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Rotating Boussinesq convection in a plane layer is governed by two dimensionless
groups in addition to the Rayleigh number R: the Prandtl number o and the Taylor
number Ta. Scaled equations for fully nonlinear rotating convection in the limit of rapid
rotation and small Prandtl number, where the onset of convection is oscillatory, are de-
rived by considering distinguished limits where ™ Ta'/? ~1but o — 0 and Ta — oo, for
different n > 1. In the resulting asymptotic expansion in powers of Ta /% the leading
order equations, which are independent of n, can be solved to provide analytic descrip-
tions of fully nonlinear convection with different planforms. Three distinct asymptotic
regimes are identified, distinguished by the relative importance of the subdominant buoy-
ancy and inertial terms which varies with n. For the most interesting case, n = 4, the
stability of different planforms near onset is investigated using a double expansion in
powers of Ta~'/® and the amplitude of convection €. The lack of a buoyancy term at
leading order demands that the perturbation expansion be continued through six orders
to derive amplitude equations determining the dynamics. The relevance of this analysis
to experimental results is discussed.

1. Introduction

Rotating thermal convection is a process of great geophysical and astrophysical im-
portance. Even in idealised settings, solving the equations of motion is a complex task
usually attempted either numerically or by an expansion in terms of a small parameter,
for example the amplitude of the convective motion. Low Prandtl number convection
is particularly relevant to some astrophysical situations: these may involve fluids with
Prandt]l numbers as low as 1078, It is also relevant to convection in liquid metals, where
typical Prandtl numbers are in the range 1073 to 1072. Asymptotic analyses of non-
rotating convection in the limit of small ¢ have been performed by Proctor (1977) and
Busse & Clever (1981) in response to experimental work (for example that of Rossby
1969) and two-dimensional numerical simulations, for example Jones, Moore & Weiss
(1976) and Clever & Busse (1981). These numerical solutions in two dimensions show
steady convection rolls with streamlines which become increasingly circular in the small-
o limit: this is referred to as “flywheel convection” due to the rigid rotation of the fluid
within the roll vortex. The motion is dominated by inertial forces, and the analytic re-
sults agree well with the experimental results on non-rotating convection in mercury
(o = 0.025) obtained by Rossby (1969). In particular the asymptotic results of Busse &
Clever (1981) and Jones et al. (1976) which give the Nusselt number Nu ~ R'/* when
R (the Rayleigh number) is large agree very well with that obtained experimentally by



2 J. H. P. DAWES
Rossby (1969):

Nu ~ 0.147R0-257+0-004 (1.1)

The analysis of Proctor (1977) shows a second feature of non-rotating low Prandtl number
convection which has been confirmed by experimental results (Kek & Miiller 1993): the
Nusselt number increases very little above the critical Rayleigh number for the onset of
convection Ry = 1708 (when the layer has no-slip vertical boundaries - Chandrasekhar
(1961)) until a second critical Rayleigh number Ry, ~ 7373 (Busse & Clever 1981) is
reached. For R > Ry the heat transfer increases much more rapidly and there is a break
in the slope of the Nu—R curve. Physically, low Prandtl number convection is dominated
by a balance between inertial and buoyancy forces.

Rotating thermal convection in the limit of rapid rotation (with o ~ 1) has been
investigated by many authors: Chandrasekhar (1961) noted the scalings of the critical
wavenumber and Rayleigh number for the onset of convection when the Taylor number
(the non-dimensionalised rotation rate) Ta is large. The later work of Bassom & Zhang
(1994) has been built upon by Julien & Knobloch (1999) who derive scaled equations
in the limit of rapid rotation and explore the vertical structure of the flow, the heat
transport through the layer, and three-dimensional pattern selection near onset.

In this paper we examine composite limits of rapid rotation and small Prandtl number.
It is well known that when the Prandtl number ¢ < 0.677 and the Taylor number
exceeds a critical value Ta.(o), which depends on whether rigid or stress-free vertical
boundary conditions are employed, the onset of convection in an infinite plane layer is
oscillatory. As o becomes small though it is apparent that different scalings to those used
when o ~ 1 and Ta — oo may become important. We examine those scalings here. In
particular we show how the results of Zhang & Roberts (1997) and Bassom & Zhang
(1998) complement those of Julien & Knobloch (1999), and find an intermediate scaling
which explains the behaviour of stability boundaries seen in a study of pattern selection
at finite Taylor number by Dawes (2000). Physically the leading order equations describe
the balance between the fast oscillation of the convection and rotation: a linear balance
leading to a linear momentum equation at leading order if the horizontal structure of the
flow is sufficiently simple. This is in sharp contrast to non-rotating low Prandtl number
convection where the nonlinear inertial term u-Vu balances the pressure term at leading
order.

In § 2 we analyse the linear stability results for convection between stress-free bound-
aries. As in previous work, in these distinguished limits the choice of stress-free or rigid
boundaries above and below the layer becomes unimportant; this is shown in § 3 by
extending the work of Clune & Knobloch (1993) and Niiler & Bisshopp (1965) to the
present case. Section 4 contains the derivation of the scaled equations and shows that the
asymptotics indicate three distinct asymptotic regimes. In § 5 the leading order equations
(which are the same for each regime) are solved exactly for fully nonlinear convection,
giving analytic expressions for the mean temperature profile and the Nusselt number.
Section 6 then concentrates on the most interesting regime and applies modified pertur-
bation theory to determine pattern selection at onset. In § 7 we comment on and extend
the similar results obtained by Bassom & Zhang (1998). In § 8 we compare our results
with the experiments of Rossby (1969) and Pfotenhauer et al. (1984). Conclusions and
directions for further work are presented in § 9.
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2. Linear theory and scalings
The governing equations for rotating Boussinesq convection are:
1 Du

;E+E_12xu:—Vp+RT2+V2H (21)
DT

for the velocity field u = (ug,uy, u,) and temperature profile 7. The equations have
been nondimensionalised with respect to the thermal diffusive timescale d?/k. The di-
mensionless groups appearing in (2.1) and (2.2) are the Ekman, Rayleigh and Prandtl
numbers:
12V _ agATd? _v

E=Ta = 508 R_iyﬁ o= (2.4)
where AT is the imposed temperature difference across the layer, €2 is the dimensional
rotation rate, d is the layer depth, & is the coefficient of volume expansion and v, k and g
are constants describing the kinematic viscosity and thermal diffusivity of the fluid, and
the acceleration due to gravity. In nondimensional terms the layer occupies the region
0 < z < 1. Solving the linearised versions of (2.1) and (2.2) about the conduction solution
u=0,7T =1 - z in conjunction with ‘perfect’ boundary conditions (fixed temperature
and stress-free vertical boundaries at z = 0,1 and periodic in the horizontal) we derive
analytic expressions for the critical Rayleigh number R., frequency w. and preferred
wavenumber o, at onset:

20272 Ta  2(m? + a?)?(0 + 1)
aZ(o+1) a?
0?(1 —o)n?Ta
(0 +1)(7? + a2)?

(72 + a?)*(0 + 1)*(2a? — 7°) = o*1? Ta. (2.5)

c =

w?=(m*+a?)? |-0? +

This last equation is the result of minimising R, over all wavenumbers a.. If the right
hand side of (2.5) becomes large, so too will the preferred wavenumber of convection.
This clearly happens in the limit Ta — oc with ¢ ~ 1. Here we consider the limit of
small o at the same time by fixing

o= sEY", equivalently, 0" Ta'/? = " (2.6)

with s an O(1) constant, for values of n in the range 1 < n < co. With this scaling, in
the limit £ — 0 we find the following asymptotic expressions for R, w. and a. (using
the wavenumber which minimises R.):

R, = 3(2s*n")/3EY = REY (2.7)
w? = (2347r4)1/3E47 =o2EY
s2m2\1/6
e} Y = A F7Y
a ( . ) EY = &E (2.9)
where
1 1/1
<y =2(=-1 . 2.1
3 < 3 (n ) <0 (2.10)

The case n = 1 has been partially investigated by Zhang & Roberts (1997) and Bassom
& Zhang (1998). We exclude it here (and defer analysis to § 7) because it is clear from
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equation (2.5) that the critical wavenumber remains O(1) in this limit: it does not become
large. Setting n = oo, 7 = —1/3 corresponds to the analysis of Julien & Knobloch
(1999); differences between this and the analysis for finite n are highlighted in subsequent
sections.

Using a poloidal-toroidal decomposition for the velocity field u:

Oy + 0,0:¢
u=Vx¢z+VxVxyz=| —0,¢+ 0,09
~Viy
the governing equations become
1 1
gatV%¢—E_132V§1¢+ ;N¢(¢,¢) = V2V (2.11)
1 1
;atVQV%ﬂp +E7'0, V¢ + —Ny(¢9) = ViVHY — RV T (2.12)
T + Nr(p,9,T) = V2T (2.13)

where the functions N; represent the nonlinear terms:

Ny(¢,%) = (w- V)u: — (u- V)w, (2.14)
Ny(¢,9p) =2V x V x (w x u) (2.15)
Nr(¢,4,T) =u-VT (2.16)

and the horizontal part of the Laplacian V¥ = 9, + 9. Complete expressions for these
nonlinear terms are given in Appendix A.

3. Boundary conditions in the limit £ — 0

In the limit (2.6) the linear stability problem with rigid vertical boundaries becomes
identical to that for stress-free boundaries. This strongly suggests, as in Clune & Knobloch
(1993), that subsequent nonlinear calculations (for example, to determine pattern selec-
tion) will yield identical results in the two cases. For this section only we will (for com-
putational convenience) fix the layer to lie in the region —1/2 < z < 1/2. To analyse the
linear stability problem of the trivial solution to (2.11) - (2.13) we write T =1/2— 246
and derive an evolution equation for 6 the departure from the linear temperature profile.
We assume the solution ansatz

1/2 .
cTa' A]-()\f-fo;flw) sinh \; 2

>0 4;

1) =07 a?liw—o(A\j—a?)] cosh};/2

W = ZS A2 +iw7)\]2- cosh )\, 2 e1az+(r+1w)t (31)
9 j=0“1 a? cosh \; /2

3 cosh \jz
Zj:O A] cosh )\]-]/2
which satisfies the governing linearised equations. The linearised equations result in a
matrix determinant that must vanish for a non-zero solution for the constants A; to be

possible. At marginal stability (r = 0) this condition yields a polynomial (in A, say)
which has roots £X;, j =0,...,3.

P(\) = 0?A® + B3\% + By + B1A? + By (3.2)

where the complex coefficients By, ..., Bs are functions of o, Ta, R, a and w: their

asymptotic forms, using the results (2.7) - (2.9), are given in Appendix B. From these
we calculate the asymptotic form of the roots £A; of (3.2): only £A; remains finite.
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The no-slip boundary conditions
1
0=0,=¢d=1p=0 at Z:ii (3.3)

provide four linear constraints involving the quantities 3; = A; tanh()\;/2). These con-
straints imply that 8; — oo in the limit (2.6), but A\; remains finite. Hence A\; must tend
to a multiple of ir as E — 0, and solving 81 = A; tanh A1 /2 for A; (taking the most

unstable mode, corresponding to \; = —n2) we find
isy/2
A = im (1 + LS%[EWl/?) (3.4)
@

so that there is an O(1) contribution from the eigenvalue for the stress-free boundary
case, and the other eigenvalues alter the vertical structure only in thin boundary layers
near z = £1/2. This calculation does not hold in the case n = 1, as discussed by Zhang
& Roberts (1997): for n = 1 the analogous analysis leading to the asymptotic forms of
the roots of P(A) shows that as E — 0 two pairs of eigenvalues remain O(1) and the
vertical structure does not simplify to the sinusoidal solution for stress—free boundaries,
see Appendix B.

What is particularly novel about (3.4) is that the rate of convergence to the asymptotic
regime varies greatly with . Since —1/3 < v < 0, the correction term to A; is between
O(E'/%) and O(E'/?) and the asymptotic regime is reached at larger values of E (smaller
values of Ta) when ~ is close to zero (n close to 1). However, the scaling analysis of § 4
indicates that the corrections to the leading order equations are minimised when n = 4.
In this case the leading order equations provide the most accurate guide to the dynamics.
In addition the correction term to (3.4) is O(sEY/*) = O(0), indicating the fast rate of
convergence to the asymptotic regime when o < 1.

4. The scaled equations

Using the asymptotic relationships (2.7)-(2.9) we rescale the Rayleigh number R,
lengths in the horizontal directions z and y, and time ¢ to select the most unstable
modes of convection:

(x',y") = BV (x,y) = (0g,0y) = EV(0yr,0y)
t = EQ’yt = at = E278tf
R =E YR.
We expand the temperature profile into horizontally averaged and periodic parts, and

also scale ¥, but not ¢. The choices of scalings come from balancing inertial terms,
rotation and the largest nonlinear terms all to appear at leading order.

T=T()+E"0(z,y,2,t) (4.1)
Y= E" (4.2)

The difference between these scalings and Julien & Knobloch (1999) becomes apparent
on substitution into (2.11) and (2.12). Dropping primes, we obtain:

B éaﬁ%ﬂb — -Vt - éJ[@ Vidl| = BV ¢ — EMo(,¢) + O(E'7)
(4.3)
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n ¥ Ordering Regime

00 —-1/3 E'™ ~ EY"*2 > E Julien & Knobloch (1999)
4<n<oo —-1/3<y<-1/4 E' > EY""? > E I

4 —1/4 E' > E ~ g4 12 I
1<n<4 —1/4<~y<0 E'™ > E>» EYH? 111

1 0 Bassom & Zhang (1998)

TABLE 1. Regimes giving different subdominant balances in the scaled equations (4.3) - (4.6):
at leading order the equations (5.1) - (5.4) hold for regimes I - III. Referring to equation (4.3),
the leading order terms are O(E'"?), the next order nonlinearities are O(E) and the diffusive
terms are O(E*"*?). The relative scalings in equation (4.4) are identical. Note that in the limit
n =1 equations (4.3) - (4.6) are not valid.

1 1
B2 ;&sv‘}ﬂb + 0.V — EV%J[% V]| = B> [V — RVE6]
—E""My(¢,4) + O(E) (4.4)

where M, and M; are quadratic nonlinear terms derived from Ng and Ny respectively
(see Appendix A) and the horizontal Jacobian J[f, g] = 0, f0y9 — 0, f0.g. For all values
of v the leading order terms in the square brackets on the left hand side of (4.3) and
(4.4) remain the same, but as «y varies, the relative importance of the nonlinear terms
M; and the diffusion/buoyancy terms on the right hand side changes. The temperature
equation (2.13) yields a further two equations, at O(E'T7) and (after integration over
one period in each horizontal direction and in time, denoted by an overbar) at O(E):

00 — V00, T — J[¢, 6] = V0 (4.5)

02T + 0,[6V%] =0 (4.6)

These last two equations are valid for all yv. We distinguish three different asymptotic
regimes, labelled I, IT and ITI, which are summarised in table 1. In regime I the buoyancy
and diffusion terms on the RHS of (4.3) and (4.4) are larger than the nonlinear terms My
and M. In regime II, when n = 4 and v = —1/4, the diffusive terms exactly balance the
nonlinearities although neither set of terms appears at leading order. When —1/4 < v < 0
the nonlinearities are larger than the buoyancy/diffusion terms: this is regime III.

From these three cases one important qualitative distinction about the dynamics can
be drawn immediately. At leading order (4.3) - (4.6) are invariant under a reflection
symmetry which is not present in the equations at finite Ta and ¢. This symmetry

(¢, 0,00, T) = (=10, =0, =0, T) (4.7)

corresponds to a reflection in a vertical plane containing the z-axis, for example (z,y, z) —
(z, —y, z). Physically, the symmetries of rotating convection in the limit (2.6) are the same
as those of non-rotating convection. This extra symmetry was noted by Julien & Knobloch
(1999) in their analysis, and the same degeneracy is introduced into subsequent weakly
nonlinear calculations. The existence of this symmetry has important consequences for
the investigation of pattern selection and the stability of solutions. However, as we need
to go to higher orders in the perturbation expansion just to derive the critical Rayleigh
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number for the onset of convection, whether these higher order terms also have this
reflection symmetry is important. The quadratic nonlinearities M; are the only terms
in (4.3) - (4.6) that do not obey the symmetry (4.7): when they are less important
than the diffusion/buoyancy terms the degenerate situation persists at next order in E.
When they are of equal or greater importance than the diffusive terms, the symmetry
is broken at next order, and the flow distinguishes between co-rotating and counter-
rotating perturbations. This is crucial for the analysis of Kiippers—Lortz type instabilities
of travelling rolls within the region where oscillatory convection is preferred at onset (see
Dawes 2000).

In physical terms (4.3) and (4.4) show that the rotational constraint is balanced by
the fast oscillation of the convecting flow and the velocity field evolves independently of
the temperature field at leading order. Neither viscous dissipation nor buoyancy play a
leading order role but they appear at the same order as must be the case for viscous forces
to influence the critical Rayleigh number for the onset of convection. In this respect the
scaled equations are similar to those derived by Bassom & Zhang (1994): the difference
is that the nonlinear terms have been vastly simplified.

5. Fully nonlinear solutions at leading order

In this section, fully nonlinear solutions of (4.3) - (4.6) are investigated. At leading
order

1 1
;atv“}mo — 0, Vijhy = <o, Vo] (5.1)
1 1
;atv‘;,@z}o + 0,V = EV%J[%, Vo] (5.2)
(0r — V31)00 — V100, To = J[¢o, 00] (5.3)
02, To + 0,[00V%90] =0 (5.4)

where the subscript 0 indicates that (¢g, 0,00, Tp) are thought of as the leading order
terms in an expansion in powers of E. These equations are to be solved subject to
the conditions ¢¥g = 0 at z = 0,1, corresponding to an impermeable boundary (either
stress-free or rigid, as discussed in § 3), and T'(0) = 1, T((1) = 0 corresponding to fixed
temperature boundaries. We adopt the following ansatz:

(0, 60.80) = (A(2), B(2), C(2)) h(z,y)e ™" + c.c. (5.5)

where h(z,y) is a function describing the horizontal planform, and c.c. indicates the
complex conjugate. From a previous study (Dawes 2000) of pattern selection at finite Ta
and o, two-dimensional travelling rolls h(z,y) = €'®® are preferred to three-dimensional
planforms, at least close to onset. However, fully nonlinear solutions can be found for
any planform which depends only on one horizontal wavenumber, so that V4 h = —a?h,
and in addition satisfies 0,hdyh* = 0 h*0yh (where * denotes complex conjugation).
These conditions ensure that the Jacobian terms on the right hand sides of (5.1) - (5.3)
vanish identically, leaving nonlinearities only in the temperature equations. From (5.1)
and (5.2) we obtain

luJ?OonB(Z) +a?A'(2) =0 %a‘lfl(z) —a’B'(2) =0

which have the solution

A
Az) = EO sinmz B(z) =iAgcosmz wo = —.
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Ag is the undetermined amplitude of convection: at higher orders in the expansion we
will determine its evolution on slower timescales. From (5.3) we obtain

—aAgsin w20, Ty
2

O(z) = (5.6)

a? — iwg
A further relationship between C(z) and Tj is given by integrating equation (5.4) once:
0,Ty — aH(CA; + C*Ag) sinmz = —Nu (5.7)

where the constant Nu is the Nusselt number and H = |h|2. The relations (5.6) and (5.7)
together yield

aAg(a® + iwg) Nusin 2

C(z) = 5.8
) at + w2 + 204 H|Ag |2 sin® 72 (5:8)
9Ha| Ao\ /?

Nu= (14 ———— 5.9
" < LY +w? ) (5.9)

_ —(a* + w2)Nu
T = dz. 5.10
ol2) / ot 4+ w2 + 2Hat|Ag|? sin’ 7z ‘ (5.10)

This is a fully nonlinear description of the temperature profile - we have not assumed that
the amplitude Ag is small. Equation (5.10) can be integrated to give a fully nonlinear
expression for the mean temperature profile:

1—21tan,'(Nutanmz) in 0<z<4%
To(z) =4 % at z=1 (5.11)
—1 tanp' (Nutannz) in $<z<1

where tanp' (z) is the principal value of tan~!(z): —7/2 < tanp' < 7/2. Although it is
easiest to define the solution for Ty (2) piecewise, Ty (z) is a smooth function of z, and when
Nu =1 (below the onset of convection) we recover the expected linear temperature profile
To(z) = 1 — 2. Figure 1 shows the variation in Tp(z) as Nu increases. The temperature
profile becomes uniform throughout the layer and rapid adjustment to satisfy the fixed
temperature boundary conditions occurs in thermal boundary layers near z = 0, 1.

Having obtained a fully nonlinear solution at leading order we are only missing a
relationship between the amplitude of convection Ag and the (scaled) Rayleigh number
R. This can be derived for fully nonlinear convection in the most interesting case (regime
I, n = 4, v = —1/4); the velocity and temperature fields are expanded in powers of F'/*
and a new timescale 7 = E'/4¢ is introduced:

(¢,9,0,T) = (¢o, %0, 60, To) + E1/4(¢1,¢1,91,T1) + O(El/g) (5.12)

which gives evolution equations for ¢, and 1 (decoupled from #; and T ):

1 1
gatv%q% — 0,V = —Mo(¢o,1b0) + Vido — garv%[¢05 (5.13)

1 1

;atviﬂpl + 0. Virdr = —Mi (o, o) + Vitho — RV 60 — ga‘rv%{'ﬁbo- (5.14)
A solvability condition is applied by multiplying the right hand sides by the leading order
solution vector (¢g,%0)” and integrating over one period in the horizontal and in time,
and over the whole layer in the z direction. If the right hand sides of (5.13) - (5.14) are
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FIGURE 1. The mean temperature profile Ty (z) at four values of the Nusselt number Nu: Nu = 1
(solid line),Nu = 3 (dashed line), Nu = 10 (dash-dotted line), Nu = 100 (dash-dot-dot-dotted
line).

schematically given by (F;, F5)T then the solvability condition is

F (o, tho, Fi, Fy) = // / /%( >-<§;>dtdxdydzzo. (5.15)

There is no resonant contribution from the M; terms since they contain only quadratic
products of ¢ and t. If Ag evolves at a frequency wi on the slow timescale 7, i.e.
Ao = Age™™17  the resulting non-resonance condition determines both |A4g| and ws:

w1 = —Swo, 2Ha*|Ap)? = R(Nu — 1).

Using (5.9) we can eliminate H|Ag|? from this expression:

Nu =2 (%) ~1 (5.16)

where R. = 2(a* + w?2) = 2(a® + s?7%)/a? is the (scaled) critical Rayleigh number for
the onset of convection, agreeing with (2.7) - (2.9). As both R and R, have been scaled
by the same factor of E*Y we can replace the scaled R and R. by the unscaled values
n (5.16). The result is a fully nonlinear Nu—R relationship, assuming that our ansatz
(5.5) holds, independent of the details of the planform. Valid planforms include standing
waves composed of two, four or six modes: h(z,y) = cosaz, h(z,y) = cosazx + cos ay,
h(m y) — elakl x e—lakl x elakg X 4 6—1ak2 x elakg X 4 6—1ak3 X where kl — (1 O)
ko = (—=1/2,v/3/2), ks = (—1/2, —/3/2). The range of validity of (5.16) can be estimated
as R. < R < 2/3R,: above 2%/3R, the vertical structure of solutions is likely to contain
significant contributions from higher frequency modes sinmnz as these are no longer
damped.

We note that the same Nu—R relationship can be derived near onset in regimes I and
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IIT and is implicit in the weakly nonlinear analysis of rapidly rotating steady convection
by Bassom & Zhang (1994).

6. Weakly nonlinear theory for n =4

It is important to address the question of the stability of the two-dimensional solution
found in § 5 to three-dimensional perturbations. In this section we compute the stability
of the travelling roll solution near onset, both to all other possible planforms for oscilla-
tory convection on a square lattice and to roll perturbations at arbitrary angles. Regime
IT (n = 4, vy = —1/4) is of most interest as not only does it correspond to the sub-
dominant balance between the nonlinear terms My and M; and the diffusion/buoyancy
terms in (4.3) - (4.6), but work on pattern selection at finite o and Ta by Dawes (2000)
demonstrates that the stability boundary of travelling rolls to perturbations at +90° to
them scales as o4 Ta'/? = const in the limit of large Ta. This, and stability boundaries
to perturbations at varying angles, can be analysed using a weakly nonlinear expansion
in powers of E'/* and e the amplitude of convection, assuming that ¢ < E'/* <« 1. Let

¢ =¢epo1+ 52¢70,2 + 63<l50,3 + E1/4€¢’1,1 + E1/4€2¢1,2 + E1/453¢71,3 +--- (6.1)
Y =eo1 + Moo + o3 + BV ehy 1 + BV 4%y o + BV h1 3 + -+ (6.2)
0 =cboy +e%00 + %003 + EYV4e0, 1 + EY46%0, 5 + EYV4e%0, 5+~ (6.3)
T(2) = To + eToy +*Too + % Toz + EY*eTiq + - -- (6.4)

so that, for any variable, a subscript i, j indicates that it belongs at order E*/%¢7 in the
expansion. We also introduce a set of slow time variables

t=to+etor +e%tos + BV o+ EM ety g + BV 5 + - (6.5)

We now substitute these expansions into the fully nonlinear equations (4.3) - (4.6) and
examine terms at each order E'/¢.

6.1. Solutions at O(e) and O(g?)
At first order in the expansion we obtain the linear equations

1
;at()v%{¢0,l — 8.Vt =0 (6.6)
1
gatOV%¢o71 + 0.V =0 (6.7)
(O, — V3)001 + Vo1 =0 (6.8)

where we have used the fact that Ty(z) = 1 — 2, which was deduced from the linearisation
of (4.6) and the boundary conditions. We first assume the following planform in order
to derive amplitude equations to examine the stability of travelling rolls to oscillatory
perturbations in the counter-propagating direction (A4,) and at £90° (B and Bs):

. sinTz asinmz i
(¢071,¢071,0071) = <1 COSTZ, o s m) ho(CE, y)@ woto + c.c. (69)
ho(z,y) = A€ 4+ AyeT1T 4 Bl 4+ BoeT oV (6.10)

we also deduce that Tp 1 (z) = 0. This solution to the leading order problem will be used, as
is common in problems of this type, to impose a solvability condition F(¢o 1, %0,1, F1, F2) =
0 (5.15) at all further orders in the expansion. The solvability condition does not involve
the #—equation since it decouples from the ¢ and 1 equations at order €.
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At second order in e equations for @ 2, o,2,00.2 and T 2(z) are derived. Imposing the
solvability condition implies 8y, ,A4; = 0 as expected. The solution at O(e?) contains a
large number of quadratic terms and is not given explicitly here. The mean temperature
profile indicates that all four modes contribute equally to its deviation from the linear
state, and agrees with the fully nonlinear result (5.11):

—at sin 272

To2(®) = gt vag) |

|A1? + [A2]? + [B1* + |B2]?] (6.11)

6.2. Solution at O(e®)

At third order we anticipate that use of the solvability condition will enable deduction
of an amplitude equation describing the slow-time evolution of A;. After applying the
solvability condition we obtain a nonlinear evolution equation for Ay:

i
4(4)0
This equation, since the coefficient is purely imaginary, describes the nonlinear change
(due to By and Bs) in only the phase of Ay, not its modulus. There is no linear term
because it would depend on the distance R — R, above the critical Rayleigh number
for the onset of convection, and R — R, only appears at order E'/4c? in the expansion.
There are also no terms A;|A;|? or A;|A|? since the Jacobian terms vanish for terms
which have no dependence on the y coordinate. To obtain an evolution equation involving
coefficients which have real parts (from which we can extract stability information) we
must proceed to higher orders with the calculation.

ato,zAl = Al (‘BI‘Q + |BQ|2) (612)

6.3. Solutions at O(E'/*e) and O(E'/*<?)
We expand the Rayleigh number R = R, +&?R5 +. .. anticipating that there is no & term
because the amplitude of convection scales as the square root of the distance above onset.
We also do not compute higher order terms in the # or 7' equations as the solvability
condition (5.15) depends only on the ¢ and 1) equation at each order. At O(E*e) we
obtain

1 1
;atovi,qsl,l — 0,V 1 = Vo — ;atl,ovzqso,l (6.13)

1 1
gatoviﬂ/h,l +0.Vio11 = Vo1 — R.V001 — gatmv%ﬂ/)a,l (6.14)

which, after applying the solvability condition, yields expressions for the evolution of A;
on the timescale ¢; o and the critical Rayleigh number R.:

BtLOAl = isw0A1 and RC = 2(044 + wg) (615)

s0 A} = Aje~ 110 where w; = —swp (we drop the carat on A, at higher orders). These
results agree with the fully nonlinear analysis of § 5. As (6.13) and (6.14) are linear we
can, without loss of generality, set ¢1,1 = 11,1 = 0 since any non-zero solution could be
removed by redefining E.

At O(E'*£?) the nonlinear terms My and M (given explicitly in Appendix A) enter
the equations and the solution contains lengthy quadratic expressions for ¢; » and ;.
From applying the solvability condition we deduce that d;, , 41 = 0.

6.4. Solution at O(E'/*e?)

Finally we arrive at the order where it is possible to derive a more informative amplitude
equation for the evolution of A; on the slow timescale ¢; ». By computing the nonlinear
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FIGURE 2. (a) Variation in coefficients a, (dashed line), ¢, — a, (dash-dotted line) and d, — a.
(dash-dot-dot-dotted line) with s in the case n = 4. For s < 2.361 travelling rolls are unstable to
perturbations at +90° as d, —a, > 0. (b) Value scri¢(1) below which travelling rolls are unstable

to perturbations at an angle . The dashed line is the asymptotic result sepis &= 16.1n7 /4,

terms at this order and applying the solvability condition we derive equations (related
by symmetry) of the form

atuAl = Al[,u + a\A1\2 + b‘AQ‘Q + C‘Bl|2 + d‘B2‘2] + eAQ*BlBg (616)

for the evolution of each of A;,...,Bs; see Knobloch & Silber (1992). The complex
coefficients are calculated to be

= Rg(oz2 + iwp) (6.17)
a= 044(042 + iwp) (6.18)
c= [ m2a® + 3a® + 4a’7? — dista(a + 77)] (a® + iwg) /4w (6.19)

= — [5s°7%a® + 3a® — 4a’7® — disma(a’ — 7°)] (@® + iwg) /4wy (6.20)

after rescaling t; o by a factor 2(a* + wg)/s. The value of e is not needed to determine
the stability of travelling rolls. We note first that travelling rolls bifurcate supercritically
as a, < 0 for all s (a subscript r denotes the real part of a quantity).

A travelling roll solution |A;|?> = —pu,/a, is stable to perturbations in the other three
modes if the three quantities

(ar — by)/ay, (ar —¢r)/ap, (a, — d;)/a, (6.21a—c)

are all negative Knobloch & Silber (1992). As also found by Julien & Knobloch (1999),
(6.21a) is zero, meaning that the relative stability of travelling rolls and standing rolls
|A1|? = |A3]? = —p,/(a, + b,) is determined at a yet higher order in the perturbation
theory. However, from calculations at finite Taylor number by Dawes (2000), and the
discussion in § 7 below, we can assert confidently that travelling rolls are stable with
respect to standing rolls. What is not clear is whether travelling rolls are stable to per-
turbations in the B modes. Figure 2(a) shows the variation in (6.214,¢) with s. When
s < Serit = 2.361, travelling rolls are unstable to perturbations at +90°. The quadratic
terms My and M; are responsible for the difference in stability towards perturbations
at +90° and —90° and the corresponding sign changes in the expressions for ¢ and d,
(6.19) - (6.20). In the simple limit Ta — oo with o ~ 1 which was analysed by Julien &
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Knobloch (1999), the coefficients ¢ and d are forced to be equal at leading order by the
‘unwanted’ reflection symmetry (4.7).

6.5. Stability to perturbations at smaller angles

Since the perturbations to travelling rolls which have the highest growth rate may not
be those at 90°, but instead at some smaller angle, the previous analysis can be recast to
examine stability to perturbations at any angle < 90°. If the planform function hq(z,y)
at O(e) (6.10) is modified to be

ho(:c,y) — Aleiax + AQB—iax + Blei(—amcos n+aysinn) + Bgei(ax cos n—ay sin ) (622)

the analysis of §§ 6.1 - 6.4 can be carried out (using MAPLE for example) for arbitrary 7.
For any fixed 7 there is a critical value s.,;:(n) below which travelling rolls are unstable
to perturbations at an angle 1 to the original rolls, see figure 2(b). Note that s¢,:(n)
tends to infinity as 7 — 0. This agrees with calculations at finite ¢ and Ta of the growth
rates of perturbations at different angles to travelling roll solutions. For small angles it
appears that s..i:(n) ~ /% asymptotically.

In conclusion we do not expect travelling roll solutions to be stable near the onset of
convection. It seems likely that fully nonlinear roll solutions are also unstable to these
perturbations and there are no stable two-dimensional solutions to (5.1) - (5.4).

7. Weakly nonlinear theory for n =1

The scaled equations that were derived in § 4 do not apply in the limit (2.6) correspond-
ing to n = 1 since the preferred wavenumber remains O(1) in the limit and the scaling
arguments break down. However, this limit is of interest since the transition line between
regions of travelling and standing rolls asymptotes to a curve of the form o Ta'’? = const
at high Taylor number as shown by Knobloch & Silber (1990). The weakly nonlinear be-
haviour in this limit has been partially investigated by Bassom & Zhang (1998), but they
were able to deduce only that travelling rolls bifurcate supercritically at onset. In fact,
their analysis can be extended to compute the relative stability of travelling and stand-
ing rolls, which are a priori equally possible candidates for the form of two-dimensional
oscillatory convection near onset. The relevant symmetry group of the problem is O(2):
the (two-dimensional, i.e. no y-dependence) infinite plane layer is invariant under a circle
of translations in the z-direction (due to the imposition of periodicity in the z-direction)
and a half-turn rotation about the z-axis which takes x — —z. The result of the abstract
theory is that if we propose a solution planform which takes the form of a superposition
of travelling rolls with amplitudes A; and As, at leading order:

. sinmz asinwz .
(do,1,%0,1,00,1) = <1COS7T27 — T > ho(z,y)e iwoto) 1 ¢, (7.1)
« a? — iwg

ho(z,y) = Aje'o® + AyeTiow (7.2)

then the solvability condition at third order leads generically to amplitude equations of
the following form:

Ay = Ai[p+ alAr ] + bl As)? (7.3)
Ay = Aolp + al A2” + A1 [] (7.4)
If a, < 0 (as before, a subscript r denotes the real part of the coefficient) then travelling

rolls (a solution of the form |Ay| = —p,/a,, A = 0) bifurcate supercritically. This is
the result of the calculation of Bassom & Zhang (1994), derived by performing a double
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expansion similar to that given in § 6. To test the relative stability of travelling and
standing rolls it is necessary also to calculate b,. This calculation shows, in agreement
with Knobloch & Silber (1990), that there is a critical value of s above which travelling
rolls are stable and below which standing rolls (which also bifurcate supercritically for
all s) are preferred. The stability criteria for travelling rolls are plotted in figure 3(a): all
stability curves must be negative for stability at a given value of s. When s < s, &~ 52.48,
we find b, — a, > 0 (the dashed curve) and travelling rolls are unstable with respect to
standing rolls: when s > s, the inequality is reversed and travelling rolls are stable with
respect to standing rolls.

Moreover, as in the case n = 4, we can analyse the stability of both travelling and
standing rolls to perturbations in the y-directions by including terms for modes B; and
B, in the planform expression (7.2) in the perturbation expansion. It turns out that
travelling rolls are unstable to these perturbations (the dot-dashed lines in figure 3(a)),
and on a faster timescale than that associated with the eigenvalue which determines
whether travelling or standing rolls are preferred! Perturbations in the y direction are
therefore of greater importance than the relative stability of travelling and standing rolls.
Figure 3(a) shows that travelling rolls bifurcate supercritically for all s, as a,, < 0 always.
They are stable with respect to standing rolls when the dashed line b, —a,» < 0 but one of
the other two curves is always positive, indicating instability to y-direction perturbations.
In figure 3(b) the solid curve is always negative, implying that standing rolls also bifurcate
supercritically for all s. The enlargement figure 3(c) shows that over a very small range,
45 < s < 70, standing rolls are unstable to three-dimensional patterns, but for s > s,
the dashed line indicates that standing rolls are unstable to travelling rolls. The values
of ¢, and d,. (the real parts of the coefficients of the terms A;|B;|? and A;|Bs|? in the A;
equation) appear at O(g?) in the perturbation expansion where the evolution timescale
is tg,2 = €2t, but the values of a, and b, can only be found by continuing to O(Ee?) (as
detailed by Bassom & Zhang 1998) where the relevant timescale is 1 5 = Ee?t. Hence
the coefficients a, and b, are formally a factor of E smaller than ¢, and d,.

An interesting feature of figure 3(a) is that ¢, = —d, at leading order. This may be
explained by considering the effect of changing y — —y and ¢t — —t in the leading
order governing equations for the case n = 1 (derived by taking the double curl of the
momentum equation (2.1) to eliminate the pressure, writing o = sE, and ignoring the
higher order terms which comprise the right hand side). Equation (2.1) then becomes

O V2u + s0,.w=V x V x (w x u) (7.5)

The change (y,t) = (—y, —t) implies that (g, 0y, 0, Uz, Uy, uz) = (Oz, =0y, Oz, Ug, —Uy, )
and hence (wg,wy,w;) = (—wg,wy, —w;). Only the second component of w x u changes
sign, hence the second component of the right hand side changes sign under (y,t) —
(—y,—t). However, the first and third components are the ones which change sign on
the left hand side of (7.5). Hence the transformation (y,t) — (—y, —t) is equivalent to
introducing a minus sign into the nonlinear term on the right hand side. Consideration of
the nonlinear terms at each order in the perturbation expansion shows that changing the
sign of the nonlinear term on the right hand side does not affect either the value of the
coefficients ¢, and d, or the evolution equation for A; derived at O(e?). However, since
this sign change is equivalent to (y,t) — (—y, —t), the amplitude equation that is derived
at third order in €, analogous to (6.12), must also be invariant under the sign change of
y and t. This implies that changing the sign of the time derivative and exchanging B,
and B leaves the evolution equation unchanged, i.e.:

Oy, A1 = Ai[c,|B1” + dyp | Bo?] = —As[e,|Ba|* + dy | By |’
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FIGURE 3. (a) Stability criteria for travelling rolls in the limit n = 1: a, (solid line) and b, — a,
(dashed line) are determined at O(Ee®), but ¢, (dash-dotted line) and d, (dash-dot-dot-dotted
line) are determined at O(e®). Travelling rolls are stable with respect to standing rolls when
br —ar < 0. The values of ¢, and d, have been scaled up by a factor of 10 for ease of display. (b)
Stability criteria for standing rolls: a, (solid line), a, —b, (dashed line) and — f, = ¢, +d, —a, —b,
(dash-dotted line) are determined at O(Ee?); |e|*—|f|? (dash-dot-dot-dotted line) is determined
at O(e®). (c) Enlargement of (b) in the range 30 < s < 100.

Invariance implies that ¢, = —d, which is clearly demonstrated by figure 3(a). This
symmetry is broken by the addition of the diffusion and buoyancy terms at higher orders.
The leading order result is, however, expected to hold throughout regime III, i.e. whenever
the nonlinearities dominate the diffusive terms. This leads to the more general conclusion
that throughout regime III travelling rolls are never stable to perturbations both at +90°
and —90°. This is in contrast to the results for standing rolls which are stable to planforms
containing these modes in the n = 1 limit when s is low enough, as shown by figure 3(b).
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Further details of some of the complex dynamics that are present at finite ¢ and Ta are
given in Dawes (2000).

8. Comparison with experimental work

The preceeding analysis shows that three contrasting asymptotic theories dominate
different regions of the (o, Ta) plane: the limit of rapid rotation only (n = oc), the case
n = 4 and the case n = 1 where the critical wavenumber at onset remains O(1). The
leading order equations (5.1) - (5.4) in the limiting case n = 4 are applicable when the
parameter s is O(1), say 0.1 < s < 10.0 and the lower order corrections to (5.1) - (5.4)
are negligible. Since these corrections are a factor F'/* smaller, we formally require both
1074 < 6% Ta'/? < 10% and Ta'/? > 10% (requiring B4 < 0.1). These conditions yield
a range of Ta for a given o. When o = 0.025 this indicates 10* < Ta'/? < 3 x 10'° as
an approximate range of Ta within which the n = 4 limit is valid. At a given Prandtl
number, the dynamics at Taylor numbers outside this range would be better described
by the cases n = oo (Julien & Knobloch 1999) or n = 1 (Bassom & Zhang 1994).

After a thorough search of the literature on rotating convection there appear to be only
two sets of laboratory experiments which report detailed measurements on low Prandtl
number fluids: those of Rossby (1969) and Fauve, Laroche & Perrin (1985). In addition
we compare these results with the numerical simulations of Julien, Knobloch & Werne
(1998). Throughout the 1950s and 1960s a number of rotating convection experiments
were carried out, but these focussed on determination of the critical Rayleigh number
for the onset of convection and did not explore behaviour much above onset. Both sets
of experiments use mercury (o &~ 0.025) as the working fluid. Rossby’s experiments
encompass a range of Taylor numbers 10° < Ta < 10° and those of Fauve, Laroche &
Perrin (1985) have 10* < Ta < 10°. The small number of Rossby’s results which do lie
in the range of validity defined above for n = 4 show a much slower rise in the Nusselt
number with R/R, than that predicted by (5.16). As his photographs and observations
make clear, convection becomes irregularly three-dimensional almost immediately above
onset. In the region 10* < Ta < 10° both sets of experimental data show a hysteretic
transition between two stable convective states with distinct Nusselt numbers. This was
pointed out by Fauve, Laroche & Perrin (1985) who described the interaction between
the two states as a codimension—2 pitchfork—Hopf bifurcation. For this description to be
valid the rotation rate cannot be assumed to be large which suggests that this hysteresis
phenomenon cannot be captured by an asymptotic theory. That hysteresis also occurs in
the results of Rossby has not been noted before.

Numerical simulations of the equations of convection in the limit of rapid rotation
with ¢ ~ 1 have been carried out by Julien, Knobloch & Werne (1998). These show
convergence to a statistically steady state comprising vortices which extend almost the
entire depth of the layer. A comparison with 5.16 of the resulting mean temperature
profile obtained numerically for a Nusselt number Nu = 4.0 is given in figure 4. In the
limit solely of rapid rotation the diffusive terms remain part of the leading order equations
of motion. It is therefore to be expected that their presence causes the resulting mean
temperature profile to be less angular than that suggested by 5.16 at the same Nusselt
number.

Moreover, we have made the assumption that the layer of fluid is infinite in extent.
Experimental results, in contrast, are always affected by finite-size effects. Effects intro-
duced by lateral boundaries include allowing ‘wall-modes’ of convective motion which
allow convective heat transport at Rayleigh numbers below that predicted from the lin-
ear theory for an infinite layer (this is discussed in detail theoretically by Goldstein et
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al. 1994) and the spontaneous nucleation of defects at the walls which then break up a
pattern of rolls as discussed by Hu, Ecke & Ahlers (1997).

9. Discussion and conclusions

We have examined rapidly rotating convection at low Prandtl number. By taking
distinguished limits and scaling the velocity field, temperature field, length and timescales
and physical parameters appropriately we have derived scaled equations which describe
the asymptotic dynamics of convection.

The scaled equations are tractable analytically because they contain very few nonlinear
terms: moreover the u - Vu term does not contribute at all for particular planforms
which depend on only one horizontal wavenumber. At leading order the rapid rotation
is balanced by the time derivative part of the inertial term. This balance of linear terms
leads to oscillatory convection with a fast timescale. The buoyancy term is balanced by
diffusion at next order, both these processes evolving on a slower timescale. The dominant
nonlinearity comes from the equation for the mean temperature profile. The results of
§ 3 show that the properties of convection near onset are independent of the imposed
vertical boundary conditions: we expect that weakly nonlinear results and possibly fully
nonlinear ones are identical for stress-free and no-slip boundaries.

The dynamics in different distinguished limits are influenced by different terms in
the original equations: in particular the relative importance of the diffusive terms and
subdominant nonlinearities is important, and we divide the asymptotic behaviour into
three regimes of which the most interesting and useful one (the case n = 4) is where
these subdominant terms balance. A fully nonlinear solution for the vertical structure
and heat transport through the layer can be obtained analytically at leading order - this
has not been found possible in previous related work.

The two central analytic results of this paper (5.11) and (5.16), formally for fully non-
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linear convection, are independent of the parameters n > 1 and s which determine the
distinguished limit. This independence motivates the claim that they are widely appli-
cable: indeed convection experiments on a wide range of fluids with or without rotation
show mean temperature profiles similar to figure 1. Any suitable analytic expression has
not, to the best of the author’s knowledge, been derived for it previously.

Weakly nonlinear analysis of the scaled equations in the cases n = 4 and n = 1 confirms
the asymptotic behaviour of results on pattern selection at onset at finite Taylor number
and Prandt]l number. The curve which forms the stability boundary of two-dimensional
travelling rolls to perturbations at a fixed angle n scales as o* Ta'/? = const for large
Ta, but the constant increases unboundedly as 7 — 0. Thus within the region of the
(0, Ta) plane where the limit corresponding to n = 4 applies we do not expect two-
dimensional solutions to be stable. This is in agreement with experimental results. The
relative importance of the subdominant nonlinear terms and the diffusive terms plays a
key role in determining the growth rates of Kiippers—Lortz type instabilities of travelling
rolls.

The case n = 1 identifies the transition between Kiippers-Lortz unstable travelling rolls
and stable standing rolls. This transition was not captured by the analysis of Bassom &
Zhang (1998) since they did not compute the full amplitude equations describing the Hopf
bifurcation with O(2) symmetry that takes place: they omitted the term A;]A3[? in (7.3)
and the evolution equation for A, (7.4). In § 7 we also considered the stability of travelling
and standing rolls to perturbations in modes at right-angles to them. At finite rotation
rates this transition between travelling rolls and standing rolls was first investigated by
Knobloch & Silber (1990): the analysis has been extended to three dimensions by Dawes
(2000).

Further analytical work on this problem is planned: the inclusion of mean-flow effects,
and the oscillatory analogue of the work of Cox & Matthews (2000) on small-angle
instabilities of steady rolls. Much interest has also been generated in similar scaling
arguments applied to thermal convection in a vertical magnetic field (Julien, Knobloch &
Tobias 1999; Matthews 1999). The strong similarities between the two problems suggests
that these ideas could be applied profitably there.

Experiments on rotating convection at low Prandtl number show a plethora of as yet
unexplained phenomena: those of Pfotenhauer, Lucas & Donnelly (1984) using liquid
“He indicate that, at least for ¢ = 0.49, the initial slope of the Nu—R/R, curve increases
rapidly as the rotation rate increases from zero to Ta'/? ~ 900. The results of Ker, Li &
Lin (1998) using air (o = 0.7) demonstrate that even if the onset of convection is steady,
the flow may become strongly oscillatory close to onset. One of the most interesting of
these phenomena is the appearance of ‘spiral-defect chaos’ instead of an ordered roll
pattern close to onset. This is particularly the case for low Prandtl number fluids, as
discussed by Ahlers & Bajaj (1999) and Hu, Ecke & Ahlers (1997).

In conclusion it is hoped that this theoretical work will contribute to the understanding
and interpretation of experimental results: experiments with liquid metals (mercury,
liquid sodium, liquid gallium) or cooled gas mixtures (Helium, Helium-Xenon, Hydrogen-
Xenon) are able to access the required parameter ranges and should give further physical
insights into this problem.

I have benefited greatly from discussions with Michael Proctor, Alastair Rucklidge and
Steve Tobias. I am very grateful to Prof S. Fauve, Dr K. Julien, Prof Y-T. Ker and Prof
H.T. Rossby for supplying me with experimental results and answering queries. I would
also like to thank two anonymous referees for many comments which have improved the
presentation and content of this work. This work was funded by the EPSRC.
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Appendix A. Nonlinear terms

The full expressions for Ng(¢, ), Ny(¢,9) and Np(¢,9,T) are included here for
completeness. They are defined by (2.14) - (2.16) in terms of the poloidal and toroidal
components ¢ and . We define the horizontal Jacobian J[f, g] = 0y f0yg — 0y f 0z 9.

Ny(¢,9) = =J[§, V] — [V, VU] + Vi (Vi) - Vi (9:4)
—Vu(0:0) - Vu(ViY) — ViV (0:9) + VoV (0:9) (A1)

Ny(¢,¢) = =V*{J[$, V?¢] + J[0.0,0-¢] = V¢ - Vi (D.0)
—Vu(0:4)  Va(V2)} — 0.{J[0:¢, V¢ — J[¢, V?0.¢]
—2J[0.¢6, VP + V- Vi (V3¢) + Vu(0.¢) - Vi (V0.1h)
VaYVA (Vi) + [Ve(0:0)]* + [V (V) + (Vi9)’}  (A2)

Nr(¢,9,T) = =J[6, T] + Vi (9:9) - VT — V0. T (A3)

After the scalings of section 4, different terms in (A 1) - (A 3) appear at different orders
in the asymptotic expansion: those contained in the subdominant terms My and M; are
given below. For convenience, My and M; are defined containing factors of 1/s.

Mo(g, ) = 1 (V) V-0 = (V) V30.6 + (Vi) - Vi (0:0)
~Vi(0:6) Vi (V)] (A4)

Mg 0) = © [V3(Vir- Vinded) + Vi (Vi () - Vir( Vi)

—0A(VEY)VEY + (VES) - Ve (Vi) + [Vu(VEY)?
+(VH¢)*}] (A5)

Appendix B. Vertical structure in the rigid boundary case
The coefficients B; appearing in (3.2) take the asymptotic values:

By = —0*&@* (&% +i0)E® + O(E'T17)

By = —s*(a* +i0)E® + O(E®)

By = s°E%7 4+ O(E")

By = —2is0E' + O(E*187)
using the scalings (2.7) - (2.9). Hence the roots of (3.2) are
(

A= (a2 +i0)E* + O(1) (B1)
w2a2

A= — o+ O0(E” 27) (B2)

A =iE '+ O(E*H) (B3)

A =—iE '+ OB ). (B4)

The no-slip boundary conditions (3.3) demand that

A2 — a? —iw)o Ta'/?

3 3
-ZAj:ZAj(jg()\2—a2)—iw B; =0 (B5)
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3 o +iw — 2 3 a? +iw — A2
Aji_ Ajijﬁj_o (B6)
where 3; = Ajtanh A;/2. In the limit (2.6) the limiting values of By, B2 and 3 are
easily computed in terms of the A;. The limiting value of 8; must be computed from the
requirement that the determinant of the 4 x 4 matrix defined by (B5) and (B 6) vanish.
After substituting the limiting values of 3y, B2 and 3 we obtain at leading order:

0(1) —(a? +iw)E> iE—1 _iEg-1
det | oY) —g[@ +i0)E»] (B2 (—ip-1)32 | =0
. (&% +i@ i1/2g—3/2 _pl/2p-3/2
O(E_’y) ﬁl[_l( ;)_ )] /553‘7/ ( )sEffY

which yields

b= —9V2 g o)
S

and the result (3.4) follows.
In the case n = 1 where the critical wavenumber a and the frequency w are O(1) in
the limit (2.6), the roots of P()) are found to be:

3= 2 (=8 4 [ 4 47%0% — 0 + 2(® —0®)]?) 4 O(B)  (BT)
A = % (iw =8>~ [5* + 4n% o + 2w(x® —a?)]Y2) + O(E)  (BS)
A2 :i(§+s) E+0(1) (B9)
A2 =i (% - s) E~'+0(1) (B 10)

where 62 = o? + 72.
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