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Here we provide the mathematical details supporting the arguments advanced in the main text.
Section A comprises a systematic analysis of all qualitatively distinct classes of reaction schemes
of four reactions for type II patterns. We identify all the classes that contain Turing-unstable reaction
schemes. In the case of type I patterns (see main text), for each class we are able to derive the
exact constraints on the stoichiometric product coefficients that determine if a reaction scheme is
Turing-unstable; i.e. if it can exhibit a Turing instability for some choice of positive reaction rate and
diffusivity parameter values. For the type II patterns, deriving such constraints is more taxing, so
instead we demonstrate that the identified classes do contain some Turing-unstable reaction scheme(s)
by providing examples with appropriate choices of reaction rate parameters.

In Section B we show that the dynamics of all the minimal reaction schemes for type I patterns
are described by the same phase diagram (Figure 5 of the main text); given that the reaction schemes
can exhibit a Turing instability for some choice of reaction rate and diffusivity parameter values, we
derive the exact conditions on said values under which the Turing instability occurs. It transpires that
the functional form of these conditions is the same for all the minimal reaction schemes. In Section
C we present exact expressions for the stability boundaries identified in Section B – for each class
of minimal reaction scheme for type I patterns – in terms of the stoichiometric product coefficients,
as well as some numerical simulations of the type I minimal schemes in one spatial dimension. In
Section D we repeat the analysis of Section B for some of the type II minimal schemes, and we show
that each of the type II minimal schemes cannot exhibit bi-stability with multiple positive spatially
homogeneous steady states. In Section E we give full details of the numerical simulations presented
in the main text (Figures 6, 7, and 8).

A Minimal Schemes for Type-II Patterns

There are three options for the reactants of a fourth reaction (with a different reactant combination) in
addition to the necessary 2U → · · · , U+V → · · · , and U → · · · reactions for type-II patterns: ∅, V , or
2V . These possibilities are analysed here in turn. Analysis of the minimal schemes for type-II patterns
is less compact than that of those for type-I. Here we derive the necessary constraints on the signs of
the stoichiometric effects, thus eliminating all qualitatively distinct reaction schemes that cannot yield
Turing-unstable examples. Of particular note, our analysis here does not explicitly solve the steady
state equations for u∗ and v∗. In each instance, we suppose the existence of a positive homogeneous
steady state and use this to derive necessary constraints on the stoichiometric coefficients. We do not
derive sufficient conditions for the existence of a positive homogeneous steady state.

To demonstrate that the remaining qualitatively distinct classes can indeed yield Turing-unstable
schemes, we provide example choices of the stoichiometric coefficients and reaction rate parameters.
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It may be shown that these examples exhibit Turing instability for any values of the diffusivity ratio
δ = Dv

Du
satisfying √

Dv

Du
>
√

δc =
1

J∗
11

(√
det(J∗) +

√
−J∗

12J
∗
21

)
. (A.1)

We reason, by continuity, that the same choice of stoichiometric coefficients admits a positive homogeneous
steady state exhibiting a Turing instability for reaction rate parameters in some open neighbourhood of
the example values given. Such examples are therefore sufficient to demonstrate that the qualitatively
distinct classes of minimal reaction scheme shown are the only ones to yield Turing-unstable reaction
schemes.

In total, we find 14 qualitatively distinct minimal reaction schemes satisfying the conditions for a
Turing pattern instability of type II. These are presented in Figure 4 of the main text, and examples
from each class are simulated numerically in Figure 7 of the main text.

A.1 Fourth reaction of zeroth order

If we choose the fourth reaction to be of zeroth order, then we may write our reaction scheme
2U

r1−→ n1U +m1V

U + V
r2−→ n2U

U
r3−→ m3V

∅ r4−→ n4U +m4V

,

with corresponding interaction terms

F (u, v) = r4n4 − r3u+ r1(n1 − 2)u2 + r2(n2 − 1)uv,

G(u, v) = r4m4 + r3m3u+ r1m1u
2 − r2uv,

where n1 > 2 and the other stoichiometric product coefficients are yet to be determined. Supposing
the existence of a positive steady state, the Jacobian J∗ is given by

J∗ =

(
−r3 + 2r1(n1 − 2)u∗ + r2(n2 − 1)v∗ r2(n2 − 1)u∗

r3m3 + 2r1m1u
∗ − r2v

∗ −r2u
∗

)
=

(
−r3 + 2r1(n1 − 2)u∗ + r2(n2 − 1)v∗ r2(n2 − 1)u∗

1
u∗ (r1m1(u

∗)2 − r4m4) −r2u
∗

)
,

thus the conditions J∗
12 > 0 and J∗

21 < 0 respectively require that n2 > 1 and m4 > 0. Now attempting
to solve for a steady state, we find that

r4(n4 + (n2 − 1)m4) + r3((n2 − 1)m3 − 1)u∗ + r1((n1 − 2) +m1(n2 − 1))(u∗)2 = 0.

Since the coefficient of (u∗)2 and the constant coefficient are necessarily positive, for this quadratic
equation to admit a positive root u∗, we must have

(n2 − 1)m3 − 1 < 0 ⇐⇒ m3 <
1

n2 − 1
⇐⇒ m3 = 0.

This leaves four qualitatively distinct possibilities:

(i)


2U

r1−→ n′′
1U

U + V
r2−→ n′

2U

U
r3−→ ∅

∅ r4−→ m4V

, (ii)


2U

r1−→ n′′
1U

U + V
r2−→ n′

2U

U
r3−→ ∅

∅ r4−→ n4U +m4V

,

(iii)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ n′

2U

U
r3−→ ∅

∅ r4−→ m4V

, (iv)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ n′

2U

U
r3−→ ∅

∅ r4−→ n4U +m4V

,
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where n′′
1 > 2, m1 > 0, n′

2 > 1, n4 > 0, and m4 > 0. Each case yields Turing-unstable reaction
schemes if the stoichiometric product coefficients are chosen appropriately, for example:

(i):

(ii):

(iii):

(iv):

(n′′
1, n

′
2,m4) = (3, 2, 1),

(n′′
1, n

′
2, n4,m4) = (3, 2, 1, 1),

(n′′
1,m1, n

′
2,m4) = (3, 2, 2, 1),

(n′′
1,m1, n

′
2, n4,m4) = (3, 1, 2, 1, 2),

(r1, r2, r3, r4) = (0.75, 1.0, 0.8, 0.1),

(r1, r2, r3, r4) = (0.75, 1.0, 0.8, 0.1),

(r1, r2, r3, r4) = (0.15, 1.0, 0.85, 0.1),

(r1, r2, r3, r4) = (0.75, 1.0, 0.95, 0.05).

A.2 Fourth reaction with reactant V

As for the minimal schemes of type I, choosing the last reaction to have reactant combination V yields
the most options for Turing-unstable reaction schemes. As in the main text, for convenience we divide
these into three cases according to the qualitative type of the U + V reaction.

A.2.1 Interspecific reaction removing both species (U + V → ∅)

In the first case, we may write our reaction scheme as
2U

r1−→ n1U +m1V

U + V
r2−→ ∅

U
r3−→ m3V

V
r4−→ n4U +m4V

,

with corresponding interaction terms

F (u, v) = −r3u+ r4n4v + r1(n1 − 2)u2 − r2uv,

G(u, v) = r3m3u+ r4(m4 − 1)v + r1m1u
2 − r2uv,

where n1 > 2 and the other stoichiometric product coefficients are yet to be determined. Supposing
the existence of a positive steady state, we have

J∗ =

(
−r3 + 2r1(n1 − 2)u∗ − r2v

∗ r4n4 − r2u
∗

r3m3 + 2r1m1u
∗ − r2v

∗ r4(m4 − 1)− r2u
∗

)
=

(
1
u∗ (r1(n1 − 2)(u∗)2 − r4n4v

∗) u∗

v∗ (r3 − r1(n1 − 2)u∗)
1
u∗ (r1m1(u

∗)2 − r4(m4 − 1)v∗) u∗

v∗ (−r3m3 − r1m1u
∗)

)
,

and the conditions that J∗
12 > 0 and J∗

21 < 0 respectively require that n4 > 0 and m4 > 1. Further, to
satisfy J∗

11 > 0 > J∗
21 we must have

−r3 + 2r1(n1 − 2)u∗ > r3m3 + 2r1m1u
∗ ⇐⇒ 2r1((n1 − 2)−m1)u

∗ > r3(m3 + 1),

hence n1 − 2 > m1 and

u∗ >
r3
2r1

m3 + 1

(n1 − 2)−m1
.

To satisfy J∗
12 > 0 we must have

u∗ <
r3
r1

1

n1 − 2
,

and for these two bounds on u∗ to be consistent, we must have

1

2

m3 + 1

(n1 − 2)−m1
<

1

n1 − 2
⇐⇒ (m3 − 1)(n1 − 2) < −2m1.

For non-negative integers m1, m3, and n1 > 2, this can only be satisfied if m3 = 0. Finally, if m3 = 0,
the condition J22 < 0 requires that m1 > 0 and we are reduced to only one qualitative possible reaction
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scheme: 
2U

r1−→ n′′
1U +m1V

U + V
r2−→ ∅

U
r3−→ ∅

V
r4−→ n4U +m′

4V

,

where n′′
1 > 2, m1 > 0, n4 > 0, and m′

4 > 1. One such Turing-unstable example is defined by the
stoichiometric product coefficients

(n′′
1,m1, n4,m4) = (6, 1, 2, 2).

This example exhibits Turing instability if the reaction rates are equal to (or within some small open
neighbourhood of)

(r1, r2, r3, r4) = (0.75, 1.0, 0.7, 0.125).

A.2.2 Interspecific reaction removing species V and preserving species U (U + V → U)

In the second case, we may write our reaction scheme as
2U

r1−→ n1U +m1V

U + V
r2−→ U

U
r3−→ m3V

V
r4−→ n4U +m4V

,

with corresponding interaction terms

F (u, v) = −r3u+ r4n4v + r1(n1 − 2)u2,

G(u, v) = r3m3u+ r4(m4 − 1)v + r1m1u
2 − r2uv,

where n1 > 2 and the other stoichiometric product coefficients are yet to be determined. Supposing
the existence of a positive steady state, we have

J∗ =

(
−r3 + 2r1(n1 − 2)u∗ r4n4

r3m3 + 2r1m1u
∗ − r2v

∗ r4(m4 − 1)− r2u
∗

)
=

(
−r3 + 2r1(n1 − 2)u∗ r4n4

1
u∗ (r1m1u

∗ − r4(m4 − 1)v∗) u∗

v∗ (−r3m3 + r1m1u
∗)

)
,

and the conditions that J∗
12 > 0 and J∗

21 < 0 require respectively that n4 > 0 and m4 > 1. The
condition that J∗

22 < 0 requires that we cannot simultaneously have both m1 = 0 and m3 = 0. This
leaves three qualitatively distinct possibilities:

(i)


2U

r1−→ n′′
1U

U + V
r2−→ U

U
r3−→ m3V

V
r4−→ n4U +m′

4V

, (ii)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ U

U
r3−→ ∅

V
r4−→ n4U +m′

4V

, (iii)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ U

U
r3−→ m3V

V
r4−→ n4U +m′

4V

,

where n′′
1 > 2, m1 > 0, m3 > 0, n4 > 0, and m′

4 > 1. Each case yields Turing-unstable reaction
schemes if the stoichiometric product coefficients are chosen appropriately, for example:

(i):

(ii):

(iii):

(n′′
1,m3, n4,m

′
4) = (3, 1, 1, 2),

(n′′
1,m1, n4,m

′
4) = (4, 1, 1, 2),

(n′′
1,m1,m3, n4,m

′
4) = (4, 1, 1, 1, 2),

(r1, r2, r3, r4) = (0.6, 1.0, 0.7, 0.2),

(r1, r2, r3, r4) = (0.68, 1.0, 0.8, 0.2),

(r1, r2, r3, r4) = (0.61, 1.0, 0.85, 0.1).

4



A.2.3 Interspecific reaction removing species V and increasing species U (U +V → n′
2U)

In the third case, we may write our reaction scheme as
2U

r1−→ n1U +m1V

U + V
r2−→ n2U

U
r3−→ m3V

V
r4−→ n4U +m4V

,

with corresponding interaction terms

F (u, v) = −r3u+ r4n4v + r1(n1 − 2)u2 + r2(n2 − 1)uv,

G(u, v) = r3m3u+ r4(m4 − 1)v + r1m1u
2 − r2uv,

where n1 > 2, n2 > 1, and the other stoichiometric product coefficients are yet to be determined.
Supposing the existence of a positive steady state, we have

J∗ =

(
−r3 + 2r1(n1 − 2)u∗ + r2(n2 − 1)v∗ r4n4 + r2(n2 − 1)u∗

r3m3 + 2r1m1u
∗ − r2v

∗ r4(m4 − 1)− r2u
∗

)
=

(
−r3 + 2r1(n1 − 2)u∗ + r2(n2 − 1)v∗ r4n4 + r2(n2 − 1)u∗

1
u∗ (r1m1u

∗ − r4(m4 − 1)v∗) u∗

v∗ (−r3m3 − r1m1u
∗)

)
,

and the condition that J∗
21 < 0 requires that m4 > 1. Attempting to solve for a steady state, we find

that
r4(m3n4 + (m4 − 1))v∗ + r1((n1 − 2)m3 +m1)(u

∗)2 + r2((n2 − 1)m3 − 1)u∗v∗ = 0.

Since the coefficients of v∗ and (u∗)2 are necessarily positive, for this equation to be satisfied at some
positive steady state, we must have

(n2 − 1)m3 − 1 < 0 ⇐⇒ m3 <
1

n2 − 1
⇐⇒ m3 = 0.

The condition that J∗
22 < 0 then requires that m1 > 0, leaving two qualitatively distinct possibilities:

(i)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ n′

2U

U
r3−→ ∅

V
r4−→ m′

4V

, (ii)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ n′

2U

U
r3−→ ∅

V
r4−→ n4U +m′

4V

,

where n′′
1 > 2, m1 > 0, n′

2 > 1, n4 > 0, and m′
4 > 1. Each case yields Turing-unstable reaction

schemes if the stoichiometric product coefficients are chosen appropriately, for example:

(i):

(ii):

(n′′
1,m1, n

′
2,m

′
4) = (4, 2, 2, 2),

(n′′
1,m1, n

′
2, n4,m

′
4) = (4, 1, 2, 1, 2),

(r1, r2, r3, r4) = (0.15, 1.0, 0.7, 0.4),

(r1, r2, r3, r4) = (0.15, 0.97, 0.8, 0.52).

A.3 Fourth reaction with reactant combination 2V

If we choose the fourth reaction to have reactant combination 2V , then we may write our reaction
scheme 

2U
r1−→ n1U +m1V

U + V
r2−→ n2U

U
r3−→ m3V

2V
r4−→ n4U +m4V

,

with corresponding interaction terms

F (u, v) = −r3u+ r1(n1 − 2)u2 + r2(n2 − 1)uv + r4n4v
2,

G(u, v) = r3m3u+ r1m1u
2 − r2uv + r4(m4 − 2)v2,
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where n1 > 2 and the other stoichiometric product coefficients are yet to be determined. Supposing
the existence of a positive steady state, the Jacobian J∗ is given by

J∗ =

(
−r3 + 2r1(n1 − 2)u∗ + r2(n2 − 1)v∗ r2(n2 − 1)u∗ + 2r4n4v

∗

r3m3 + 2r1m1u
∗ − r2v

∗ −r2u
∗ + 2r4(m4 − 2)v∗

)
=

(
−r3 + 2r1(n1 − 2)u∗ + r2(n2 − 1)v∗ r2(n2 − 1)u∗ + 2r4n4v

∗
1
u∗ (r1m1(u

∗)2 − r4(m4 − 2)(v∗)2) −r2u
∗ + 2r4(m4 − 2)v∗

)
,

thus the condition J∗
21 < 0 requires that m4 > 2. We also have that

u∗J∗
21 + v∗J∗

22 = r3m3u
∗ + 2r1m1(u

∗)2 − 2r2u
∗v∗ + 2r4(m4 − 2)(v∗)2 = −r3m3u

∗,

hence simultaneous negativity of J∗
12 and J∗

22 requires m3 > 0. Now attempting to solve for a steady
state, we find that

r1((n1 − 2)m3 +m1)(u
∗)2 + r2((n2 − 1)m3 − 1)u∗v∗ + r4(m3n4 + (m4 − 2))(v∗)2 = 0.

Since the coefficients of (u∗)2 and (v∗)2 are necessarily positive, for this equation to be satisfied at a
positive steady state, we must have

(n2 − 1)m3 − 1 < 0 ⇐⇒ n2 − 1 <
1

m3
⇐⇒ n2 − 1 ⩽ 0,

i.e. if and only if n2 = 1 or n2 = 0. The condition J∗
12 > 0 then requires that n4 > 0, leaving four

qualitatively distinct possibilities:

(i)


2U

r1−→ n′′
1U

U + V
r2−→ ∅

U
r3−→ m3V

2V
r4−→ n4U +m′′

4V

, (ii)


2U

r1−→ n′′
1U

U + V
r2−→ U

U
r3−→ m3V

2V
r4−→ n4U +m′′

4V

,

(iii)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ ∅

U
r3−→ m3V

2V
r4−→ n4U +m′′

4V

, (iv)


2U

r1−→ n′′
1U +m1V

U + V
r2−→ U

U
r3−→ m3V

2V
r4−→ n4U +m′′

4V

,

where n′′
1 > 2, m1 > 0, m3 > 0, n4 > 0, and m′′

4 > 2. Each case yields Turing-unstable reaction
schemes if the stoichiometric product coefficients are chosen appropriately, for example:

(i):

(ii):

(iii):

(iv):

(n′′
1,m3, n4,m

′′
4) = (3, 1, 2, 3),

(n′′
1,m3, n4,m

′′
4) = (3, 1, 2, 3),

(n′′
1,m1,m3, n4,m

′′
4) = (5, 1, 1, 2, 3),

(n′′
1,m1,m3, n4,m

′′
4) = (4, 1, 1, 1, 3),

(r1, r2, r3, r4) = (0.35, 0.995, 0.3, 0.94),

(r1, r2, r3, r4) = (0.35, 0.985, 0.3, 0.23),

(r1, r2, r3, r4) = (0.32, 0.9993, 0.2, 0.26),

(r1, r2, r3, r4) = (0.1, 0.993, 0.25, 0.41).

B Linearised Analysis of Type-I

Here we show that the linearised dynamics of all the type-I minimal schemes are governed by the same
two dimensionless parameter groups, and we derive the phase diagram in Figure 5 of the main text.

Corresponding to the choice of third reactant combination ∅, U , or V , the mass-action PDE models
for the type-I minimal schemes take one of three forms respectively:
(i) if the third reaction is of zeroth order

∂u

∂t
= Du∇2u+ a1 + a4u

2 + a5uv,

∂v

∂t
= Dv∇2v + b1 + b4u

2 + b5uv;
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(ii) if the third reaction is of first order with reactant U

∂u

∂t
= Du∇2u+ a2u+ a4u

2 + a5uv,

∂v

∂t
= Dv∇2v + b2u+ b4u

2 + b5uv;

or (iii) if the third reaction is of first order with reactant V

∂u

∂t
= Du∇2u+ a3v + a4u

2 + a5uv,

∂v

∂t
= Dv∇2v + b3v + b4u

2 + b5uv.

Non-dimensionalising x = ξx̂, t = τ t̂, (u, v) = (σû, σv̂), and substituting in the forms for the
coefficients {ai, bi} in terms of {ri, ni,mi}, if we set ξ2 = Duτ then the equations depend on the
diffusivities Du and Dv only through the ratio Dv

Du
. Similarly, setting σ = 1

r1τ
, the equations depend

on the reaction rates r1 and r2 only through the ratio r2
r1
. Lastly, setting τ = 1√

r1r3
in case (i) and

τ = 1
r3

in cases (ii) and (iii), we remove any other dependency on the reaction rate parameters. That
is, we obtain the non-dimensionalised equations
(i):

∂û

∂t̂
= ∇̂2û+ n3 + (n1 − 2)û2 + ρ(n2 − 1)ûv̂,

∂v̂

∂t̂
= δ∇̂2v̂ +m3 +m1û

2 + ρ(m2 − 1)ûv̂;

(ii):

∂û

∂t̂
= ∇̂2û+ (n3 − 1)û+ (n1 − 2)û2 + ρ(n2 − 1)ûv̂,

∂v̂

∂t̂
= δ∇̂2v̂ +m3û+m1û

2 + ρ(m2 − 1)ûv̂;

and (iii):

∂û

∂t̂
= ∇̂2û+ n3v̂ + (n1 − 2)û2 + ρ(n2 − 1)ûv̂,

∂v̂

∂t̂
= δ∇̂2v̂ + (m3 − 1)v̂ +m1û

2 + ρ(m2 − 1)ûv̂,

where δ = Dv
Du

and ρ = r2
r1
. Considering the balance of terms in the steady state equations, we can

deduce the steady state scalings:
(i):

(û, v̂) ∼ (1, ρ−1) =⇒ (u∗, v∗) ∝ (σ, σρ−1) =

(√
r3
r1
,

√
r3r1
r2

)
,

(ii):

(û, v̂) ∼ (1, ρ−1) =⇒ (u∗, v∗) ∝ (σ, σρ−1) =

(
r3
r1
,
r3
r2

)
,

(iii):

(û, v̂) ∼ (ρ−1, ρ−2) =⇒ (u∗, v∗) ∝ (σρ−1, σρ−2) =

(
r3
r2
,
r3r1
r22

)
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(as indeed we observe in the derivation of the minimal type-I schemes), where each proportionality
is up to some function of the integer stoichiometric product coefficients {ni,mi}. The Jacobian then
scales as

(i): J∗ ∼

√
r3r1

√
r3
r1
r2

√
r3r1

√
r3
r1
r2

 , (ii): J∗ ∼
(
r3

r3r2
r1

r3
r3r2
r1

)
, (iii): J∗ ∼

( r3r1
r2

r3
r3r1
r2

r3

)
,

where each entry is proportional (up to a differing function of {ni,mi}) to the given expression in
the rate parameters. In each case, the determinant condition det(J∗) > 0 and sign conditions on the
entries of J∗ become conditions on these functions of {ni,mi} only (independent of the reaction rate
parameters), while the trace condition tr(J∗) < 0 rearranges to give

tr(J∗) < 0 ⇐⇒ −J∗
22

J∗
11

> 1 ⇐⇒ r2
r1

> ρc(n,m),

where the exact form for ρc depends on the chosen reaction scheme. This gives the vertical phase
boundary ρ = ρc plotted in Figure 5 of the main text. For ρ < ρc, the homogeneous steady state is
not linearly stable with respect to spatially uniform perturbations; for ρ > ρc the homogeneous steady
state is linearly stable to spatially uniform perturbations, but may or may not be linearly unstable
with respect to non-uniform perturbations.

Finally, substituting the reaction rate parameter scalings for J∗
11, det(J

∗), and J∗
12J

∗
21 into the expression

for
√
δc, each case yields that√

δc =
1

J∗
11

(√
det(J∗) +

√
−J∗

12J
∗
21

)
∝
√

r2
r1
,

where the proportionality is up to some function of n = (ni) and m = (mi), that is: for each minimal
Turing-unstable reaction scheme of type I, we have

δc = H(n,m)ρ,

for some function H. This gives the diagonal phase boundary δ = δc(ρ) plotted in Figure 5 of the main
text. Supposing that ρ > ρc, then for δ < δc(ρ) the homogeneous steady state is linearly stable with
respect to all perturbations. If ρ > ρc and δ > δc(ρ), then the homogeneous steady state is linearly
stable to spatial perturbations with sufficiently small or large wavenumbers, but is linearly unstable
to perturbations with wavenumbers in some open interval k ∈ (k−, k+).

C Stability Boundaries for Type-I

In the following two tables, we collate the expressions for ρc and H = δcρ
−1, which determine

quantitatively the Turing instability boundaries, for each of the 11 classes of minimal type-I reaction
schemes. As in Figure 3 of the main text, we label these classes alphabetically a. through to k.
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Class ρc(n,m)
√

H(n,m)

I.a 2(n′′
1 − 2)−m1

1

2(n′′
1 − 2)−m1

(√
2(m1 − (n′′

1 − 2)) +
√
m1

)
I.b

(2n3 −m3)(n
′′
1 − 2)− n3m1

n3 −m3

√
n3 −m3

(2n3 −m3)(n′′
1 − 2)− n3m1

(√
2(n3 −m3)(m1 − (n′′

1 − 2)) +
√

m3(n′′
1 − 2) + (n3 − 2m3)m1

)

I.c n′′
1 − 2

1

n′′
1 − 2

(√
m1 − (n′′

1 − 2) +
√
m1

)
I.d n′′

1 − 2
1

n′′
1 − 2

(√
m1 − (n′′

1 − 2) +
√
m1

)
I.e

(n′′
1 − 2)2

m1

1

n′′
1 − 2

(√
m1 − (n′′

1 − 2) +
√
2m1 − (n′′

1 − 2)

)
I.f

(n3m1 + (n′′
1 − 2))((2n3 + 1)(n′′

1 − 2)− n3m1)

(n3 + 1)2m1

n3 + 1

(2n3 + 1)(n′′
1 − 2)− n3m1

(√
m1 − (n′′

1 − 2) +

√
2(n3 + 1)(n′′

1 − 2)m1

n3m1 + (n′′
1 − 2)

− (n′′
1 − 2)

)

I.g 2(n′′
1 − 2)−m1

1

2(n′′
1 − 2)−m1

(√
m1 − (n′′

1 − 2) +
√

n′′
1 − 2

)
I.h

(n3m1 − (m′
3 − 1)(n′′

1 − 2))((2n3 − (m′
3 − 1))(n′′

1 − 2)− n3m1)

(n3 − (m′
3 − 1))2m1

n3 − (m′
3 − 1)

(2n3 − (m′
3 − 1))(n′′

1 − 2)− n3m1

(√
m1 − (n′′

1 − 2) +

√
2(n3 − (m′

3 − 1))(n′′
1 − 2)m1

n3m1 − (m′
3 − 1)(n′′

1 − 2)
− (n′′

1 − 2)

)

I.i
(n′′

1 − 2)2

m1

√
m1

n′′
1 − 2

(
1 +

√
2
)

I.j
(n′′

1 − 2)2 − n2
3m

2
1

m1

√
m1

((n′′
1 − 2)− n3m1)

√
(n′′

1 − 2) + n3m1

(√
(n′′

1 − 2) + n3m1 +
√
2(n′′

1 − 2)

)
I.k

(n′′
1 − 2)2

m1

1

n′′
1 − 2

(√
(n′′

1 − 2)(m′
2 − 1) +m1 +

√
(n′′

1 − 2)(m′
2 − 1) + 2m1

)
Table C.1: The critical reaction rate ratio ρc for linear stability of the homogeneous steady state (u∗, v∗) to spatially uniform perturbations, and the
Turing instability threshold

√
H =

√
δcρ−1 for each of the eleven type-I Turing-unstable classes of minimal reaction scheme as functions of the integer

schoichiometric product coefficients. With reference to Figure 3 of the main text, the classes are labelled alphabetically down the columns: a-h column
1, i-j column 2, k column 3.
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Class
√
δc(ρc) =

√
H(n,m)

√
ρc(n,m) inf (δc(ρc))

I.a
1√

2(n′′
1 − 2)−m1

(√
2(m1 − (n′′

1 − 2)) +
√
m1

)
1

I.b
1√

(2n3 −m3)(n′′
1 − 2)− n3m1

(√
2(n3 −m3)(m1 − (n′′

1 − 2)) +
√

m3(n′′
1 − 2) + (n3 − 2m3)m1

)
1

I.c
1√

n′′
1 − 2

(√
m1 − (n′′

1 − 2) +
√
m1

)
1

I.d
1√

n′′
1 − 2

(√
m1 − (n′′

1 − 2) +
√
m1

)
1

I.e
1

√
m1

(√
m1 − (n′′

1 − 2) +
√

2m1 − (n′′
1 − 2)

)
1

I.f
1

√
m1

√
n3m1 + (n′′

1 − 2)√
(2n3 + 1)(n′′

1 − 2)− n3m1

(√
m1 − (n′′

1 − 2) +

√
2(n3 + 1)(n′′

1 − 2)m1

n3m1 + (n′′
1 − 2)

− (n′′
1 − 2)

)
1

I.g
1√

2(n′′
1 − 2)−m1

(√
m1 − (n′′

1 − 2) +
√

n′′
1 − 2

)
1

I.h
1

√
m1

√
n3m1 − (m′

3 − 1)(n′′
1 − 2)√

(2n3 − (m′
3 − 1))(n′′

1 − 2)− n3m1

(√
m1 − (n′′

1 − 2) +

√
2(n3 − (m′

3 − 1))(n′′
1 − 2)m1

n3m1 − (m′
3 − 1)(n′′

1 − 2)
− (n′′

1 − 2)

)
1

I.i 1 +
√
2 3 + 2

√
2

I.j
1√

(n′′
1 − 2)− n3m1

(√
(n′′

1 − 2) + n3m1 +
√
2(n′′

1 − 2)

)
3 + 2

√
2

I.k
1

√
m1

(√
(n′′

1 − 2)(m2 − 1) +m1 +
√

(n′′
1 − 2)(m2 − 1) + 2m1

)
3 + 2

√
2

Table C.2: The minimal Turing instability threshold
√

δc(ρc) =
√
Hρc for each of the eleven type-I Turing-unstable classes of minimal reaction scheme,

and the corresponding infima for δc(ρc) over the stoichiometric product coefficients satisfying the Turing instability constraints. With reference to Figure
3 of the main text, the classes are labelled alphabetically down the columns: a-h column 1, i-j column 2, k column 3.

10



D Non-dimensionalisation of Type-II

Here we repeat, for the type-II minimal schemes, the non-dimensionalisation arguments applied in
Section B to the type-I minimal schemes. Deriving the phase boundaries in generality is complicated,
but is done here for some specific cases of type-II reaction schemes.

Corresponding to the choice of third reactant combination, the mass-action PDE models for the
type-II minimal schemes take one of three forms:
(i):

∂u

∂t
= Du∇2u+ a1 + a2u+ a4u

2 + a5uv,

∂v

∂t
= Dv∇2v + b1 + b2u+ b4u

2 + b5uv;

(ii):

∂u

∂t
= Du∇2u+ a2u+ a3v + a4u

2 + a5uv,

∂v

∂t
= Dv∇2v + b2u+ b3v + b4u

2 + b5uv;

or (iii):

∂u

∂t
= Du∇2u+ a2u+ a4u

2 + a5uv + a6v
2,

∂v

∂t
= Dv∇2v + b2u+ b4u

2 + b5uv + b6v
2.

Non-dimensionalising x = ξx̂, t = τ t̂, (u, v) = (σû, σv̂), and substituting in the forms for the
coefficients {ai, bi} in terms of {ri, ni,mi}, setting ξ2 = Duτ eliminates dependence on the diffusivities
Du and Dv except through their ratio Dv

Du
. Again setting σ = 1

r1τ
, and choosing τ = 1

r3
, we obtain

(i):

∂û

∂t̂
= ∇̂2û+

r1r4
r23

n4 + (n3 − 1)û+ (n1 − 2)û2 + ρ(n2 − 1)ûv̂,

∂v̂

∂t̂
= δ∇̂2v̂ +

r1r4
r23

m4 +m3û+m1û
2 + ρ(m2 − 1)ûv̂;

(ii):

∂û

∂t̂
= ∇̂2û+ (n3 − 1)û+

r4
r3
n4v̂ + (n1 − 2)û2 + ρ(n2 − 1)ûv̂,

∂v̂

∂t̂
= δ∇̂2v̂ +m3û+

r4
r3
(m4 − 1)v̂ +m1û

2 + ρ(m2 − 1)ûv̂;

or (iii):

∂û

∂t̂
= ∇̂2û+ (n3 − 1)û+ (n1 − 2)û2 + ρ(n2 − 1)ûv̂ +

r4
r1
n4v̂

2,

∂v̂

∂t̂
= δ∇̂2v̂ +m3û+m1û

2 + ρ(m2 − 1)ûv̂ +
r4
r1
(m4 − 2)v̂2,

where δ = Dv
Du

and ρ = r2
r1
. In each case we have a different second dimensionless group of reaction

rate parameters:

(i): ϱ1 =
r1r4
r23

, (ii): ϱ2 =
r4
r3
, (iii): ϱ3 =

r4
r1
.
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The type-II minimal schemes are more difficult to analyse in generality than those of type I. Generally,
the steady state concentrations and the entries of the steady state Jacobian are functions of both
dimensionless groups of the reaction rate parameters, and these are not simple power law relations.
Accordingly, it is more complicated to separate out the constraints on only the stoichiometric coefficients,
under which the reaction rate parameters can be chosen in some open region so as to yield a Turing
instability. The slight exception to this is case (i) above, where the steady state concentration u∗ is
independent of ρ. To illustrate some more general points about the type-II schemes, we now undertake
a closer examination of the non-dimensionalised form (i), specifically for the minimal reaction schemes
identified in Section A.1.

D.1 Turing analysis of minimal type-II schemes of form (i)

Reviewing the minimal schemes that take this non-dimensionalised form, we identify the following
commonalities: n1 > 2, n2 > 1, m2 = n3 = m3 = 0, m4 > 0. Thus we consider the general
non-dimensionalised PDE model

∂u

∂t
= ∇2u+ ϱ1n4 − u+ (n1 − 2)u2 + ρ(n2 − 1)uv,

∂v

∂t
= δ∇2v + ϱ1m4 +m1u

2 − ρuv,

where m1 or n4 may be zero. Solving the steady state equations, we find

((n1 − 2) +m1(n2 − 1))(u∗)2 − u∗ + ϱ1(n4 + (n2 − 1)m4) = 0, (D.1)

hence under the condition that

ϱ1 <
1

4(n4 + (n2 − 1)m4)((n1 − 2) +m1(n2 − 1)
, (D.2)

we have two positive spatially uniform steady states:

u∗ =
1±

√
1− 4(n4 + (n2 − 1)m4)((n1 − 2) +m1(n2 − 1))ϱ1

2((n1 − 2) +m1(n2 − 1))
, v∗ =

ϱ1m4 +m1(u
∗)2

ρu∗
,

both of which satisfy J∗
12 > 0 and J∗

22 < 0. For any positive steady state, the Routh-Hurwitz linear
stability condition det(J∗) > 0 rearranges to give

u∗ <
1

2((n1 − 2) +m1(n2 − 1))
,

and so we determine that only the smaller of the two roots of (D.1) can exhibit a Turing instabity.
Our homogeneous steady state is thus

u∗ =
1−

√
1− 4(n4 + (n2 − 1)m4)((n1 − 2) +m1(n2 − 1))ϱ1

2((n1 − 2) +m1(n2 − 1))
, v∗ =

ϱ1m4 +m1(u
∗)2

ρu∗
, (D.3)

and satisfies det(J∗) > 0. Note that u∗ is independent of ρ. The condition J∗
11 > 0 is

(n1 − 2)(u∗)2 > ϱ1n4.

If n4 = 0, this is guaranteed for any positive u∗, since n1 > 2. Otherwise, by substituting in the
expression for our steady state u∗, we obtain the constraints

ϱ1 >
(n1 − 2)n4

(2n4(n1 − 2) +m1(n2 − 1)n4 + (n1 − 2)(n2 − 1)m4)2
(D.4)

and

ϱ1 <
n1 − 2

4n4((n1 − 2) +m1(n2 − 1))2
. (D.5)
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Similarly, the condition J21 < 0 is
m1(u

∗)2 < ϱ1m4,

and if m1 = 0 then this is guaranteed, since m4 > 0. If m1 > 0, substituting in the expression for our
steady state u∗ we obtain that ϱ1 must satisfy one of

ϱ1 >
m1

4m4((n1 − 2) +m1(n2 − 1))2
, (D.6a)

or
ϱ1 <

m1m4

((n1 − 2)m4 + 2m1(n2 − 1)m4 +m1n4)2
. (D.6b)

Lastly, the linear stability condition tr(J∗) < 0 rearranges to give

ρ >
(n1 − 2)(u∗)2 − ϱ1n4

(u∗)2
. (D.7)

Since u∗ is independent of ρ, this constraint is a lower bound on ρ which will vary with ϱ1.

In summary, the region in (ϱ1, ρ, δ) parameter space in which we observe a Turing instability is most
restricted in the ϱ1-axis. For existence of a positive steady state, ϱ1 must satisfy (D.2). If n4 ̸= 0
then ϱ1 must also satisfy both (D.4) and (D.5); if m1 ̸= 0 then ϱ1 must also satisfy either (D.6a)
or (D.6b). Provided these constraints are met, then the Turing instability region is semi-infinite in
the ρ-axis, since the only constraint on ρ is the ϱ1-dependent lower bound (D.7). As for the type-I
minimal schemes, the region is semi-infinite in the δ-axis, now with lower bound δ > δc(ϱ1, ρ) given
by (A.1).

As noted, the other two forms of the type-II minimal schemes are more difficult to analyse in generality.
However, for any given set of stoichiometric product coefficients, the analysis to determine whether a
reaction scheme can support a Turing pattern – and if so, to determine under what conditions on the
reaction rate parameters – is standard. Solving the steady-state equations can be done exactly. For
any positive steady state, it then remains to check the stability criteria tr(J∗) < 0, det(J∗) > 0, and
the type-II sign pattern criteria J∗

11, J
∗
12 > 0 and J∗

21, J
∗
22 < 0. In general, the parameter regimes where

Turing patterns occur (if at all) are highly constrained and fine tuning of the reaction rate parameters
is required.

D.2 Uniqueness of positive stable homogeneous equilibria in minimal type-II
schemes

We show here for each of the Turing-unstable minimal schemes for type-II patterns that if a positive
homogeneous steady state (u∗, v∗) exists and is linearly stable (to spatially uniform perturbations),
then any other positive homogeneous steady state is linearly unstable. There may however be linearly
stable steady states where one or both of u∗, v∗ are zero. We show our result by considering in turn
each of the three (dimensional) forms as listed above. The relevant deduction for schemes of form (i)
is already made in the above linearised analysis, however it is repeated here in a more succinct way
that is then applied similarly to the other two forms. For what follows, it will be useful to define the
cross differences

ci,j := biaj − aibj ,

and note that ci,j = −cj,i.

D.2.1 Form (i)

For type-II minimal schemes of this form, the reaction polynomials are

F (u, v) = a1 + a2u+ a4u
2 + a5uv,

G(u, v) = b1 + b2u+ b4u
2 + b5uv.

13



We note that if a steady state exists with u∗ ̸= 0, then v∗ is uniquely defined in terms of u∗. The
Jacobian evaluated at any steady state (u∗, v∗) is given by

J∗ =

(
a2 + 2a4u

∗ + a5v
∗ a5u

∗

b2 + 2b4u
∗ + b5v

∗ b5u
∗

)
,

and using the steady state equations, we find that

det(J∗) = 2c5,4(u
∗)2 − c2,5u

∗.

Hence the linear stability condition det(J∗) > 0 implies that u∗ ̸= 0 and further that 2c5,4u
∗− c2,5 > 0

for any positive linearly stable steady state. We also have that

0 = b5F (u∗, v∗)− a5G(u∗, v∗) = c5,1 − c2,5u
∗ + c5,4(u

∗)2.

For there to be two positive steady states (u∗, v∗), there must be two distinct positive roots u∗ to this
equation. If that is the case, then c5,4 ̸= 0 and (c2,5)

2 ̸= 4c5,4c5,1 and the roots are given by

u∗± :=
c2,5 ±

√
(c2,5)2 − 4c5,4c5,1
2c5,4

,

which yields

2c5,4u
∗
± − c2,5 = ±

√
(c2,5)2 − 4c5,4c5,1.

Thus only one of u∗+, u
∗
− satisfies 2c5,4u

∗ − c2,5 > 0, and we deduce that there can be at most one
positive linearly stable homogeneous steady state (u∗, v∗).

D.2.2 Form (ii)

For minimal schemes of this form, the reaction polynomials are

F (u, v) = a2u+ a3v + a4u
2 + a5uv,

G(u, v) = b2u+ b3v + b4u
2 + b5uv.

We note again that if a steady state exists with u∗ ̸= 0, then v∗ is uniquely defined in terms of u∗.
The Jacobian evaluated at any steady state (u∗, v∗) is given by

J∗ =

(
a2 + 2a4u

∗ + a5v
∗ a3 + a5u

∗

b2 + 2b4u
∗ + b5v

∗ b3 + b5u
∗

)
,

and using the steady state equations, we find that for any positive steady state

det(J∗) = 2c5,4(u
∗)2 − (c4,3 − c5,2)u

∗.

Hence 2c5,4u
∗ − (c4,3 − c5,2) > 0 for any positive linearly stable steady state. We also have that

0 = b4F (u∗, v∗)− a4G(u∗, v∗) = c4,2u
∗ + c4,3v

∗ + c4,5u
∗v∗,

and
0 = b5F (u∗, v∗)− a5G(u∗, v∗) = c5,2u

∗ + c5,3v
∗ + c5,4(u

∗)2.

For there to be two positive steady states (u∗, v∗), there must be two distinct positive solutions (u∗, v∗)
to these simultaneous equations. If that is the case, then c5,3 ̸= 0 and the solutions correspond to two
distinct positive real roots u∗ of

0 = c5,3c4,2 − c4,3c5,2 − (c4,3 − c5,2)c5,4u
∗ + (c5,4)

2(u∗)2.

If this equation does have two positive real roots then these are given by

u∗± =
(c4,3 − c5,2)±

√
(c4,3 + c5,2)2 − 4c5,3c4,2
2c5,4

,

which yields

2c5,4u
∗
± − (c4,3 − c5,2) = ±

√
(c4,3 + c5,2)2 − 4c5,3c4,2.

Thus only one of u∗+, u
∗
− satisfies 2c5,4u

∗ − (c4,3 − c5,2) > 0, and we deduce that there can be at most
one positive linearly stable homogeneous steady state (u∗, v∗).
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D.2.3 Form (iii)

For minimal schemes of this form, the reaction polynomials are

F (u, v) = a2u+ a4u
2 + a5uv + a6v

2,

G(u, v) = b2u+ b4u
2 + b5uv + b6v

2.

We note that if a positive steady state exists then u∗ is uniquely defined in terms of the ratio v∗

u∗ . The
Jacobian evaluated at any steady state (u∗, v∗) is given by

J∗ =

(
a2 + 2a4u

∗ + a5v
∗ a5u

∗ + 2a6v
∗

b2 + 2b4u
∗ + b5v

∗ b5u
∗ + 2b6v

∗

)
,

and using the steady state equations, we find that for any positive steady state

det(J∗) = 2c2,6v
∗ − c5,2u

∗.

Hence 2c2,6
v∗

u∗ − c5,2 > 0 for any positive linearly stable steady state. We also have that

0 = b2F (u∗, v∗)− a2G(u∗, v∗) = c2,4(u
∗)2 + c2,5u

∗v∗ + c2,6(v
∗)2,

and so for a positive steady state we must have

0 = c2,4 − c5,2
v∗

u∗
+ c2,6

(
v∗

u∗

)2

.

For there to be two positive steady states (u∗, v∗), there must be two distinct positive solutions v∗

u∗ to
this quadratic equation. If that is the case, then c2,6 ̸= 0 and the roots are given by(

v∗

u∗

)
±
=

c5,2 ±
√
(c5,2)2 − 4c2,6c2,4
2c2,6

,

which yields

2c2,6

(
v∗

u∗

)
±
− c5,2 = ±

√
(c5,2)2 − 4c2,6c2,4.

Thus only one of
(
v∗

u∗

)
+
,
(
v∗

u∗

)
− satisfies 2c2,6

v∗

u∗ − c5,2 > 0, and we deduce that there can be at most
one positive linearly stable homogeneous steady state (u∗, v∗).

E Parameter values for numerical simulations

Here we tabulate, in Tables E.1, E.2, and E.3 respectively, the parameter values used for the numerical
simulations displayed in Figures 6, 7, and 8 of the main text. All simulations were run in MATLAB
using a modified fourth-order Runga-Kutta-type exponential time differencing scheme (mETD4RK)1

which has been shown to be a suitable choice for stiff PDE problems2.

For the saturating type-I example in Figure 8, the initial conditions used were

u(x, 0) = u∗ + 10−6 cos
(
3 · 2π

L x
)
, v(x, 0) = v∗ + 10−6 cos

(
3 · 2π

L x
)
.

For the simulations in Figures 6 and 7, the initial conditions were the linearly stable homogeneous
steady state (u∗, v∗) perturbed with small spatial noise:

u(xi, 0) = (1 + 10−4ξi)u
∗, v(xi, 0) = (1 + 10−4ηi)v

∗, ξi, ηi
i.i.d.∼ Unif(−0.5, 0.5) .

1S. M. Cox, P. C. Matthews, Exponential Time Differencing for Stiff Systems. Journal of Computational Physics
176, 430–455 (2002)

2A.-K. Kassam, L. N. Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM Journal of Scientific Computing
26, 1214–1233 (2005)
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Rate Diffusivity Final
Class Stoichiometric coefficients constant r2 Dv time T

I.a (n′′
1, n3,m1) = (4, 1, 3) 1.2 15 60

I.b (n′′
1, n3,m1,m3) = (4, 3, 3, 1) 0.6 25 60

I.c (n′′
1, n

′
3,m1) = (3, 2, 2) 1.2 10 30

I.d (n′′
1, n

′
3,m1,m3) = (3, 3, 2, 1) 1.2 10 30

I.e (n′′
1,m1) = (3, 2) 0.6 6 30

I.f (n′′
1, n3,m1) = (3, 1, 2) 0.5 15 10

I.g (n′′
1, n3,m1) = (4, 1, 3) 1.2 10 10

I.h (n′′
1, n3,m1,m

′
3) = (4, 3, 3, 2) 0.7 20 5

I.i (n′′
1,m1) = (3, 1) 1.2 10 30

I.j (n′′
1, n3,m1) = (4, 1, 1) 3.6 20 60

I.k (n′′
1,m1,m

′
2) = (3, 1, 2) 1.2 15 90

Table E.1: Parameter values chosen for simulations shown in Figure 6. All simulations used r1 = r3 =
Du = 1, a fixed domain length L = 32 with a uniform spatial mesh of 29 = 512 nodes, and a fixed
time step of size ht = 2−15. As a proxy for ρ, the rate constant r2 was chosen to be approximately
1.2ρc. As a proxy for δ, the diffusivity Dv was chosen to be approximately 1.2δc(ρ) = 1.44δc(ρc).

rate constants Diffusivity Final
Class Stoichiometric coefficients r1 r2 r3 r4 Dv time T

II.a (n′′
1, n

′
2,m1,m4) = (3, 2, 2, 1) 0.6 1.0 0.85 0.1 20 100

II.b (n′′
1, n

′
2, n4,m1,m4) = (3, 2, 1, 1, 2) 0.75 1.0 0.95 0.05 50 200

II.c (n′′
1, n

′
2,m4) = (3, 2, 1) 0.75 1.0 0.8 0.1 50 200

II.d (n′′
1, n

′
2, n4,m4) = (3, 2, 1, 1) 0.75 1.0 0.78 0.1 50 100

II.e (n′′
1, n4,m1,m3,m

′
4) = (4, 1, 1, 1, 2) 0.61 1.0 0.85 0.1 100 200

II.f (n′′
1, n4,m1,m3,m

′′
4) = (4, 1, 1, 1, 3) 0.1 0.992 0.25 0.41 100 400

II.g (n′′
1, n4,m3,m

′
4) = (3, 1, 1, 2) 0.6 1.0 0.7 0.2 40 100

II.h (n′′
1, n4,m3,m

′′
4) = (3, 2, 1, 3) 0.35 0.985 0.3 0.23 80 400

II.i (n′′
1, n

′
2, n4,m1,m

′
4) = (4, 2, 1, 1, 2) 0.15 0.97 0.8 0.52 80 300

II.j (n′′
1, n

′
2,m1,m

′
4) = (4, 2, 2, 2) 0.15 1.0 0.7 0.4 5 200

II.k (n′′
1, n4,m1,m

′
4) = (6, 2, 1, 2) 0.75 1.0 0.7 0.125 20 200

II.l (n′′
1, n4,m1,m

′
4) = (4, 1, 1, 2) 0.68 1.0 0.8 0.2 60 200

II.m (n′′
1, n4,m1,m3,m

′′
4) = (5, 2, 1, 1, 3) 0.32 0.9993 0.2 0.26 60 400

II.n (n′′
1, n4,m3,m

′′
4) = (3, 2, 1, 3) 0.35 0.995 0.3 0.94 60 100

Table E.2: Parameter values chosen for simulations shown in Figure 7. All simulations used Du = 1,
a fixed domain length L = 128 with a uniform spatial mesh of 29 = 512 nodes, and a fixed time step
of size ht = 2−15.

stoichiometric rate constants diffusivity domain final
Class coefficients r1 r2 r3 Dv length L time T

I.a (n′′
1, n3,m1) = (4, 1, 3) 1 1.2 1 15 28 200

Table E.3: This simulation used Du = 1, a uniform spatial mesh of 29 = 512 nodes, and a fixed time
step of size ht = 2−15. The initial conditions were the linearly stable homogeneous steady state (u∗, v∗),
plus a small cosine perturbation with wavenumber k maximising the linearised temporal growth rate
of the perturbation.
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