. (1999); copyright (1999) by the American Physical Society. (d) Copyright
Nature Publishing Group (1996).

The physical mechanism for this difference is a balance between diffusion of
the large-scale quantity and nonlinear gradients of excitation of activity. In the
vertically shaken layers, conservation of mass leads to a diffusion equation with
a nonlinear term indicating that mass is ejected from more active regions in the
layer. This positive feedback stabilizes oscillons since this nonlinear expulsion
of material can balance diffusion even below the linear stability threshold. In a
suitable asymptotic limit this balance can be sustained even at small amplitude,
and hence a modified weakly nonlinear analysis is possible.
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Figure 5. (a) Surface of vanishing streamwise velocity u for an unstable steady localized state in
plane Couette flow u ≡ (u, v, w) = (y, 0, 0) between stress-free surfaces at y = ±1, where (u, v, w)
are the velocity components in, respectively, the x (streamwise), y (wall-normal) and z (spanwise)
directions. This very closely resembles the middle inset figure in (b) since Couette flow is symmetric
under y → −y. Reproduced with permission from Schneider et al. (2009). (b) Typical bifurcation
diagram of localized (blue, black) and spanwise-periodic (red) states; courtesy of Tobias Schneider.
Note the similarity of the lower two inset figures to figure 2a,b.

3. Applications of localized states

In this section, I offer three applications in which the theory of localized states
may prove extremely useful.

The general philosophical point is that many climate change problems,
illustrated here by the examples of ocean circulations and desertification, involve
spatially extended systems which evolve smoothly until a critical parameter value
is reached at which catastrophic and irreversible change occurs: this is the idea
of a tipping point. In the language of nonlinear dynamics, this corresponds to
the existence of a saddle-node bifurcation, together with hysteresis (arising from
bistability), so that after the catastrophic change there is no simple, reversible
path by which to recover the original climate state. This is the kind of system
in which localized states exist; therefore, it appears ambitious but reasonable
to suggest that properties of localized states could form the basis of diagnostic
tests for proximity to tipping points. For example, a local perturbation of the
system into the undesirable state produces a front between parts of the system
that are locally in the two different stable states. We then can understand,
quantitatively, how the front will generically move in order to eliminate the non-
uniformity. Far from the tipping point one would expect the local perturbation
into the undesirable state to vanish, while closer to the tipping point (and past
the ‘Maxwell point’ for the system where a front between the two states would
be stationary) the undesirable state would win. In this way, properties of the
front (e.g. its velocity) could be used to predict the distance from the current
system state to the ‘Maxwell point’ and hence to the saddle-node bifurcation
(tipping point).

(a) Transition to turbulence in shear flows

One classic example of bistability arises in the transition to turbulence from
simple shear flows, for example plane Couette flow. In plane Couette flow a
transition from laminar flow to persistent turbulence is observed experimentally
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Figure 6. (a) Bifurcation diagram for the strength of the Atlantic meridional overturning circulation
jA as the anomalous freshwater forcing parameter gp is varied. Reproduced with permission
from Huisman et al. (2009). Sv refers to the Sverdrup, a unit of volume flux: 1 Sv = 106 m3 s−1.
(b) Bifurcation diagram for the desertification model (3.2)–(3.3) proposed by Von Hardenberg
et al. (2001) showing numerically determined ranges of existence of different patterns, and (insert)
bistability at low precipitation rates in the range p0 < p < p1.

and computationally in a statistically reliable fashion with increasing Reynolds
number, without the existence of a linear instability of the laminar state (Waleffe
1997; Schneider et al. 2010a). Exciting recent work on this problem of ‘transition
to turbulence’ has uncovered localized states (figure 5) which appear to play
important roles in the structure of the collection of ‘edge states’—unstable flow
structures that separate the basins of attraction of the laminar state and the
persistently turbulent one (Schneider et al. 2009, 2010b). Understanding the
details of the role of localized states is an exciting development which will change
and vastly clarify our understanding of fluid flow at moderate Reynolds numbers.

(b) The Atlantic meridional overturning circulation (MOC )

The contribution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC) (Bindoff et al. 2007)
discusses the importance of the MOC at length, noting the difficulties associated
with obtaining reliable data and calibrating ocean circulation models for the
MOC. The IPCC report also affirms the influence of the MOC on global climate,
establishing its important role in climate dynamics, stating clearly for example
(chapter 5, page 397) that ‘There is evidence for a link between the MOC and
abrupt changes in surface climate during the past 120 kyr. . .’. It is certainly clear
that the MOC is a crucial determinant of European climate since it transports
heat from equator to pole, and this is estimated to keep the Atlantic around 4◦C
warmer than it would otherwise be.

Figure 6a shows a bifurcation diagram for the MOC computed numerically
directly from a global ocean model (Huisman et al. 2009). The bistability it shows
is common to many classes of such model, originating with Stommel (1961), and is
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well known (e.g. Launder & Thompson 2008). Models suggest that an increasing
flux of freshwater from melting polar ice (i.e. increasing gp) pushes the MOC
towards the limit point L+ which, if reached, would result in the MOC switching
off abruptly, and the European climate therefore cooling.

Simplifying the geometry of the Atlantic ocean to a fluid-filled rectangular
box, one can generate very similar flows in the laboratory (Whitehead 1996). The
equatorial region is modelled by a heated plate attached to one side of the box,
providing a constant source of hot, and also salt-enriched, water. This hot saline
water flows across the top of the box to the opposite (‘polar’) side where a stream
of colder fresh water is introduced. The cold fresh water cools the hot stream on
contact, which forces it to sink since its salinity makes it now denser than its
surroundings. Hence, a return flow from pole to equator is formed at depth in the
container. Throwing away the geometry and almost all the mechanics, one can
treat the problem as consisting of flows between two separate boxes of fluid for
the equatorial and polar regions with temperature and salinity transport between
them. Let the equatorial (respectively, polar) box contain fluid at temperature Te
(Tp) and salinity Se (Sp). ‘Toy model’ equations for the exchange of temperature
and salinity between the boxes were introduced by Stommel (1961),

Ṫ = h1 − T (1 + |T − S |) and Ṡ = h2 − S(h3 + |T − S |), (3.1)

where T = Te − Tp and S = Se − Sp, the parameters h1 and h2 measure the
strengths of the thermal and freshwater forcings, respectively, and h3 < 1 is the
ratio of relaxation times of temperature and salinity (a Lewis number). This
model robustly captures the bistability but is clearly hugely oversimplified. Yet
the bistability persists as the model is refined, and this allows (at least in theory)
the formation of fronts and pulses. With the aid of some additional spatial
inhomogeneity to allow pinning, localized states could be supported. At the very
least, theoretical opportunities exist to develop spatially extended versions of
equations (3.1) and, for example, probe the statistics of fluctuations that might
be useful in diagnosing how close to the bistability regime, or indeed to the point
L+ (see figure 6a), the MOC currently is.

(c) Desertification

Surprisingly similar considerations apply to models that have been proposed
for the propagation of vegetation patterns, and the reverse process, desertification
(Von Hardenberg et al. 2001; Meron et al. 2007), for example the pair of
dimensionless PDEs

nt = gw
1 + sw

n − n2 − mn + V2n (3.2)

and

wt = p − (1 − rn)w − w2n + dV2(w − bn), (3.3)

where n(x , y, t) and w(x , y, t) are the densities of biomass and soil water (equation
(3.3)), and g, s, m, p, r, d and b are non-negative parameters. The terms on
the right-hand-side of equation (3.2) describe, in order, plant growth, saturation
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as biomass reaches the soil carrying capacity, mortality and predation and
reproductive spread. The terms in equation (3.2) similarly represent precipitation,
loss due to evaporation (notice that r > 0 indicates that vegetation inhibits
evaporation), uptake of water by plants, and diffusion of water through the soil,
accounting for the suction of water by plant roots.

A realistically large value for d of around 100 leads to a Turing instability in
which vegetated (patterned) states appear in addition to the trivial solution n =
0, w = p corresponding to desert. In the low-precipitation (p0 < p < pc) regime,
denoted arid on figure 6b, such a model exhibits bistability between states of arid
desert (the horizontal line marked B) and (almost) periodic vegetation spots. The
inset in figure 6b indicates the hysteresis loop: a spot pattern of vegetation cannot
be sustained when the precipitation p falls below p0 and the system makes an
abrupt transition to the desert state. Desert persists as p is then increased up
to pc, at which point the desert state becomes unstable to uniform vegetation
(the line denoted V in the main part of figure 6b). V becomes unstable at p1
(numerical investigations indicate that this instability is subcritical) to patterned
states: spots, then labyrithine stripes, then a uniform vegetation pattern with
holes, as p increases further.

This general behaviour suggests that qualitative aspects of the formation
and dynamics of localized vegetation patches, as observed in arid enviroments
such as the Negev desert (Meron et al. 2007), may be used as diagnostic
tests for proximity to sudden desertification. The challenge is to make this a
quantitative method.

4. Conclusions

In §2 of this review, I presented a thumbnail sketch of the current state of
our understanding of localized states, concentrating almost entirely on the one-
dimensional case. It should be pointed out that progress is, slowly but surely,
being made in two and three dimensions as well; see, for example, the papers
by Lloyd et al. (2008), Lloyd & Sandstede (2009) and Taylor & Dawes (2009),
who discuss steady localized states, and Bode et al. (2002), who discuss localized
states that travel horizontally and interact strongly through collisions. In §3,
I speculated about the usefulness of the present theory for understanding and
predicting various abrupt changes in particular physical systems. I will finish
with brief remarks on coherent structures more generally.

Although it appears difficult to give a precise definition of a coherent structure,
the term is frequently used in describing more-or-less fully developed turbulent
flows. In such flows, large, long-lived eddies are prominent flow features. How
might the theory of localized states be useful in this setting? Firstly, of course,
one is dealing with vortical rather than density-like coherent objects. But,
nevertheless, one might be able to exploit a separation of time scales, along with a
suitable set of ‘effective coordinates’ for the evolution of the scale and position of
these relatively large, slow-moving structures moving over a more rapidly evolving
background flow field that can be characterized through averaged properties.
Such a reduction, at least locally in time, might help describe the emergence
and destruction of coherent structures and thereby offer insights into fully
developed turbulence. Elements of such an approach, with substantial physical
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intuition but without a detailed mathematical analysis, have been employed
already in nonlinear optics (Akhmediev & Ankiewicz 2005). An easier place to
begin pursuing this kind of programme might be spatiotemporally complicated
flows such as ‘spiral defect chaos’, in which again the dynamics is driven
by (vertical) vorticity (Morris et al. 1993). Extensions of the two-dimensional
Swift–Hohenberg equation to take account of vertical vorticity naturally have
a similar form to the large-scale density-like mode case (Dawes 2008) since the
vorticity equation is of nonlinear diffusion type, and is neutrally stable at zero
wavenumber.
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