THE NORMAL FORM FOR A 1:+/3
HOPF/STEADY-STATE MODE
INTERACTION

J. H. P. Dawes

Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Silver Street, Cambridge, CB3 9EW, UK. Tel:
+44-1223-337900. Fax: +44-1223-337918. Email:
J.H.P.Dawes@damtp.cam.ac.uk

Abstract

The interaction of three-dimensional steady and oscillatory pat-
terns on a hexagonal planar lattice is considered, when the ratio of the
pattern lengthscales is 1 : /3. The normal form for the mode inter-
action is derived from symmetry considerations for the simplest case;
this is where the size of the imposed lattice is chosen to ensure that
the relevant symmetry group, Dg i T2, acts by its fundamental repre-
sentation on both the steady and oscillatory modes. This analysis is of
interest for many pattern-forming systems because the wavenumbers
involved in mode interactions of this kind are those selected naturally

by the system in a spatially-extended domain.
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1 Introduction

A common feature of many spatially-extended continuum systems is that they
undergo pattern-forming instabilities of an initially uniform state. These of-
ten produce steady regular periodic patterns, for example stripes or hexagons.
In some cases, though, the loss of stability is via a Hopf bifurcation and os-
cillatory phenomena such as standing or travelling waves are seen. Near the
boundaries in parameter space which divide these two kinds of instability
we expect some sort of interaction between steady and oscillating patterns.
These interactions may well lead to complex dynamics. In this paper we
consider such an interaction and derive, by symmetry arguments, the nor-
mal form for the behaviour close to the pattern-forming instability threshold
when the system parameters are near the boundary which divides the regions
of steady and oscillatory pattern-forming behaviour.

Much of the time this transition from steady instability to oscillatory
instability takes place at a point where the preferred wavenumbers (for a
spatially-extended plane layer) for the two kinds of instability are distinct;
there is a jump in the preferred horizontal scale of the pattern. In this paper
we examine the case where the ratio of the preferred wavenumbers is v/3.
Although this seems very restrictive, the normal form we derive is the sim-
plest possible one for a Hopf/steady-state mode interaction on a hexagonal
lattice and provides a starting point for consideration of more complex mode
interactions at different wavenumber ratios. The frequency of the oscillatory
instability remains bounded away from zero at the codimension-2 point; this

fact distinguishes clearly between Takens-Bogdanov bifurcations [7] and the



Hopf/steady-state bifurcations considered here and previously in [2]. Since
many physical systems form hexagonal, rather than square, patterns it is
clearly of interest to frame problems which have hexagonal solutions. A clear
recent example of a physical system where this analysis may be applicable
is a two-layer convection problem where the effects of surface-tension are

important [6].

2 Mode interaction

We consider a set of smooth PDEs

86_1: = F(u, A, A2) (1)
for the quantities u(x,z2,t) in the domain (x,2) € R? x [0,1] where F is
a nonlinear function and A\ and Ay are (real) physical parameters for the
system. We assume that there is a uniform, time-independent basic state
u = 0 which exists for all (A1, A\2). The uniform state is invariant under the
natural action of the group E(2) of all translations, rotations and reflections
of the plane. We further assume that at the point Ay = A{, A2 = A§ the
uniform state is simultaneously unstable to perturbations at two distinct
wavenumbers; for the smaller wavenumber the eigenvalues are imaginary and
for the larger wavenumber they are zero. The marginal stability curves for
the uniform state take the form shown in figure 1.

The E(2) invariance of the basic state u = 0 causes problems; as all
horizontal directions are equivalent there are whole circles of critical wave-
vectors to consider. We would like to perform a centre manifold reduction
to obtain a finite-dimensional set of ODEs describing the mode interaction.
This is only possible if we introduce extra constraints.

The constraints we introduce are that we require the bifurcating modes

to be periodic with respect to a doubly-periodic lattice £ in the plane, u(x +
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Figure 1: (a) Marginal stability curves (wavenumber o against A1) for the uniform
state for A2 < A§. Below the curves the uniform state is stable to steady (solid line)
and oscillatory (dashed line) perturbations. As A; increases the first instability is
a steady one at this value of 2. (b) A2 = A5. (c) A2 > A§; at this point the

oscillatory instability occurs first as A; increases.

£,z,t) = u(x,z,t) for all £ € L. For this problem we take the real-space
lattice £ to be

2 1 2 2
L = {n&—l—mfgz(n,m)EZQ, leg (1,——), [2:—71- (0,7>}

and the corresponding dual lattice £*, defined by

LY = {nk1 +mks : (n,m) € Z?, k; = a(1,0), ky = « (%, ?) }(3)
so that k; -£; = 2md;;. The factor « is the critical wavenumber for oscillatory
perturbations, and could be removed by re-scaling lengths in the original
PDEs. Having restricted the problem to a lattice, we have ensured that the
dimension of the centre manifold of the bifurcation problem is finite, and have
bounded away from zero the growth rates of all other modes not on the critical

circle. The geometry of the lattice is shown in figure 2. The mode interaction

involves six oscillatory modes z1,...,2z¢ and three steady ones wy,ws, ws.



Figure 2: The dual lattice £* for the 1 : /3 Hopf/steady-state mode interaction on
a hexagonal lattice. The two dashed circles indicate the circles of critical wavevec-

tors: they have a radius ratio of \/3_’ The oscillatory modes are z1, ..., 2 and the

steady modes are wi, ..., ws.

The symmetry group of the problem has also been reduced, from E(2) to
I' = Dgx T?. The group Dg is the holohedry of the lattice (the symmetry
elements which leave the lattice invariant) and the two-torus of translations
appears because there is no pre-determined spatial origin for the lattice. In
normal form the amplitude equations for the modes z1, ..., zg, w1, wo, w3 are
also invariant under a normal form symmetry corresponding to a circle group

St of time translations. Hence the full symmetry group of the problem is
I xSt



3 Group action and linear theory

After restricting to the lattice, perturbations to the basic state take the form

u = Re[zlei(amfwt) +Z267i(am+wt) +236i(7%m+a\2/§y7wt) +z4ei(%f*a‘2/§y7wt)
i(epravd, (_a,_aVE, :(3a aV3
+Z561(2I+ 3o y—wt) + 2661( sT—Fty-—wi) + wle‘( s o+ S3Ey)
. . 3a a3
Fwae VY 4 el (— 5t VF(2) (4)

where F(z) forms the vertical structure of the solution and w is the frequency
of the Hopf bifurcation. The space of perturbations w = (21, 22, 23, 24, 25, 26, W1, W2, W3)
is then isomorphic to the vector space W = C?. The action of T' x S' on
the mode amplitudes is inherited from its natural action on the plane R?;
the action of Dg is generated by the reflection my : (z,y) — (z, —y) and the

rotation anticlockwise through an angle of 7/3, denoted p:

mx : (21:22:237'24:257'26) — (217'22:26:257'24:23) (5)
(w1, wa, w3) — (W3, Wy, 1) (6)

p: (21722723724725726') - (25726'722721723724) (7)
(w1, w2, w3) — (w2, w3, W) (8)

The action of the translation group T2 x S' is given by

[(&m),0l: (2,y,8) > (z+&/a,y+n/at+ ¢/w) (9)
(21722723724725726) — (zlei(£_¢)a22€_i(£+¢)7236i(_%+¥_¢)7
Zwﬂ%*#ﬂé),Z5ei(§+@f¢),Zﬁei(f%f@ﬂé)) (10)

3

(w1, ws, w3) = (w1l ET) wyelV3 el = F+HE)) (1)

We require the normal form w = f(w, p1 (A1, A2), u2(A1, A2)) to be T x St-
equivariant, i.e. f(yw, p1,u2) = Y£(w, p1, pz) for all v € T x St. The Taylor



series expansion of f up to terms of degree n can be made to commute with
the S' action by applying near-identity transformations to remove terms
order by order which do not commute with the S' action. In this paper we
are interested only in computing the cubic truncation of f and assume that
the cubic truncation has the normal form symmetry. We ignore questions
concerning the influence of higher-order terms, in particular the ‘tail’ of terms
of degree higher than n which may not be I' x S'-equivariant, but only T'-

equivariant. Assuming f is a smooth function, we may write it as

n
j=1
where the terms gi(w), ..., g,(w) are I' x S'-equivariant and the h; terms
are polynomials in the K distinct T’ x S! invariants I, ..., Ik.

We first consider the linearisation of the amplitude equations:

Zi o= (A1, A2) +iwo(p))z;), (13)

wy = pa(Ai, A2)wy (14)

for 1 < j<6and 1 <k < 3, where wg(p1) is the nonlinear correction to
the frequency of oscillations of the Hopf bifurcation; the physical oscillation
frequency is w + wp(u1). The linearised equations must take this form be-
cause the action of I on (w;,ws,ws) is absolutely irreducible and the action
on (z1,29,23,24,25,26) 18 isomorphic to two copies of the same absolutely
irreducible representation [8], and hence is I'-simple. The (real) bifurcation
parameters pp and s depend in some way on the physical parameters Aj, Ay
such that (u1, u2) = (0,0) at (A1, A2) = (A{, AS) and there is a locally invert-

ible co-ordinate transformation:

Ou1 /oM By JON
P B £0 (15)

Bug/a)\l 8,u2/6/\2 Ae NS



4 T? x S! invariants and the normal form

We now compute all invariants up to degree 4 since generically the be-
haviour near the mode interaction is determined by the third-order trun-
cation of the normal form. Clearly there are nine invariants of degree 2;
12112, ..., 262, Jwi |2, Jwa|?, Jwz|?. After removing degree 2 invariants, a gen-

eral invariant has the form I = 2"zl 2l z{2l2Swiwiwy where we adopt the

usual convention that z; = 2}” if I < 0. Requiring invariance under the

!
J
T? x S action (10) - (11) leads to the following conditions

T
m—n—§+§+§—2+7—7 =0 (16)
p q T s u _
9 2+2 2+2-|-U+2 = 0 (17)
m+n+p+qg+r+s = 0, (18)
Im| + [n| + |pl + [l + |r| + [s] + [u| + o[ +w] < 4. (19)

This last condition restricts the search to those invariants of degree 4 or
less. There are three distinct types of invariant: ones which contain only the
steady modes wj, ones which contain only oscillatory modes z; and those
which couple the two. All invariants in the first case occur in the steady
bifurcation problem on a hexagonal lattice [1, 5]. Similarly, the oscillatory
bifurcation problem was examined by Roberts, Swift & Wagner [8]. In these
problems the following invariants were found, and are also invariants for the

mode interaction considered here:
W W3W2, (20)
21292324, 21222526, Z3242526. (21)
Now we turn to considering invariants involving both w; and z; modes. We
first restrict attention to computing all those involving z;, and then apply

the interchange symmetries in the group Dg to find the whole ‘group orbit’

of invariants of that type.



From (18) we see that any invariant must involve an even number of the
oscillatory modes; if this number is zero, the invariant must be (20) and if
this number is four the resulting invariant must be one of (21). We need
only now consider invariants containing exactly two oscillatory modes, one of
which is (without loss of generality) z;. All other invariants are then obtained
by applying the Dg interchange symmetries to the invariants we find. There
are (up to conjugacy) three possibilities; (i) m=-n=1,p=qg=r = s = 0;
(ii)ym=-p=ln=q=r=s=0;(lilm=—gq=1,n=p=r=s=0.

Case (i) implies
44 3(u—w) =0, u+2v+w=0 (22)

which has no integer solutions satisfying |u| + |v] + |w] < 2.

Case (ii) implies
w—u=1, u+2v+w=1 (23)

which has two independent solutions; w =1, u =v=0and u = —1, v = 1,
w = 0. These give rise to invariants z; Zsws and 2z Z3Wi ws.

Case (iii) implies
14+ 3(u—w)=0, u+2v+w=-1 (24)

which again has no integer solutions.

The invariants found in case (ii) yield new T? x Sl-invariants after the
elements of the holohedry Dg are applied to them. Using this fact, and ap-
plying m, (the only element of Dg which fixes z1) to the invariants we deduce
the other invariants containing z1: z1Zgw; and z;ZgwWaws. A complete list of
invariants can now be compiled by applying the D¢ action to the invariants
found so far. The equivariants E; for the equation 21 = fi(w, u1, p2) are

given by E; = I; /7 for all invariants I; which contain Z;.



From these computations, the amplitude equation 2; = fi(w, 1, o) is

found to take the following form when truncated at cubic order

L= oz [ +iwe +arlz|? + aslzf® + sz + |26]?) + aa(lza]? + |25]%)
+as(|wr |* + |ws[?) + ag\w2|2] + b1 (233 + 26w1) + baZa(2324 + 2526)

+b3(23w1w2 + Zewgwg) (25)

where the complex coefficients a1, . . ., ag, b1, b2, b3 are formally functions of A\;
and Ay but for the purpose of stability calculations we use the values evaluated
at the bifurcation point (A, A§). The equations for zo,...,2s are obtained
by applying the interchange (Dg) symmetries to (25). The corresponding

equation for w; is

W = wp [/12 + crwr |2 + ca(Jwa]?® + Jws?) + c3(|z1)* + |25]%)
+25(|22)* + |26]%)] + dywadg + da (2126 + Z225)

+d3(2224w2 + 232611_}3) + Jg (212371)2 + 242511_)3) (26)

where the coefficients ¢1, ¢o, di and ds are constrained to be real, but cs,
¢4 and ds are in general complex. These constraints on the coefficients can
be easily checked by requiring equivariance under the transformations pom,
which fixes w; and p* o m, which maps w; — w;. The amplitude equations
for ws and w3 are obtained by applying the rotations p and p? to (26).
This completes the computation of the normal form for the simplest case
of the 1 : v/3 Hopf/steady-state mode interaction. More complicated ampli-
tude equations can be derived when the lattice is chosen so that one or both
critical circles intersect it in twelve points rather than six. These higher-
dimensional problems enable the stability of solutions to a wider class of
perturbations to be considered, and would also enable the analysis of inter-

actions between steady and oscillatory superlattice patterns [4, 3].
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