
Localised pattern formation in a model for dryland vegetation

J.H.P. Dawes and J.L.M. Williams

Department of Mathematical Sciences, University of Bath,

Claverton Down, Bath BA2 7AY, UK

October 5, 2015

Abstract

We analyse the model for vegetation growth in a semi-arid landscape proposed by von Hardenberg
et al [Phys. Rev. Lett. 87:198101, 2001], which consists of two parabolic partial differential equations
that describe the evolution in space and time of the water content of the soil and the level of vegeta-
tion. This model is a generalisation of one proposed by Klausmeier but it contains additional terms
that capture additional physical effects. By considering the limit in which the diffusion of water in
the soil is much faster than the spread of vegetation, we reduce the system to an asymptotically sim-
pler parabolic-elliptic system of equations that describes small amplitude instabilities of the uniform
vegetated state. We carry out a thorough weakly nonlinear analysis to investigate bifurcations and
pattern formation in the reduced model. We find that the pattern forming instabilities are subcritical
except in a small region of parameter space.

In the original model at large amplitude there are localised solutions, organised by homoclinic
snaking curves. The resulting bifurcation structure is well known from other models for pattern
forming systems. Taken together our results describe how the von Hardenberg model displays a
sequence of (often hysteretic) transitions from a non-vegetated state, to localised patches of vegetation
that exist with uniform low-level vegetation, to periodic patterns, to higher-level uniform vegetation
as the precipitation parameter increases.
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1 Introduction

Desertification is a specific type of land degradation in which an already dry landscape become progres-
sively more arid. It is characterised by a combined loss of water and plant biomass making the land barren
and unable to support new plant life. It is an increasingly relevant issue in society since rapid population
growth necessitates ever more effective use of land for agriculture. Desertification can be caused directly
by human activities (e.g. overcultivation which serves to deplete the soil of nutrients and make it more
difficult for new plants to grow) or indirectly, e.g. via overgrazing which actively removes plant biomass
through herbivority. To a lesser extent, it may also result from climate change or geological factors.

The most successful method of combatting desertification is afforestation: the planting of trees and
shrubs. This serves to prevent desertification in several ways. Studies (e.g. [17, 27]) have shown that
an increase in vegetation cover will cause a significant decrease in soil erosion rates; the retention of the
topsoil layer encourages plant growth. Another method used to avoid soil erosion is to fixate the soil by
planting trees in lines in order to form windbreaks. Methods of combatting desertification are expensive
and often need to be planned over long timescales. Governments of countries affected by this problem are
keen to find ways of identifying areas at high risk so that plans can be more effectively targeted. Such
methods are of particular interest to the Israeli government since 90% of Israel is classed as semi-arid
or arid and 60% is already covered by the Negev Desert. The term semi-arid is applied to describe
ecosystems with an annual rainfall of 250-500mm, these are estimated to cover 30% of the Earth’s land
surface [25].
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The study of vegetation patches in semi-arid landscapes has long been of interest to theoretical
biologists and land ecologists and, in more recent years, applied mathematicians. The reason for this is
that a naturally occuring feature of such landscapes is the formation of vegetation patterns. These organic
structures are often difficult to see from the ground and were first observed in 1950 in aerial photographs
of sub-saharan Africa [15, 16]. Since then similar patterns have been observed in a variety of semi-arid
regions including parts of Australia [14] and Mexico [19]. It is thought that these patterns hold the key
to understanding the desertification process. If one were able to accurately model the development of
the vegetation patterns in a certain region, one could use this to make predictions about the state of the
land in the future. Different scenarios could be explored, for instance the effect of introducing different
plans to combat desertification or alternatively the outcome if no intervention is planned.

This ability to predict and control desertification is therefore the motivation behind deriving math-
ematical models which encapsulate the behaviour of vegetation in semi-arid environments. A number
of mathematical models have been put forward that describe the behaviour of vegetation in semi-arid
environments and in particular attempt to capture the pattern formation in these ecosystems. These
models are typically examples of reaction-diffusion equations involving two ore more physical variables.
One of the first such systems that models pattern formation in semi-arid landscapes was introduced by
Klausmeier [12], and is a pair of reaction-diffusion equations for soil water content and biomass. This
model has been further developed in a number of publications. The model proposed by von Hardenberg
et al. [9] will be used as the starting point for the mathematical analysis carried out in this paper.

More complicated models which include a third equation that describes the behaviour of surface water,
were proposed by HilleRisLambers et al. [10] and Gilad et al. [7]. The rationale for treating surface
water as a separate variable is that rainfall in semi-arid environments has a tendency to fall in short,
sharp showers. This causes a layer of water to build up above ground level during a period of rainfall
since infiltration rates are slower than precipitation rates. We will not consider these three-component
models in any detail in the present paper, but it would be natural to include them in future work.

1.1 The Klausmeier model

We start by reviewing the original model put forward by Klausmeier [12]. The variables N(X, T ) and
W (X, T ), represent local (non-negative) densities of plant biomass and soil water respectively; they
depend on X = (X,Y ), the surface coordinates, and time T . Klausmeier proposed a reaction-diffusion
type model as follows:

NT = RJWN2 −MN +D∇2N (1)

WT = P − LW −RWN2 + VWX (2)

In (1) the term RJWN2 (where R and J are positive constants) describes the uptake of water
through the roots of the plants and its use to grow additional plant mass. In general Klausmeier proposes
a plant growth / water uptake term proportional to G(W )F (N)N , where G(W ) is the functional response
describing how biomass increases as a function of soil water level W and F (N) is a function that describes
how increasing biomass also increases water filtration through the soil. This latter effect is due to the roots
of shrubs and grasses breaking down the top crust of the soil, allowing increased water filtration. It is
therefore evident that F (N) and G(W ) should be increasing functions. R is a constant of proportionality
and J describes the yield of biomass per unit of soil water consumed. In the simplest case, the functions
G(W ) and F (N) can be taken to be linear; G(W ) = W and F (N) = N . Klausmeier asserts that the
form of these functions makes little qualitative difference to the behaviour of the model. Loss of plant
biomass occurs through mortality and herbivory at rate proportional to the local level of biomass N , with
a constant M . Finally the diffusion term D∇2N models the isotropic spatial spread of plants through
seed dispersal or clonal reproduction.

Equation (2) describes the variation of the soil water content in time and space. The source term
P represents water added to the system, assumed to be added uniformly in space via precipitation, and
constant in time. Similarly, the term −LW describes evaporation (L is another positive parameter). The
final term VWX in the soil water equation describes the effect of sloping ground: soil water is transported
downhill.

A nondimensional form of equations (1) and (2) can be obtained by introducing the following scalings:

(W,N) = R−1/2L1/2(J−1w, n), (X,Y ) = L−1/2D1/2(x, y), T = L−1t, (3)

P = R−1/2J−1L3/2p, M = Lm, V = L1/2D1/2v,
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where the rescaled variables n(x, t) and w(x, t) describe the (dimensionless) spatiotemporal variations of
plant biomass and soil water, respectively. The nondimensionalisation procedure essentially scales out
the parameters D, J , L and R. When nondimensionalised, the Klausmeier model becomes:

nt = wn2 −mn+∇2n, (4)

wt = p− w − wn2 + vwx, (5)

with p, m, and v remaining as parameters. Several authors, for example Kealy & Wollkind [11], Zelnick
et al [26], and Siteur et al [24], study a modified version of (4) - (5) in which the soil water equation (5)
is augmented by a diffusion term in the form D∇2w and the advection term vwx is removed.

To give an idea of the possible further extensions of the Klausmeier model which have been studied,
we mention very briefly the model proposed by HilleRisLambers et al [10], see also [20], which treats
surface water, described by a third variable H(X, T ), as an additional field, evolving separately from the
ground water. HilleRisLambers et al [10] proposed the (dimensional) model:

NT =
W

W + 1
N − bN +DN∇2N,

WT =
N +WH

N + 1
H −

W

W + 1
kN − rW +DW∇2W,

cgmax

α
HT = PS −

N +WH

N + 1
H +∇2H,

which contains a number of substantial modelling differences. The water uptake from the soil to the
plant biomass is now modelled by a term whose dependence on W saturates at large W . Similarly, the
flow of water from the surface into the soil is modelled by a term depending on N , but again with a rate
that varies between the constant WH for bare ground (i.e. when N = 0) and saturates to unity at large
N . Diffusion of all three quantities is anticipated, although with different diffusion coefficients for each
variable. Further discussion of a number of models in the literature is given by Zelnik et al [26].

The structure of the remainder of this paper is as follows. In section 2 we describe the structure of the
von Hardenberg model which combines a number of effects discussed above. We summarise the uniform
states supported by this model and we investigate their susceptability to pattern forming instabilities.
We then present a rescaling that simplifies this model further. Section 3 derives the reduced model and
sets out the weakly-nonlinear analytic progress that we are able to make. We present also numerical
solutions obtained via continuation, using the well-known software package AUTO [6]. In section 4 we
return to the full von Hardenberg model and present results showing the existence of localised states and
homoclinic snaking. Section 5 concludes the paper.

2 The von Hardenberg model

In this section we consider in significant detail, the model introduced by von Hardenberg et al [9],
see also recent work by Gowda et al [8] on two dimensional pattern selection in this model. The von
Hardenberg model is fundamentally very similar to the Klausmeier model; we explore the consequences
and significance of the modifications and additional parameters that the von Hardenberg model contains.

The von Hardenberg model takes the form

nt =
γw

1 + σw
n− n2 − µn+∇2n, (6)

wt = p− (1− rn)w − w2n+ δ∇2(w − βn)− ν(w − αn)x, (7)

which is already in nondimensional form. Similar to the Klausmeier model, it is a pair of partial differential
equations in the non-negative quantities n(x, t) and w(x, t), biomass and water respectively, which are
functions of space x and time t.

In the biomass equation (6) the terms are a mixture of familiar and new ones. As before, we have
a negative term −µn corresponding to loss of plant matter and a diffusion term ∇2n accounting for the
spread of plants. However this time the growth of biomass is given by γwn/(1+σw). This form is chosen
so that growth occurs at a rate that grows linearly with w for dry soil. We also notice the presence of a
negative quadratic term −n2 which allows for saturation of the soil due to limited nutrients.

In the equation for groundwater density (7), the first term p stands for precipitation and is equivalent
to the variable p in Klausmeier’s equation (5). The second term −(1 − rn)w represents a loss of water
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due to evaporation and is the analogue of −w in (5). Unlike the Klausmeier model, it includes the effect
of shading by plant matter with the −rn expression, which acts to decrease the amount of water lost
where there is biomass protecting the soil. Clearly this term becomes unphysical when n > 1/r since it
then would turn from a sink into a source term.

The −w2n term accounts for local uptake of water through the roots and is in effect similar to the
−wn2 term in (5). The surface runoff term ν(w− αn)x models the effect of preferential advection of soil
water down a slope, where ν is the downhill runoff velocity. The difference between this term and the
vwx term in (5) is that the quantity being differentiated is now w− αn as opposed to just w. This takes
into account the drop in runoff in areas of higher vegetation due to increased infiltration. In this paper
we consider only the case of level ground and set ν = 0 throughout the following analysis. This implies
also that the parameter α does not appear in the remainder of the paper.

There is one additional term in (7) not present in (5), namely δ∇2(w − βn) which models diffusion
of water through the soil. Comparing the two models, it is clear that the extensions by von Hardenberg
et al. are intended to capture additional physical effects and feedbacks between the biomass and the soil
water variables which have natural physical interpretations, but which are not present in the Klausmeier
model. In particular, while keeping the level of precipitation p as our primary bifurcation parameter, we
will focus on the behaviour of the von Hardenberg model as the parameters r and β are varied since these
describe the new physical effects and feedbacks.

2.1 Uniform states

In this subsection we summarise the existence of uniform states for the von Hardenberg model (6) -
(7) in one spatial dimension. There are two possible kinds of uniform state: either n = 0 and w = p
everywhere, corresponding to a vegetation-free equilibrium, or a state with n = n0 6= 0, w = w0 constant.
von Hardenberg et al refer to these as the ‘bare state’ B and a uniform vegetation state V , respectively.
Note that there is only one possible B state, but that more than one V state may exist for a particular
set of parameter values.

To investigate the linear stability of the bare state n = 0; w = p we write n = n1, w = p + w1,
substitute into (6) - (7) and linearise in n1, w1 to obtain

ṅ1 =

(

γp

1 + σp
− µ

)

n1 + n1 xx, (8)

ẇ1 = (rp− p2)n1 − w1 + δw1 xx − δβn1 xx. (9)

Writing (n1, w1) = (n̂1, ŵ1)e
st+ikx we obtain the following expression from (8) which decouples from (9)

s =

(

γp

1 + σp
− µ

)

− k2,

which shows that the bare state B undergoes an instability, at wavenumber k = 0, to vegetation when
γp/(1+σp) = µ. Consideration of (9) shows that there are no other instabilities (the 2× 2 linear system
is lower triangular).

Re-arranging the condition for instability of B defines the critical rainfall parameter

pc :=
µ

γ − σµ
. (10)

The model construction implies the constraint γ/σ > µ that guarantees that for any level of soil water w,
the rate of growth of vegetation at low biomass levels is greater than the rate µ at which biomass decays.
The bifurcation at p = pc produces uniform vegetation states V . From (6) we see that on V we must
have n = γw/(1 + σw)− µ. Substituting this into (7) we obtain the following cubic equation for w:

(σµ− γ)w3 + (µ+ r(γ − σµ)− σ)w2 + (pσ − 1− rµ)w + p = 0. (11)

Solutions of (11) for which w > 0 correspond to physically admissible V solutions. The location of
uniform states is shown in figure 1 and 2 which illustrate the dependence of the solution structure on
the parameters r and γ respectively. All curves emerge from the horizontal axis at p = pc, independent
of r and δ. As r increases the cubic curve becomes steeper and then bistability emerges. The middle
part of the solution branch in the bistable cases is unstable to uniform perturbations and is indicated
by dashed lines. The dependence on γ is similar: as γ increases bistability develops. At sufficiently
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Figure 1: Bifurcation digrams showing the existence of V states and their stability: solid and dashed lines (blue)
indicate stability and instability, respectively. Dashed-dotted lines (red) indicate unphysical solution branches
where the shading factor (1− rn) has become negative. (a) in the (p, n) plane; (b) in the (p, w) plane. Bistability
develops as r increases; the curves correspond to values r = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 from bottom to top. Other
parameters: γ = σ = 1.6, µ = 0.2.
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Figure 2: Bifurcation digrams showing the existence of V states and their stability: solid and dashed lines (blue)
indicate stability and instability, respectively. Dashed-dotted lines (red) indicate unphysical solution branches
where the shading factor (1− rn) has become negative. (a) in the (p, n) plane; (b) in the (p, w) plane. Bistability
develops as γ increases; the four curves correspond to γ = 1, 2, 3, 4, 5, 6, 7 from bottom to top. Other parameters:
σ = 1.6, µ = 0.2, r = 1.0.

large values of either r or γ the saddle-node bifurcation point on the upper part of the uniform branch
moves substantially to the left of p = pc, i.e. the positive feedback effects parameterised by r and γ are
sufficiently strong to sustain a uniform state in which significant vegetation and soil water are present
even though the precipitation is well below the level required to sustain low levels of vegetation. Although
these curves are smooth, as n0 increases along a branch, the shading term (1 − rn) decreases until it
passes through zero. For n > 1/r, the term makes an unphysical contribution to the soil water level: the
interpretation would have to be that the presence of biomass automatically introduced more water into
the soil (i.e. a negative evaporation effect). The parts of the curves for which solutions remain physically
relevant are indicated by the thicker blue lines. These include all the curves at small n0, which indicates
that this is a regime in which the model equations remain valid for all combinations of parameter values.

Despite the significant hysteresis exhibited by the solution branches, the bifurcation at p = pc is
supercritical in all the cases shown in figures 1 and 2. for all parameter values, uniform states at small
biomass exist in p > pc. This can be justified straightforwardly since the slope of the curves w(p), or
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equivalently p(w), shown in figure 1(b) and 2(b) can be computed explicitly as follows.
Differentiating (11) with respect to w we obtain

3(σµ− γ)w2 + 2(µ+ r(γ − σµ)− σ)w +
dp

dw
(1 + σw) + pσ − 1− rµ = 0.

We now set w = p = pc and re-arrange to obtain

dp

dw

∣

∣

∣

∣

pc

= 1 +
µ(pc − r)

1 + σpc
. (12)

We are particularly interested in determining the range of parameter values for which dp/dw|pc
is positive,

and hence dw/dp|pc
is positive, so that there is a small interval in the bifurcation parameter p, say

pc < p < p1, above the initial bifurcation point, over which the V state is stable to uniform perturbations.
In terms of the parameter r, these inequalities are satisfied when

r < pc

(

1 +
γ

µ2

)

. (13)

For the parameter values σ = γ = 1.6, µ = 0.2 this evaluates to r < 6.4062 to 4 d.p. Alternatively,
rearranging (12) to obtain a condition in terms of γ we find that dw/dp|pc

is positive when

γ(1− rµ) + µ2(1 + σr) > 0.

For the parameter values σ = 1.6, µ = 0.2 and r = 1.0, as used in figure 2, we observe that since
1− rµ > 0, this condition holds for all γ.

2.2 Linear stability of V

In addition to the saddle-node bifurcations shown in figures 1 and 2 there are additional possible
pattern-forming instabilities in which V loses stability to spatially periodic perturbations. In this sub-
section we summarise this linear stability calculation, which proceeds along well-known lines. Setting
(n,w) = (n0, w0) + (n1(x, t), w1(x, t)) where n0, w0 is a uniform V solution, and linearising in the small
perturbations (n1, w1), we obtain

ṅ1 =
γ(n0w1 + w0n1)

1 + σw0
−

σγw0n0

(1 + σw0)2
w1 − 2n0n1 − µn1 + n1 xx, (14)

ẇ1 = rw0n1 − (1− rn0)w1 − 2w0n0w1 − w2
0n1 + δ(w1 − βn1)xx. (15)

To compute the response to spatially periodic perturbations, we write (n1, w1) = (n̂1, ŵ1)e
st+ikx and

substitute this ansatz into (14) - (15). We obtain the following linear system involving a 2 × 2 matrix
that we denote by M :

(

s− γw0

1+σw0

+ 2n0 + µ+ k2 −γn0

(1+σw0)2

−rw0 + w2
0 − δβk2 s+ 1− rn0 + 2w0n0 + δk2

)(

n̂1

ŵ1

)

=

(

0
0

)

. (16)

Non-zero solutions to this linear system exist only when det(M) = 0. This condition then yields a
quadratic expression for the growth rate s as a function of squared wavenumber k2. Figure 3 illustrates
these linear stability results, plotting the location of the V state in figure 3(a) and the least negative part
of the growth rate curve in figure 3(b) which shows that the curve moves up above the s = 0 axis and
then moves down below it as p is increased. The values of p at which the growth rate curve in (a) has a
tangency with the s = 0 line correspond to the bifurcation points (solid dots) in (b) at which the lines
change from solid to dashed, indicating instability. We label these bifurcation points as p1 and p2, using
the convention that pc < p1 < p2 (at least, for these parameter values). The parameters used in figure 3
correspond to those used in [9, figure 2] for ease of comparison.

In order to analyse the structure of these bifurcations in the weakly nonlinear regime we notice that
the parameter δ naturally takes a value much larger than the other parameters. This is unavoidable since
it represents the ratio of typical diffusion coefficients for soil water and vegetation: typical timescales for
diffusion of soil water and vegetation are clearly extremly different; taking δ = 100 seems perhaps to be
an underestimate of the typical ratio of timescales we might expect. For comparison, the paper by Siteur
et al [24] take the ratio of diffusion rates to be 500, see their parameter E in Appendix A and Table A.1.
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Figure 3: (a) Growth rate s(k) for perturbations to the uniform vegetated state V , as p increases above pc. The
curve lies below s = 0 near pc and then moves above it before descending again at large p, indicating that the
V state is stable at larger p. Parameters: γ = σ = 1.6, µ = 0.2, r = 1.5, δ = 100, β = 3. Growth rate curves are
shown for p ∈ {pc ≡ 0.15625, 0.2, 0.3, 0.4, 0.5, 0.6}: s(0) decreases monotonically with increasing p. (b) Bifurcation
digram in the (p, n0) plane showing the existence of V states and their stability for γ ∈ {1.32, 1.4, 1.6, 1.8, 2.0}.
Solid and dashed lines indicate stable and unstable solutions respectively, and black dots indicate pattern forming
instabilities at points we refer to as p1 and p2, with the convention that p1 < p2. Other parameters are as in (a).
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Figure 4: Scaling of quantities associated with p1 as δ increases. Black line: the dependence of p1 − pc; blue
dashed line: w0 − pc where w0 is evaluated at p = p1 on V ; red dash-dotted line: n0 evaluated at p1 on V (shown
scaled up by a factor of 10 for clarity); black dotted line: critical wavenumber k2

c
at p = p1.

Figure 4 indicates the movement of the bifurcation points and other quantities as δ increases while
keeping all other parameters fixed. The figure indicates that these four quantities: p1 − pc, w0(p1)− pc,
n0(pc) and k2c all appear to scale ∼ 1/δ as δ increases. These scalings therefore indicate that there
might be a non-trivial limit of the model equations in the limit of large δ. Clearly large δ would also be
expected to promote Turing-type instabilities since δ is a physically relevant ratio of diffusion coefficients;
this might provide a useful simplifying route to aid the investigation of the dynamics of this model
problem in ecologically relevant regimes.

If p1− pc is small then the pattern forming instability of V is close to the initial bifurcation of V from
B . We would therefore expect both the biomass n0 and the change in soil water w0(p1)− pc to be small,
of order O(1/δ) since at leading order they vary linearly with p− pc. The fact that the pattern-forming
instability involves a wavenumber k ∼ δ−1/2 can be justified by examining the determinant of the matrix
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M in (16), as follows. From (16) we have

det(M) ≡ C(k2) :=
[

1− rn0 + 2w0n0 + δk2
]

[

−
γw0

1 + σw0
+ 2n0 + µ+ k2

]

, (17)

so that a local maximum in C(k2) occurs when dC/d(k2) = 0, i.e. when

C ′(k2) = 1− rn0 + 2w0n0 −
γδw0

1 + σw0
+ 2δn0 + δµ+ 2δk2 −

γn0δβ

(1 + σw0)2
= 0.

If we now set n0 = n̂/δ and w0 = pc + ŵ/δ then we obtain

2δk2 =
γβn̂

(1 + σpc)2
+

γŵ

1 + σpc
−

γpcσŵ

(1 + σpc)2
− 1− 2n̂+O (1/δ) , (18)

so that in the limit δ ≫ 1 we expect k2 ∝ δ−1 since the right-hand side of (18) is of order unity when n̂
and ŵ are of order unity.

2.3 Derivation of a reduced equation

In this subsection we use the observation made above, and the motivation from the numerical results
shown in figure 4 to rescale the system (6) - (7) and simplify it to a single evolution equation for n(x, t)
in the limit of large δ.

We introduce the small parameter ε := δ−1 and write p = pc + εP , n = εN and w = p + εW . Note
that the threshold pc for the instability of B , and at which the V state emerges, is independent of δ.
Given the scaling behaviour k2c ∼ δ−1 we also introduce the long lengthscale X = ε1/2x, i.e. ∂x = ε1/2∂X .
Note that this rescaled variable X is not related to the variables X,Y used earlier, in section 1.1.

Substituting these rescalings into (6) - (7) we obtain

Ṅ =
γ

(1 + σpc)2
εPN − εN2 + εNXX +

γ

(1 + σpc)2
εWN +O(ε2) (19)

Ẇ = −W +WXX + (rpc − p2c)N − βNXX +O(ε). (20)

These equations are not completely balanced since ε still appears in (19). This indicates that in the
limit N evolves much more slowly in time than W . Consequently we may consider W to be rapidly
determined by N through (20) which is, at leading order, linear. We therefore rescale time, setting
T = εt, and consider (20) to instantaneously determine W as a function of N . After rescaling time in
this way, at leading order in ε there is no time derivative term in (20). Alternatively, we may formally
solve the (now steady-state equation) (20) by defining the pseudodifferential operator D[N ] by

W = (1− ∂2
X)−1(rpc − p2c − β∂2

X)N =: D[N ]

or, in terms of spatial Fourier Transforms (where k is wavenumber corresponding to the spatial scale X):

F [W ](k) =
rpc − p2c + βk2

1 + k2
F [N ](k). (21)

momentarily suppressing the dependence of W and N on T for notational convenience. Note that
if N(X,T ) = N0 is constant, then D[N ] just multiplies N by a constant: D[N0] = (rpc − p2c)N0.
Similarly, high spatial wavenumber components of N(X,T ) will be scaled by a factor β. D is technically
a pseudodifferential operator since its Fourier Transform is not a polynomial in k. In real-space it can
be thought of as nonlocal convolution operator. More precisely, applying the convolution theorem for
Fourier transforms to (21) we obtain

W (X,T ) = βN(X,T ) + (rpc − p2c − β)

∫ ∞

−∞

e−|X−Y |N(Y, T ) dY. (22)

After including the time rescaling T = εt we conclude that, asymptotically in the limit of large δ
the dynamics of the von Hardenberg model for small vegetation levels 0 < n(x, t) ≪ 1 should be well
captured by the single equation

NT = b0PN −N2 +NXX + b0ND[N ], (23)

8



or equivalently the elliptic-parabolic system

NT = b0PN −N2 +NXX + b0WN, (24)

0 = WXX −W + (rpc − p2c)N − βNXX , (25)

where b0 = γ/(1 + σpc)
2 and pc = µ/(γ − σµ) are positive coefficients. Given the range of δ over which

the scalings appear in figure 4, in fact δ might not need to be particularly large for this reduced system
to provide useful insight into the dynamics of the von Hardenberg et al model.

3 Dynamics of the reduced model

Having derived the reduced model (23) in the previous section, in this section we summarise its dynamics;
the weakly nonlinear analysis that determines the pattern forming behaviour of (6) - (7) for low levels
of vegetation can be carried out and presented completely, although it does lead to coefficients that
have a reasonably complicated dependence on the underlying problem parameters. However, this can be
illustrated graphically and allows us in particular to elucidate the role of the feedback parameter r.

The reduced model in the form (23) clearly has two uniform, constant states: N ≡ 0 (corresponding
to the bare state B ) and the uniform vegetation state V for which N = N0 > 0 where N0 is defined to
be

N0 =
γP

(1 + σpc)2 − γ(rpc − p2c)
. (26)

For later convenience we define the combination of coefficients on the right-hand side to be a new param-
eter b1, hence we write the V state as N0 = b1P .

Recall that P ∝ p − pc is the scaled precipitation parameter, so that in the reduced model the level
of vegetation increases linearly with the rainfall parameter P , and that the V solution exists in P > 0 as
long as r is small enough. More precisely, the bifurcation is supercritical for r < r∗ and subcritical for
r > r∗ where

r∗ := pc +
(1 + σpc)

2

γpc
=

µ2 + γ

µ(γ − σµ)
= pc

(

1 +
γ

µ2

)

,

which agrees with the inequality in (13). For stable patterns to form we are naturally more interested in
the regime r < r∗.

3.1 Linear and weakly nonlinear analysis

In terms of the formulation (24) - (25), the B and V states correspond to N = W = 0 and N = N0,
W = W0 = (rpc − p2c)N0. To examine linear instabilities of the V state, we first set N = N0 + U(X,T )
and W = W0 + V (X,T ) and substitute these expressions into (24) - (25). This results in the system

UT = −b1P + UXX − U2 + b0b1PV + b0UV. (27)

V − VXX = (rpc − p2c)U − βUXX (28)

Linearising around the state U = V = 0 we deduce that this solution becomes linearly unstable to
perturbations ∼ eikcX when

P 2(b0b1β − b1)
2 + 2P [b2 + 2b0b1(rpc − p2c − β/2)] + 1 = 0

and so V loses stability first when

P = P0 :=
−[2b0b1(rpc − p2c − β/2)− b1] + [[2b0b1(rpc − p2c − β/2)− b1]

2 − (b0b1β − b1)
2]1/2

(b0b1β − b1)2
. (29)

The critical wavenumber of this instability is kc, where

k2c =
1

2
(P0(b0b1β − b1)− 1). (30)

This is therefore a pattern-forming instability whose weakly nonlinear development can be analysed using
a standard multiple-scales approach as we now describe.

9



Propose the expansion

U = εU1 + ε2U2 + ε3U3 + · · ·

V = εV1 + ε2V2 + ε3V3 + · · ·

where we set U1 = AeikcX + c.c. and the amplitude A(ξ, τ) is a function of the new rescaled long space
and time variables ξ = εX and τ = ε2T respectively, and c.c. denotes the complex conjugate of the
immediately preceding term. In addition let P = P0 + ε2µ. Considering (28) at O(ε) we find that

V1 =
rpc − p2c + βk2c

1 + k2c
(AeikcX + c.c.).

Turning to O(ε2) terms, we see that (28) yields

V2 − V2XX − 2V1Xξ = (rpc − p2c)U2 − βU2XX − 2βU1Xξ.

We observe that the quadratic interactions in (28) will imply that U2 takes the form U2 = B(ξ, τ)e2ikcX +
c.c.+ C(ξ, τ), where the amplitudes B(ξ, τ) and C(ξ, τ) are amplitudes of the modes with wavenumbers
2kc and 0, respectively. Given this form for U2 we can then deduce that

V2 = 2ikc

[

rpc − p2c + βk2c
(1 + k2c )

2
−

β

1 + k2c

]

(Aξe
ikcX − Āξe

−ikcX) + (rpc − p2c)C

+
rpc − p2c + 4βk2c

1 + 4k2c
(Be2ikcX + c.c.). (31)

Now we consider equation (27) at O(ε2), which gives

0 = −U2b1P0 + b0b1P0V2 + U2XX + 2U1Xξ − U2
1 + b0U1V1. (32)

Then, substituting (31) into (32) enables us to solve for B(ξ, τ) and C(ξ, τ) in terms of A(ξ, τ). We find
that

B = b3A
2, and C = b4|A|

2, (33)

where the coefficients are

b3 :=
1− b0(rpc − p2c + βk2c )/(1 + k2c )

(b0b1P0(rpc − p2c + 4βk2c ))/(1 + 4k2c )− P0b1 − 4k2c

b4 := 2
1− b0(rpc − p2c + βk2c )/(1 + k2c )

−b0P0
.

The terms involving iAξ and iĀξ in (32) vanish identically (and correctly) through our choice of P0 as a
root of the quadratic expression (29) and our corresponding selection of the critical wavenumber kc.

Considering terms at O(ε3) in (28) and (27), we need to solve

V3 − V3XX − 2V2Xξ − V1ξξ = (rpc − p2c)U3 − βU3XX − 2βU2Xξ − βU1ξξ, (34)

U1τ + U3T = −b1(U3P0 + U1µ) + b0b1P0V3 + b0b1µV1 + U3XX

+2U2Xξ + U1ξξ − 2U1U2 + b0U1V2 + b0U2V1. (35)

From (34) we observe that V3 contains terms ∼ eikcX that (generically) will result in a resonant response:

V3 − V3XX =

[

−4k2c

(

rpc − p2c + βk2c
(1 + k2c )

2
−

β

1 + k2c

)

+
rpc − p2c + βk2c

1 + k2c
− β

]

Aξξe
ikcX + c.c.+NRT

where NRT stands for ‘non-resonant terms’, i.e. those terms that have a Fourier dependence on the
shorter lengthscale X of the form eimkcX with m ∈ Z\{1,−1}. Hence the resonant part of V3 takes the

form V
(1)
3 + c.c. where

V
(1)
3 =

1

1 + k2c

{

−4k2c

(

rpc − p2c + βk2c
(1 + k2c )

2
−

β

1 + k2c

)

+
rpc − p2c + βk2c

1 + k2c
− β

}

Aξξe
ikcX .
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So, when we return to (35) we see that the resonant terms of the form eikcX indicate that the amplitude
equation for A(ξ, τ) takes the form

Aτ = −b1µA+ µAb0b1

(

rpc − p2c + βk2c
1 + k2c

)

+Aξξ

−2(AC +BĀ) + b0(rpc − p2c)AC + b0

(

rpc − p2c + 4βk2c
1 + 4k2c

)

BĀ

+b0
rpc − p2c + βk2c

1 + k2c
(BĀ+AC) + V

(1)
3

where B(ξ, τ) and C(ξ, τ) are given in (33). Hence, simplifying, this is (as must be the case on symmetry
grounds) a standard cubic Ginzburg–Landau equation taking the form

Aτ = C1µA+ C2Aξξ + C3A|A|
2 (36)

where the coefficients are given explicitly as follows.

C1 = −b1 + b0b1

(

rpc − p2c + βk2c
1 + k2c

)

,

C2 = 1 +
b0b1P0

1 + k2c

{

−4k2c

(

rpc − p2c + βk2c
(1 + k2c )

2
−

β

1 + k2c

)

+
rpc − p2c + βk2c

1 + k2c
− β

}

,

C3 = −2(b3 + b4) + b0b4(rpc − p2c) + b0b3
(rpc − p2c + 4βk2c )

1 + 4k2c
+ b0(b3 + b4)

rpc − p2c + βk2c
1 + k2c

.

3.2 Results of the weakly nonlinear analysis

In this subsection we summarise the dependencies of the coefficients C1, . . . C3 on the original problem
parameters, for the rescaled equations (24) - (25). As discussed previously we keep µ and σ fixed and
vary the feedback parameters γ, r and β. Figure 5 shows four surface plots for the quantities C1, kc, C2
and C3 as functions of γ and r for fixed β = 3.0.

We observe that a pattern forming instability exists only for γ sufficiently large: γ > γc ≈ 0.85
in figure 5. Figure 5(b) indicates that as γ decreases towards γc the critical wavenumber kc diverges
to infinity. An analytic expression for γc is given implicitly by setting the expression (30) equal to
zero. C1 and C2 remain positive for all γ > γc and r indicating that the weakly nonlinear amplitude
equation is always well-posed. The dependence of these coefficients on r appears to be quite weak
compared to their dependence on γ. Figure 5(d) shows that for γ just above γc the coefficient C3 is
negative in a region bounded by the line γ = γc and the black sloping line shown in figure 5(d); the
pattern-forming instability is therefore supercritical in this region. To the right of this sloping line C3
is positive indicating that the instability is now subcritical. The sloping line therefore describes the
location of higher-codimension (sometimes referred to as ‘tricritical’ points) at which higher-order terms
are necessary in order to determine the bifurcation behaviour.

Figure 6 shows the values of C1, C2 (rescaled by a factor of 10) and C3 as γ is varied, keeping r = 1.5
constant. This illustrates in more detail that the supercritical region, in which C3 < 0, occurs only near
γ = γc and C3 is positive and increases rapidly as γ increases away from γc.

Figure 7 illustrates the dependence of the coefficients at fixed r = 1.5. The pattern forming instability
does not occur if either γ or β is sufficiently small: as in figure 5(b), figure 7(b) shows that kc increases
rapidly as this lower limit is approached. In order to survey a greater range of parameter values, in figure 7
the contours are shown on a log–log scale, and moreover the colour scale corresponds to the logarithm of
the coefficients. Figure 7(d) again illustrates that for values of γ and β near the lower boundary of the
pattern forming region, C3 < 0 in a strip, shown in dark blue, between two solid black curves. Therefore
the instability is persistently supercritical near this lower boundary before becoming subcritical at larger
values of either γ or β.

It appears, from figure 7, that in the limit of large γ the coefficients C1, . . . , C3 appear to depend on
β and γ, as a good approximation, through the product βγ; the coefficients are almost constant on lines
with slope −1 in these log–log plots. This observation can be justified by observing that the rescaling

P =
1

γ
P̂ , W =

1

γ
Ŵ , β =

1

γ
β̂
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(a) (b)

(c) (d)

Figure 5: Surface plots in the (γ, r) plane. (a) C1; (b) kc; (c) C2; (d) C3. Other parameters are held fixed at
β = 3.0, µ = 0.2, σ = 1.6. The black line in (d) is a curve on which C3 = 0.
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Figure 6: Coefficients C1, C2, C3 as functions of γ. Note that C2 is rescaled by a factor of 10. (b) is an enlargement
of (a) showing that C3 is negative over a small interval in γ. Other parameters are held fixed at β = 3.0, µ = 0.2,
σ = 1.6, r = 1.5.
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(a) (b)

(c) (d)

Figure 7: Surface plots of the coefficients C1, . . . C3 and kc in the (γ, β) plane. As these quantities vary rapidly
with γ and β the precise quantities diplayed are (a) log C1; (b) log kc; (c) log C2; (d) log(1+C3). Other parameters
are held fixed at r = 1.5, µ = 0.2, σ = 1.6. Solid lines in (a) and (d) correspond to zero contours. Note that C3 < 0
in a thin strip between the solid black lines. In the lower-left white region of each plot there is no pattern-forming
instability and the coefficients in the amplitude equation are undefined.
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Figure 8: (a) Bifurcation diagram in the (P,max(N)) plane showing branches of periodic patterns that bifurcate
from the V solution at P = P0. The location of P0 increases as β decreases: bifurcating solution branches are
shown for β = 3 (solid blue line), β = 2 (dashed black line) and β = 1.5 (dash-dotted red line). (b) Solution
profiles N(X) along the β = 3 branch at the six points indicated by solid dots in (a). The amplitude of the pattern
increases monotonically as P decreases. Other parameter values are: r = 1.5, γ = 1.6, µ = 0.2 and σ = 1.6.

and taking the limit γ ≫ 1, transforms (24) - (25) into

NT = PN −N2 +NXX +WN (37)

W −WXX = rµN − β̂NXX (38)

dropping the hats on P and W , and noting that pc = µ/γ+O(γ−2) and b0 = γ+O(1) in the limit of large
γ. This rescaled model preserves the pattern-forming behaviour of (24) - (25); for example (37) - (38) has
constant solutions B , for which N = W = 0, and V , for which N = P/(1− rµ) and W = rµP/(1− rµ).
As we would expect, this V solution agrees with the limiting behaviour of (26) applying the rescalings
noted above in the limit γ ≪ 1.

We conclude that, as long as kc given by (30) is positive, we have a non-degenerate pattern forming
instability for values of the precipitation parameter just above pc. There is a bounded region in parameter
space for which this instability is supercritical, and it is subcritical more generally. An increase in any of
the three parameters β, γ and r that describe ‘positive feedback’ physical effects in the model, leads to
this instability becoming ever more strongly subcritical.

3.3 Dynamics at larger amplitude

In the previous subsection we examined the onset of pattern forming behaviour and showed that periodic
patterns bifurcated subcritically except in a narrow region of parameter space where the product βγ is
sufficiently small. For the reduced model (24) - (25), numerical continuation of periodic patterns shows
that they extend over considerable distances into P < P0 and acquire an extremely sharp peaked profile.

Figures 8 and 9 show curves of periodic patterns with wavenumber exactly kc that bifurcate from the
uniform V solution at P = P0, for three different values of β. For the lowest of these values, β = 1.5, the
solution bifurcates supercritically before turning around. For larger values of β the patterned branches
bifurcate subcritically. In all cases the branches appear to extend monotonically to arbitrarily large
negative P .

The V solution is the straight line at the bottom of figure 8(a). For β = 3 the patterned branch
bifurcates at P ≡ P0 = 1.185. For β = 2 and β = 1.5 we find that P0 = 3.502 and P0 = 11.054,
respectively. In each case the solutions are computed on a domain of width equal to the periodicity of
the solution at the bifurcation point. The wavenumbers for the cases β = 3, 2, 1.5 are kc = 1.050, 1.376
and 1.834 respectively.

Figure 9 plots the same bifurcation diagram as in figure 8 showing that the amplitude of W (X)
increases similarly to N(X). Figure 9(b) shows the form of the periodic patterns at the points indicated
on the lowest branch of periodic solutions, for β = 3, indicated by the solid dots in figure 9(a). The
initially sinsoidal pattern evolves to contain sharp peaks separated by regions in which W (X) < 0, with
local minima in W (X) either side of each peak and a local maximum symmetrically placed between
each pair of peaks. Physically this corresponds to the occurrence of a very dry barren patch between
vegetated tufts, but with the centre of each barren patch being slightly less dry than the immediate
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Figure 9: (a) Bifurcation diagram in the (P,max(W )) plane showing branches of periodic patterns that bifurcate
from the V solution at P = P0. The location of P0 increases as β decreases: bifurcating solution branches are
shown for β = 3 (solid blue line), β = 2 (dashed black line) and β = 1.5 (dash-dotted red line). (b) Solution
profiles W (X) along the β = 3 branch at the six points indicated by solid dots in (a). The amplitude of the
pattern increases monotonically as P decreases. Other parameter values are: r = 1.5, γ = 1.6, µ = 0.2 and
σ = 1.6.

vicinity of the tufts themselves; this might seem slightly counterintuitive, but indicates that the feedback
between biomass and soil water is sufficiently strong that the biomass extracts water from the soil around
it more strongly than water is able to smooth out the resulting gradient in water concentration through
diffusion.

4 Localised patterns in the von Hardenberg model

In the previous section we established that the pattern forming instability that arises in the reduced
model (24) - (25) at P = P0 is subcritical as long as βγ is sufficiently large. From bifurcation theory,
and detailed investigation of the canonical Swift–Hohenberg equation, it is well known that in addition
to branches of spatially periodic patterns, branches of spatially localised states can emerge from the
bifurcation point.

In the usual case, at least in one spatial dimension, these branches of localised states form a structure
known as ‘homoclinic snaking’ in a region between the initial bifurcation point and the saddle-node that
marks the lower bound to the region over which the subcritical spatially periodic patterns exist. For
details of typical homoclinic snaking behaviour see [2, 5, 3] and references therein.

Homoclinic snaking has been most widely studied in the canonical model equation: the 1D Swift–
Hohenberg equation

∂tu =
[

r − (1 + ∂2
x)

2
]

u+ bu2 − u3, (39)

for a scalar variable u(x, t), where r and b are real parameters. In (39) the base state u (x, t) ≡ 0 undergoes
a pattern-forming instability as r passes through zero, i.e. perturbations with wavenumber 1 destabilise
the base state at this parameter value. Analysis shows that when b2 < 27

38 the Turing instability at r = 0
is supercritical and small amplitude stable patterns exist in r > 0. In the weakly nonlinear regime, stable
periodic patterns are possible as long as the pattern wavenumber k remains within an interval around
k = 1.

If b2 > 27
38 then the Turing instability at r = 0 is subcritical and there are no stable small amplitude

periodic patterns. The cubic term indicates that stable patterns exist at finite amplitude and increasing
r past r = 0 indicates a jump onto one of these stable solution branches in r > 0. Moreover, in
the subcritical case a pair of branches of spatially modulated near-periodic solutions bifurcate into r < 0
along with the small-amplitude unstable exactly periodic branches. Along this pair of spatially modulated
solution branches the solutions become increasingly spatially localised, as indicated in figures 10 and 11.
At some point in r < 0 the branches begin to oscillate backwards and forwards across an interval in
r: these successive twists and turns correspond to saddle-node bifurcations and as we continue along
each curve new peaks are added to the localised structure until, in a finite domain, the solution fills the
domain and then becomes spatially periodic again. At this point, at the top of the snake in a finite
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Figure 10: Homoclinic snaking for the Swift–Hohenberg equation: bifurcation diagram showing branches
of periodic patterns (black) and localised states (blue) in the (r, ||u||2)-plane for the quadratic-cubic
SHE (39), for b = 1.8. Solid (dashed) lines indicate stable (unstable) solutions. Points marked ‘B’ are
the bifurcations at which the localised states emerge from the periodic states and are a consequence of
the finite computational domain. The computational domain was 0 ≤ x ≤ 20π, with periodic boundary
conditions. This figure was computed using the continuation software AUTO [6].

Figure 11: Homoclinic snaking for the Swift–Hohenberg equation: illustrative solution profiles u(x, t) at
the four numbered locations 1, 2, 3, 4 on the bifurcation diagram in figure 10. The computational domain
was 0 ≤ x ≤ 20π, with periodic boundary conditions. As in the case of figure 10, the computations were
carried out using the continuation software AUTO [6].

domain, these snaking branches reconnect to periodic pattern branches that bifurcate from (close to)
r = 0. This bifurcation structure occurs generically near a subcritical Turing instability, and so we
expect to observe it near p1 (and p2) when these pattern forming bifurcations are subcritical. Various
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Figure 12: (a) Bifurcation diagram for the unscaled von Hardenberg model (6) - (7) shown in the (p, ||n||) plane.
Parameter values are γ = σ = 1.6, µ = 0.2, r = 2.5, δ = 30. Domain size L = 400, using periodic boundary
conditions. (b) Enlargement of (a) showing the snaking region. The solid (black) curve and the dashed (blue)
indicate the uniform V solution (stable and unstable, respectively). The periodic pattern branch is indicated by
the dash-dotted (red) curve: stability is not indicated on this branch. The solid (blue) curves close together are
the homoclinic snaking curves on which localised states lie; stability is not indicated on these branches. Dot,
square and diamond symbols relate to solutions shown in figures 13 and 14.

details of the homoclinic snaking depend on the choice of nonlinear terms in the system, so it is possible
that the bifurcation structure, and the stability of the localised states, varies from one specific nonlinear
problem to another.

We now turn back to the specific model (6) - (7) and present numerical evidence for the existence
of localised patterns near p1. Figure 12 illustrates that this homoclinic snaking bifurcation behaviour
occurs in the von Hardenberg model: figure 12(a) shows the V solution which is stable at sufficiently small
and sufficiently large p, together with the bifurcating branch of periodic pattern (the red dash-dotted
curve) that has the wavenumber at the onset of the pattern-forming instability. Although stability of
these periodic patterns is not shown, the branch is unstable near V since the bifurcation is subcritical.
The periodic pattern re-stabilises at the saddle-node bifurcation on the curve and is then stable until it
reconnects to the V solution at larger p. As is generic for subcritical pattern forming instabilities of this
type, we find also that a collection of localised states also bifurcates at the pattern forming instability.
The homoclinic snaking curves are shown more clearly in the enlargement in figure 12(b). There are two
distinct branches of solutions: both are symmetric under x → −x. The branches consist of solutions that
have local minima, or local maxima, at the centre, respectively. The branches do not intersect except
where both bifurcate from V . General theoretical resuts imply the existence of additional, asymmetric
and typically unstable, solutions that connect between the two primary snaking branches, bifurcating in
subcritical pitchfork bifurcations.

The snaking curves oscillate back and forth in p as additional peaks are added to the edges of the
localised state. In a finite domain with Neumann boundary conditions the snaking curves typically
terminate at a bifurcation point on a branch of spatially periodic solutions, although this need not be
the one that bifurcated at the initial linear instability of V at pc. In figure 12 we have not continued
the branches as far as this point. Figure 12 indicates also that the snaking region extends slighly below
the saddle-node bifurcation point on the periodic pattern branch shown. This indicates that the periodic
pattern that bifurcates at the linear instability at pc does not have exactly the same wavenumber as the
periodic pattern within the localised state. This is generically the case, although in the Swift–Hohenberg
equation with the usual nonlinearities the wavenumber selected by the localised patch is close (and with
the cubic-quintic nonlinearity, very close) to that of the periodic pattern formed at pc.

The equilibrium solutions n(x) at the solid blue dots, red squares and black diamonds at saddle node
points in figure 12 are shown in figure 13 and 14. More precisely, figure 13(a) shows n(x) at the lowest
five saddle-node bifurcation points on the ‘odd-peak’ branch of snaking, and figure 13(b) shows n(x) at
the lowest five saddle-node bifurcation points on the ‘even-peak’ branch. Note that the amplitude of the
peaks is significantly higher than the constant V solution that surrounds the localised patch.
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Figure 13: Localised equilibrium solutions n(x) for the von Hardenberg model (6) - (7). The solution for n(x)
is shown, for parameter values γ = σ = 1.6, µ = 0.2, r = 2.5, δ = 30. Computed in a domain of size L = 400,
using Neumann boundary conditions. (a) Solutions with odd numbers of peaks at the points indicated by the
blue circles in figure 12(b). (b) Solutions with even numbers of peaks at the points indicated by the red squares
in figure 12(b).
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Figure 14: Localised equilibrium solutions (a) n(x) and (b) w(x) for the von Hardenberg model (6) - (7) at the
points indicated by the black diamonds in figure 12(b). Solution shown, for parameter values are γ = σ = 1.6,
µ = 0.2, r = 2.5, δ = 30. Computed in a domain of size L = 400, using Neumann boundary conditions.
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Figure 15: Regions of snaking behaviour and the location p1 and p2 of the pattern forming instabilities of V as
two parameters are varied. (a) (p, β) plane, (b) (p, δ) plane, (c) (p, r) plane. Dashed vertical line indicates pc,
solid black lines indicate the pattern-forming instabilities of V denoted p1 and p2. Localised states exist inside
the cusp-shaped region formed by the blue solid lines. For each case, the other parameters are held fixed at
γ = σ = 1.6, µ = 0.2, β = 3, δ = 30, r = 2.5.

Figure 14 shows the form of the localised solutions for both n(x) and w(x), in (a) and (b) respectively.
We note that the background state V has decreased, so that n(x) becomes very small in the troughs
between periods of the localised pattern. The form of w(x) is particularly interesting since it clearly
displays small humps between the large peaks, in a manner similar to the solutions of the reduced model
shown in figure 9. Although the solutions at the two sides of the homoclinic snaking region are clearly
slightly different in form, there appears to be little variation in wavenumber across the snaking region.

Figure 15 follows the location of the snaking region, as defined by following the location of saddle-node
bifurcation points sufficiently far up the snake, as we vary p and a second parameter: β, δ or r; these
are the parameters responsible for the strength of positive feedbacks in the model, and hence control
the strength of the subcriticality. In each of figure 15(a-c) we show the locations of the pattern forming
instabilities p1 and p2 as solid black curves that appear to meet just below the bottom edge of the plots.
Within this convex region the V state is linearly unstable and we would expect stable space-filling periodic
patterns to exist.

The solid blue curves bounding a cusp-shaped region on the left-hand side of each figure indicates the
region within which localised patterns and homoclinic snaking exists. In each case, this snaking region
terminates in a cusp that lies on the p1 curve: at this point the pattern-forming instability along p1
switches from being supercritical (at small values of β, δ and r) to being subcritical at larger values.
As remarked on above, and illustrated in figure 12, spatially periodic patterns coexist with the localised
patterns (although the localised pattern region may extend slightly further to the left than the periodic
patterns); in figure 15 we do not show the location of the saddle-node bifurcation that marks the lower
limit of existence of periodic patterns. Finally, the vertical dashed lines in figure 15 indicate the value of
pc at which the V state collides with the B state and ceases to exist. This vertical dashed line in addition
appears to cause the localised states also to cease to exist.

Near to a codimension-two point at which the pattern forming instability changes from being su-
percritical to being subcritical, the homoclinic snaking structure emerges in a cusp-shaped region of
parameter space.

5 Discussion

In this paper we have presented numerical and theoretical analysis of patterned solutions to the reaction-
diffusion model (6) - (7) for vegetation growth in a semi-arid landscape proposed by von Hardenberg et
al [9]. This model is an extension of the model proposed earlier by Klausmeier [12], and included above
as equations (4) - (5). The model treats the interaction between only two variables: the vegetation level
n(x, t) and the soil water content w(x, t). Importantly, it includes new terms that describe (i) the positive
feedback effect in which vegetation preserves soil water through shading that restricts evaporation, (ii)
the diffusion of water through the soil, and (iii) the manner in which vegetation restricts the diffusion
of soil water through the root structure altering the effective diffusivity of the soil. We did not include
the advection term that Klausmeier proposed to model the effect of sloping ground: all our results here
are for horizontal ground and are in only one spatial dimension. Although the von Hardenberg model is
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a useful extension of the Klausmeier model, we have noted that some of the terms are liable to change
sign and hence to describe unphysical effects. These parameter regimes should be avoided. As a result
we have found it most useful to consider states with small biomass amplitude and to analyse in detail
the transitions between the bare ground state B , the uniform vegetation state V , and patterned states
bifurcating from V .

In our presentation we have focussed on the effect of varying these new feedback parameters, and
the resulting bifurcation structures. In particular, the inclusion of these feedback parameters allows the
uniform vegetation state V in the model to display a subcritical pattern forming instability, even when
the bifurcation from B to V is supercritical. Moreover, we find that the localised states exist over a
region of parameter space that appears to fill almost all the region between the initial bifurcation (at
pc) in which the V state appears, and the pattern-forming instability of V at p1. This is different to the
usual bifurcation structure found in the Swift–Hohenberg equation in the sense that, for that equation,
homoclinic snaking is restricted to a smaller interval that lies between the linear instability (at p1 here)
and the saddle-node bifurcations on the branches of spatially periodic solutions. For the von Hardenberg
model, the homoclinic snaking curves appear to extend very close to the saddle-node bifurcation for
periodic patterns, and perhaps very slightly beyond it, see figure 12(b). At the other end, the snaking
curves extend close to p1, as can be seen in figure 15.

It is therefore tempting to suggest that the equilibrium localised patterns are, for this model, a clear
indicator of the transition between the B state (in which there is no vegetation) and the state of spatially
periodic pattern formation. At yet higher precipitation levels the spatially periodic patterns give way in
turn to uniform, higher levels of vegetation. The fact that the homoclinic snaking curves extend over
almost all the region in which subcritical patterns exist indicates that stationary patches of pattern will
be ’pinned’ throughout this region and we are less likely to see growing or shrinking fronts between
periodic vegetated states and bare ground: the interface between them will be an equilibrium and so will
not move, at least in the deterministic setting of the present paper. The effect of noise on the dynamics
is not clear and would be of interest to consider in future work.

Given that the aim of this paper is to consider the influence of a number of new terms, involving
additional parameters, it is very useful to have identified the new limit δ ≫ 1 in which we simplify the
model through treating the diffusivity of soil water as occurring on an asymptotically much more rapid
time scale, for small amplitude solutions near the critical precipitation value pc at which the model is
first able to sustain a uniform small-amplitude vegetation state. This greatly facilitates the analytic
calculations, as well as being a limit that is biologically extremely relevant. It is perhaps surprising that
it has not been noted previously, and we expect that it will help to organise a more thorough comparison
of the generic features of a number of classes of model of this kind.

The reduced model in the limit δ ≫ 1 explains the behaviour near pc for all biologically-relevant values
of δ. Through weakly nonlinear analysis of this reduced model we see that the bifurcation in which V is
created can be subcritical or supercritical. When it is supercritical, the expected case, we find that the
subsequent pattern-forming instability is subcritical except in a very narrow range of parameter space.
From this analysis of the reduced model, capturing the behaviour of small amplitude states, we conclude
that for typical values of the feedback parameters β, δ and r the small amplitude behaviour is likely
to involve homoclinic snaking (since it is strongly subcritical). This was that subsequently confirmed
through numerical continuation of the full model and the results presented above in section 4.

The work presented here is therefore complementary to the recent work by Sherratt and co-authors,
e.g. [21, 22, 23], and by van der Stelt and co-authors [25] on the original Klausmeier model: Sherratt
has examined the existence and dynamics of travelling wave solutions whereas van der Stelt et al focus
on the ‘Busse balloon’ of equilibrium states and investigate patterns of long wavelengths that becomes
increasingly localised, but through a different mechanism, as the precipitation decreases. By focussing
on the von Hardenberg model and the inclusion of additional feedback effects, the work presented here
contributes to the general formulation and investigation of reaction-diffusion type models for this impor-
tant biological scenario. It also confirms the existence of localised patterns, as proposed by Meron [18],
when the positive feedbacks in the model are sufficiently strong.
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