
Under consideration for publication in J. Fluid Mech. 1Rapidly rotating thermal convectionat low Prandtl numberBy J. H. P. DAWESDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, SilverStreet, Cambridge, CB3 9EW, UK.(Received ???)Rotating Boussinesq convection in a plane layer is governed by two dimensionlessgroups in addition to the Rayleigh number R: the Prandtl number � and the Taylornumber Ta. Scaled equations for fully nonlinear rotating convection in the limit of rapidrotation and small Prandtl number, where the onset of convection is oscillatory, are de-rived by considering distinguished limits where �nTa1=2 � 1 but � ! 0 and Ta !1, fordi�erent n > 1. In the resulting asymptotic expansion in powers of Ta�1=2 the leadingorder equations, which are independent of n, can be solved to provide analytic descrip-tions of fully nonlinear convection with di�erent planforms. Three distinct asymptoticregimes are identi�ed, distinguished by the relative importance of the subdominant buoy-ancy and inertial terms which varies with n. For the most interesting case, n = 4, thestability of di�erent planforms near onset is investigated using a double expansion inpowers of Ta�1=8 and the amplitude of convection ". The lack of a buoyancy term atleading order demands that the perturbation expansion be continued through six ordersto derive amplitude equations determining the dynamics. The relevance of this analysisto experimental results is discussed.
1. IntroductionRotating thermal convection is a process of great geophysical and astrophysical im-portance. Even in idealised settings, solving the equations of motion is a complex taskusually attempted either numerically or by an expansion in terms of a small parameter,for example the amplitude of the convective motion. Low Prandtl number convectionis particularly relevant to some astrophysical situations: these may involve uids withPrandtl numbers as low as 10�8. It is also relevant to convection in liquid metals, wheretypical Prandtl numbers are in the range 10�3 to 10�2. Asymptotic analyses of non-rotating convection in the limit of small � have been performed by Proctor (1977) andBusse & Clever (1981) in response to experimental work (for example that of Rossby1969) and two-dimensional numerical simulations, for example Jones, Moore & Weiss(1976) and Clever & Busse (1981). These numerical solutions in two dimensions showsteady convection rolls with streamlines which become increasingly circular in the small-� limit: this is referred to as \ywheel convection" due to the rigid rotation of the uidwithin the roll vortex. The motion is dominated by inertial forces, and the analytic re-sults agree well with the experimental results on non-rotating convection in mercury(� � 0:025) obtained by Rossby (1969). In particular the asymptotic results of Busse &Clever (1981) and Jones et al. (1976) which give the Nusselt number Nu � R1=4 whenR (the Rayleigh number) is large agree very well with that obtained experimentally by



2 J. H. P. DAWESRossby (1969): Nu � 0:147R0:257�0:004 (1.1)The analysis of Proctor (1977) shows a second feature of non-rotating low Prandtl numberconvection which has been con�rmed by experimental results (Kek & M�uller 1993): theNusselt number increases very little above the critical Rayleigh number for the onset ofconvection R1 = 1708 (when the layer has no-slip vertical boundaries - Chandrasekhar(1961)) until a second critical Rayleigh number R2 ' 7373 (Busse & Clever 1981) isreached. For R > R2 the heat transfer increases much more rapidly and there is a breakin the slope of the Nu{R curve. Physically, low Prandtl number convection is dominatedby a balance between inertial and buoyancy forces.Rotating thermal convection in the limit of rapid rotation (with � � 1) has beeninvestigated by many authors: Chandrasekhar (1961) noted the scalings of the criticalwavenumber and Rayleigh number for the onset of convection when the Taylor number(the non-dimensionalised rotation rate) Ta is large. The later work of Bassom & Zhang(1994) has been built upon by Julien & Knobloch (1999) who derive scaled equationsin the limit of rapid rotation and explore the vertical structure of the ow, the heattransport through the layer, and three-dimensional pattern selection near onset.In this paper we examine composite limits of rapid rotation and small Prandtl number.It is well known that when the Prandtl number � < 0:677 and the Taylor numberexceeds a critical value Tac(�), which depends on whether rigid or stress-free verticalboundary conditions are employed, the onset of convection in an in�nite plane layer isoscillatory. As � becomes small though it is apparent that di�erent scalings to those usedwhen � � 1 and Ta ! 1 may become important. We examine those scalings here. Inparticular we show how the results of Zhang & Roberts (1997) and Bassom & Zhang(1998) complement those of Julien & Knobloch (1999), and �nd an intermediate scalingwhich explains the behaviour of stability boundaries seen in a study of pattern selectionat �nite Taylor number by Dawes (2000). Physically the leading order equations describethe balance between the fast oscillation of the convection and rotation: a linear balanceleading to a linear momentum equation at leading order if the horizontal structure of theow is su�ciently simple. This is in sharp contrast to non-rotating low Prandtl numberconvection where the nonlinear inertial term u �ru balances the pressure term at leadingorder.In x 2 we analyse the linear stability results for convection between stress-free bound-aries. As in previous work, in these distinguished limits the choice of stress-free or rigidboundaries above and below the layer becomes unimportant; this is shown in x 3 byextending the work of Clune & Knobloch (1993) and Niiler & Bisshopp (1965) to thepresent case. Section 4 contains the derivation of the scaled equations and shows that theasymptotics indicate three distinct asymptotic regimes. In x 5 the leading order equations(which are the same for each regime) are solved exactly for fully nonlinear convection,giving analytic expressions for the mean temperature pro�le and the Nusselt number.Section 6 then concentrates on the most interesting regime and applies modi�ed pertur-bation theory to determine pattern selection at onset. In x 7 we comment on and extendthe similar results obtained by Bassom & Zhang (1998). In x 8 we compare our resultswith the experiments of Rossby (1969) and Pfotenhauer et al. (1984). Conclusions anddirections for further work are presented in x 9.



Rapidly rotating thermal convection at low Prandtl number 32. Linear theory and scalingsThe governing equations for rotating Boussinesq convection are:1� DuDt +E�1ẑ� u = �rp+RT ẑ+r2u (2.1)DTDt = r2T (2.2)r � u = 0 (2.3)for the velocity �eld u = (ux; uy; uz) and temperature pro�le T . The equations havebeen nondimensionalised with respect to the thermal di�usive timescale d2=�. The di-mensionless groups appearing in (2.1) and (2.2) are the Ekman, Rayleigh and Prandtlnumbers: E = Ta�1=2 = �2
d2 R = �̂g�Td3�� � = �� (2.4)where �T is the imposed temperature di�erence across the layer, 
 is the dimensionalrotation rate, d is the layer depth, �̂ is the coe�cient of volume expansion and �, � and gare constants describing the kinematic viscosity and thermal di�usivity of the uid, andthe acceleration due to gravity. In nondimensional terms the layer occupies the region0 < z < 1. Solving the linearised versions of (2.1) and (2.2) about the conduction solutionu = 0, T = 1 � z in conjunction with `perfect' boundary conditions (�xed temperatureand stress-free vertical boundaries at z = 0,1 and periodic in the horizontal) we deriveanalytic expressions for the critical Rayleigh number Rc, frequency !c and preferredwavenumber �c at onset: Rc = 2�2�2Ta�2c(� + 1) + 2(�2 + �2c)3(� + 1)�2c!2c = (�2 + �2c)2 ���2 + �2(1� �)�2Ta(� + 1)(�2 + �2c)3 �(�2 + �2c)2(� + 1)2(2�2c � �2) = �2�2Ta: (2.5)This last equation is the result of minimising Rc over all wavenumbers �c. If the righthand side of (2.5) becomes large, so too will the preferred wavenumber of convection.This clearly happens in the limit Ta ! 1 with � � 1. Here we consider the limit ofsmall � at the same time by �xing� = sE1=n; equivalently; �nTa1=2 = sn (2.6)with s an O(1) constant, for values of n in the range 1 < n < 1. With this scaling, inthe limit E ! 0 we �nd the following asymptotic expressions for Rc, !c and �c (usingthe wavenumber which minimises Rc):Rc = 3(2s4�4)1=3E4 � ~RE4 (2.7)!2c = (2s4�4)1=3E4 � ~!2E4 (2.8)�c = �s2�22 �1=6E � ~�E (2.9)where �13 <  � 13� 1n � 1� < 0: (2.10)The case n = 1 has been partially investigated by Zhang & Roberts (1997) and Bassom& Zhang (1998). We exclude it here (and defer analysis to x 7) because it is clear from



4 J. H. P. DAWESequation (2.5) that the critical wavenumber remainsO(1) in this limit: it does not becomelarge. Setting n = 1,  = �1=3 corresponds to the analysis of Julien & Knobloch(1999); di�erences between this and the analysis for �nite n are highlighted in subsequentsections.Using a poloidal-toroidal decomposition for the velocity �eld u:u = r� �ẑ +r�r�  ẑ = 0@ @y�+ @x@z �@x�+ @y@z �r2H 1Athe governing equations become1�@tr2H��E�1@zr2H + 1�N�(�;  ) = r2r2H� (2.11)1�@tr2r2H +E�1@zr2H�+ 1�N (�;  ) = r4r2H �Rr2HT (2.12)@tT +NT (�;  ; T ) = r2T (2.13)where the functions Ni represent the nonlinear terms:N�(�;  ) = (! � r)uz � (u � r)!z (2.14)N (�;  ) = ẑ � r �r� (!� u) (2.15)NT (�;  ; T ) = u � rT (2.16)and the horizontal part of the Laplacian r2H � @2xx+@2yy. Complete expressions for thesenonlinear terms are given in Appendix A.3. Boundary conditions in the limit E ! 0In the limit (2.6) the linear stability problem with rigid vertical boundaries becomesidentical to that for stress-free boundaries. This strongly suggests, as in Clune & Knobloch(1993), that subsequent nonlinear calculations (for example, to determine pattern selec-tion) will yield identical results in the two cases. For this section only we will (for com-putational convenience) �x the layer to lie in the region �1=2 < z < 1=2. To analyse thelinear stability problem of the trivial solution to (2.11) - (2.13) we write T = 1=2� z+ �and derive an evolution equation for � the departure from the linear temperature pro�le.We assume the solution ansatz0@ � � 1A = 0BBB@ P3j=0 Aj �Ta1=2�j(�2j��2�i!)�2[i!��(�2j��2)] sinh�jzcosh�j=2P3j=0 Aj �2+i!��2j�2 cosh�jzcosh�j=2P3j=0 Aj cosh�jzcosh�j=2 1CCCA ei�x+(r+i!)t (3.1)which satis�es the governing linearised equations. The linearised equations result in amatrix determinant that must vanish for a non-zero solution for the constants Aj to bepossible. At marginal stability (r = 0) this condition yields a polynomial (in �, say)which has roots ��j , j = 0; : : : ; 3.P (�) = �2�8 +B3�6 +B2�4 + B1�2 +B0 (3.2)where the complex coe�cients B0; : : : ; B3 are functions of �, Ta , R, � and !: theirasymptotic forms, using the results (2.7) - (2.9), are given in Appendix B. From thesewe calculate the asymptotic form of the roots ��j of (3.2): only ��1 remains �nite.



Rapidly rotating thermal convection at low Prandtl number 5The no-slip boundary conditions� = @z = � =  = 0 at z = �12 (3.3)provide four linear constraints involving the quantities �j = �j tanh(�j=2). These con-straints imply that �1 !1 in the limit (2.6), but �1 remains �nite. Hence �1 must tendto a multiple of i� as E ! 0, and solving �1 = �1 tanh�1=2 for �1 (taking the mostunstable mode, corresponding to �1 = ��2) we �nd�1 = i� 1 + isp2~! E+1=2! (3.4)so that there is an O(1) contribution from the eigenvalue for the stress-free boundarycase, and the other eigenvalues alter the vertical structure only in thin boundary layersnear z = �1=2. This calculation does not hold in the case n = 1, as discussed by Zhang& Roberts (1997): for n = 1 the analogous analysis leading to the asymptotic forms ofthe roots of P (�) shows that as E ! 0 two pairs of eigenvalues remain O(1) and thevertical structure does not simplify to the sinusoidal solution for stress{free boundaries,see Appendix B.What is particularly novel about (3.4) is that the rate of convergence to the asymptoticregime varies greatly with . Since �1=3 <  < 0, the correction term to �1 is betweenO(E1=6) and O(E1=2) and the asymptotic regime is reached at larger values of E (smallervalues of Ta) when  is close to zero (n close to 1). However, the scaling analysis of x 4indicates that the corrections to the leading order equations are minimised when n = 4.In this case the leading order equations provide the most accurate guide to the dynamics.In addition the correction term to (3.4) is O(sE1=4) = O(�), indicating the fast rate ofconvergence to the asymptotic regime when � � 1.4. The scaled equationsUsing the asymptotic relationships (2.7){(2.9) we rescale the Rayleigh number R,lengths in the horizontal directions x and y, and time t to select the most unstablemodes of convection:(x0; y0) = E(x; y) ) (@x; @y) = E(@x0 ; @y0)t0 = E2t ) @t = E2@t0R0 = E�4R:We expand the temperature pro�le into horizontally averaged and periodic parts, andalso scale  , but not �. The choices of scalings come from balancing inertial terms,rotation and the largest nonlinear terms all to appear at leading order.T = �T (z) +E��(x; y; z; t) (4.1) = E� 0 (4.2)The di�erence between these scalings and Julien & Knobloch (1999) becomes apparenton substitution into (2.11) and (2.12). Dropping primes, we obtain:E1+ �1s@tr2H�� @zr2H � 1sJ [�;r2H�]� = E2+4r4H��EM0(�;  ) +O(E1�)(4.3)



6 J. H. P. DAWESn  Ordering Regime1 �1=3 E1+ � E4+2 � E Julien & Knobloch (1999)4 < n <1 �1=3 <  < �1=4 E1+ � E4+2 � E I4 �1=4 E1+ � E � E4+2 II1 < n < 4 �1=4 <  < 0 E1+ � E � E4+2 III1 0 Bassom & Zhang (1998)Table 1. Regimes giving di�erent subdominant balances in the scaled equations (4.3) - (4.6):at leading order the equations (5.1) - (5.4) hold for regimes I - III. Referring to equation (4.3),the leading order terms are O(E1+), the next order nonlinearities are O(E) and the di�usiveterms are O(E4+2). The relative scalings in equation (4.4) are identical. Note that in the limitn = 1 equations (4.3) - (4.6) are not valid.E1+2 �1s@tr4H + @zr2H�� 1sr2HJ [�;r2H ]� = E2+5 �r6H �Rr2H���E1+M1(�;  ) +O(E) (4.4)where M0 and M1 are quadratic nonlinear terms derived from N� and N respectively(see Appendix A) and the horizontal Jacobian J [f; g] � @xf@yg� @yf@xg. For all valuesof  the leading order terms in the square brackets on the left hand side of (4.3) and(4.4) remain the same, but as  varies, the relative importance of the nonlinear termsMi and the di�usion/buoyancy terms on the right hand side changes. The temperatureequation (2.13) yields a further two equations, at O(E1+) and (after integration overone period in each horizontal direction and in time, denoted by an overbar) at O(E):@t� �r2H @z �T � J [�; �] = r2H� (4.5)@2zz �T + @z[�r2H ] = 0 (4.6)These last two equations are valid for all . We distinguish three di�erent asymptoticregimes, labelled I, II and III, which are summarised in table 1. In regime I the buoyancyand di�usion terms on the RHS of (4.3) and (4.4) are larger than the nonlinear termsM0and M1. In regime II, when n = 4 and  = �1=4, the di�usive terms exactly balance thenonlinearities although neither set of terms appears at leading order. When �1=4 <  < 0the nonlinearities are larger than the buoyancy/di�usion terms: this is regime III.From these three cases one important qualitative distinction about the dynamics canbe drawn immediately. At leading order (4.3) - (4.6) are invariant under a reectionsymmetry which is not present in the equations at �nite Ta and �. This symmetry( 0; �0; �0; �T )! (� 0;��0;��0; �T ) (4.7)corresponds to a reection in a vertical plane containing the z-axis, for example (x; y; z)!(x;�y; z). Physically, the symmetries of rotating convection in the limit (2.6) are the sameas those of non-rotating convection. This extra symmetry was noted by Julien & Knobloch(1999) in their analysis, and the same degeneracy is introduced into subsequent weaklynonlinear calculations. The existence of this symmetry has important consequences forthe investigation of pattern selection and the stability of solutions. However, as we needto go to higher orders in the perturbation expansion just to derive the critical Rayleigh



Rapidly rotating thermal convection at low Prandtl number 7number for the onset of convection, whether these higher order terms also have thisreection symmetry is important. The quadratic nonlinearities Mi are the only termsin (4.3) - (4.6) that do not obey the symmetry (4.7): when they are less importantthan the di�usion/buoyancy terms the degenerate situation persists at next order in E.When they are of equal or greater importance than the di�usive terms, the symmetryis broken at next order, and the ow distinguishes between co-rotating and counter-rotating perturbations. This is crucial for the analysis of K�uppers{Lortz type instabilitiesof travelling rolls within the region where oscillatory convection is preferred at onset (seeDawes 2000).In physical terms (4.3) and (4.4) show that the rotational constraint is balanced bythe fast oscillation of the convecting ow and the velocity �eld evolves independently ofthe temperature �eld at leading order. Neither viscous dissipation nor buoyancy play aleading order role but they appear at the same order as must be the case for viscous forcesto inuence the critical Rayleigh number for the onset of convection. In this respect thescaled equations are similar to those derived by Bassom & Zhang (1994): the di�erenceis that the nonlinear terms have been vastly simpli�ed.5. Fully nonlinear solutions at leading orderIn this section, fully nonlinear solutions of (4.3) - (4.6) are investigated. At leadingorder 1s@tr2H�0 � @zr2H 0 = 1sJ [�0;r2H�0] (5.1)1s@tr4H 0 + @zr2H�0 = 1sr2HJ [�0;r2H 0] (5.2)(@t �r2H)�0 �r2H 0@z �T0 = J [�0; �0] (5.3)@2zz �T0 + @z[�0r2H 0] = 0 (5.4)where the subscript 0 indicates that (�0;  0; �0; �T0) are thought of as the leading orderterms in an expansion in powers of E. These equations are to be solved subject tothe conditions  0 = 0 at z = 0; 1, corresponding to an impermeable boundary (eitherstress-free or rigid, as discussed in x 3), and �T (0) = 1, �T (1) = 0 corresponding to �xedtemperature boundaries. We adopt the following ansatz :( 0; �0; �0) = (A(z); B(z); C(z))h(x; y)e�i!0t + c:c: (5.5)where h(x; y) is a function describing the horizontal planform, and c:c: indicates thecomplex conjugate. From a previous study (Dawes 2000) of pattern selection at �nite Taand �, two-dimensional travelling rolls h(x; y) = ei�x are preferred to three-dimensionalplanforms, at least close to onset. However, fully nonlinear solutions can be found forany planform which depends only on one horizontal wavenumber, so that r2Hh = ��2h,and in addition satis�es @xh@yh� = @xh�@yh (where � denotes complex conjugation).These conditions ensure that the Jacobian terms on the right hand sides of (5.1) - (5.3)vanish identically, leaving nonlinearities only in the temperature equations. From (5.1)and (5.2) we obtaini!0s �2B(z) + �2A0(z) = 0 �i!0s �4A(z)� �2B0(z) = 0which have the solutionA(z) = A0� sin�z B(z) = iA0 cos�z !0 = �s� :



8 J. H. P. DAWESA0 is the undetermined amplitude of convection: at higher orders in the expansion wewill determine its evolution on slower timescales. From (5.3) we obtainC(z) = ��A0 sin�z@z �T0�2 � i!0 (5.6)A further relationship between C(z) and �T0 is given by integrating equation (5.4) once:@z �T0 � �H(CA�0 + C�A0) sin�z = �Nu (5.7)where the constant Nu is the Nusselt number and H � jhj2. The relations (5.6) and (5.7)together yield C(z) = �A0(�2 + i!0)Nu sin�z�4 + !20 + 2�4H jA0j2 sin2 �z (5.8)Nu = �1 + 2H�4jA0j2�4 + !20 �1=2 (5.9)�T0(z) = Z �(�4 + !20)Nu�4 + !20 + 2H�4jA0j2 sin2 �z dz: (5.10)This is a fully nonlinear description of the temperature pro�le - we have not assumed thatthe amplitude A0 is small. Equation (5.10) can be integrated to give a fully nonlinearexpression for the mean temperature pro�le:�T0(z) =8>>>><>>>>: 1� 1� tan�1P (Nu tan�z) in 0 � z < 1212 at z = 12� 1� tan�1P (Nu tan�z) in 12 < z � 1 (5.11)where tan�1P (x) is the principal value of tan�1(x): ��=2 < tan�1P < �=2. Although it iseasiest to de�ne the solution for �T0(z) piecewise, �T0(z) is a smooth function of z, and whenNu = 1 (below the onset of convection) we recover the expected linear temperature pro�le�T0(z) = 1 � z. Figure 1 shows the variation in �T0(z) as Nu increases. The temperaturepro�le becomes uniform throughout the layer and rapid adjustment to satisfy the �xedtemperature boundary conditions occurs in thermal boundary layers near z = 0; 1.Having obtained a fully nonlinear solution at leading order we are only missing arelationship between the amplitude of convection A0 and the (scaled) Rayleigh numberR. This can be derived for fully nonlinear convection in the most interesting case (regimeII, n = 4,  = �1=4); the velocity and temperature �elds are expanded in powers of E1=4and a new timescale � = E1=4t is introduced:(�;  ; �; �T ) = (�0;  0; �0; �T0) +E1=4(�1;  1; �1; �T1) +O(E1=2) (5.12)which gives evolution equations for �1 and  1 (decoupled from �1 and �T1):1s@tr2H�1 � @zr2H 1 = �M0(�0;  0) +r4H�0 � 1s@�r2H�0; (5.13)1s@tr4H 1 + @zr2H�1 = �M1(�0;  0) +r6H 0 �Rr2H�0 � 1s@�r4H 0: (5.14)A solvability condition is applied by multiplying the right hand sides by the leading ordersolution vector (�0;  0)T and integrating over one period in the horizontal and in time,and over the whole layer in the z direction. If the right hand sides of (5.13) - (5.14) are
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Figure 1. The mean temperature pro�le �T0(z) at four values of the Nusselt number Nu : Nu = 1(solid line),Nu = 3 (dashed line), Nu = 10 (dash-dotted line), Nu = 100 (dash-dot-dot-dottedline).schematically given by (F1; F2)T then the solvability condition isF(�0;  0; F1; F2) = Z 10 Z 2��0 Z 2��0 Z 2�!00 � �0 0 � �� F1F2 � dt dx dy dz = 0: (5.15)There is no resonant contribution from the Mi terms since they contain only quadraticproducts of �0 and  0. If A0 evolves at a frequency !1 on the slow timescale � , i.e.A0 = Â0e�i!1� , the resulting non-resonance condition determines both jA0j and !1:!1 = �s!0; 2H�4jA0j2 = R(Nu � 1):Using (5.9) we can eliminate H jA0j2 from this expression:Nu = 2� RRc�� 1 (5.16)where Rc = 2(�4 + !20) = 2(�6 + s2�2)=�2 is the (scaled) critical Rayleigh number forthe onset of convection, agreeing with (2.7) - (2.9). As both R and Rc have been scaledby the same factor of E4 we can replace the scaled R and Rc by the unscaled valuesin (5.16). The result is a fully nonlinear Nu{R relationship, assuming that our ansatz(5.5) holds, independent of the details of the planform. Valid planforms include standingwaves composed of two, four or six modes: h(x; y) = cos�x, h(x; y) = cos�x + cos�y,h(x; y) = ei�k1�x + e�i�k1�x + ei�k2�x + e�i�k2�x + ei�k3�x + e�i�k3�x where k1 = (1; 0),k2 = (�1=2;p3=2), k3 = (�1=2;�p3=2). The range of validity of (5.16) can be estimatedas Rc < R < 24=3Rc: above 24=3Rc the vertical structure of solutions is likely to containsigni�cant contributions from higher frequency modes sinm�z as these are no longerdamped.We note that the same Nu{R relationship can be derived near onset in regimes I and



10 J. H. P. DAWESIII and is implicit in the weakly nonlinear analysis of rapidly rotating steady convectionby Bassom & Zhang (1994).6. Weakly nonlinear theory for n = 4It is important to address the question of the stability of the two-dimensional solutionfound in x 5 to three-dimensional perturbations. In this section we compute the stabilityof the travelling roll solution near onset, both to all other possible planforms for oscilla-tory convection on a square lattice and to roll perturbations at arbitrary angles. RegimeII (n = 4,  = �1=4) is of most interest as not only does it correspond to the sub-dominant balance between the nonlinear terms M0 and M1 and the di�usion/buoyancyterms in (4.3) - (4.6), but work on pattern selection at �nite � and Ta by Dawes (2000)demonstrates that the stability boundary of travelling rolls to perturbations at +90� tothem scales as �4Ta1=2 = const in the limit of large Ta. This, and stability boundariesto perturbations at varying angles, can be analysed using a weakly nonlinear expansionin powers of E1=4 and " the amplitude of convection, assuming that "� E1=4 � 1. Let� = "�0;1 + "2�0;2 + "3�0;3 +E1=4"�1;1 +E1=4"2�1;2 +E1=4"3�1;3 + � � � (6.1) = " 0;1 + "2 0;2 + "3 0;3 +E1=4" 1;1 +E1=4"2 1;2 +E1=4"3 1;3 + � � � (6.2)� = "�0;1 + "2�0;2 + "3�0;3 +E1=4"�1;1 +E1=4"2�1;2 +E1=4"3�1;3 + � � � (6.3)�T (z) = �T0 + " �T0;1 + "2 �T0;2 + "3 �T0;3 +E1=4" �T1;1 + � � � (6.4)so that, for any variable, a subscript i; j indicates that it belongs at order Ei=4"j in theexpansion. We also introduce a set of slow time variablest = t0 + "t0;1 + "2t0;2 +E1=4t1;0 +E1=4"t1;1 +E1=4"2t1;2 + � � � (6.5)We now substitute these expansions into the fully nonlinear equations (4.3) - (4.6) andexamine terms at each order Ei=4"j .6.1. Solutions at O(") and O("2)At �rst order in the expansion we obtain the linear equations1s@t0r2H�0;1 � @zr2H 0;1 = 0 (6.6)1s@t0r4H 0;1 + @zr2H�0;1 = 0 (6.7)(@t0 �r2H)�0;1 +r2H 0;1 = 0 (6.8)where we have used the fact that �T0(z) = 1�z, which was deduced from the linearisationof (4.6) and the boundary conditions. We �rst assume the following planform in orderto derive amplitude equations to examine the stability of travelling rolls to oscillatoryperturbations in the counter-propagating direction (A2) and at �90� (B1 and B2):(�0;1;  0;1; �0;1) = �i cos�z; sin�z� ; � sin�z�2 � i!0�h0(x; y)e�i!0t0 + c:c: (6.9)h0(x; y) = A1ei�x +A2e�i�x +B1ei�y +B2e�i�y (6.10)we also deduce that �T0;1(z) = 0. This solution to the leading order problem will be used, asis common in problems of this type, to impose a solvability conditionF(�0;1;  0;1; F1; F2) =0 (5.15) at all further orders in the expansion. The solvability condition does not involvethe �{equation since it decouples from the � and  equations at order ".



Rapidly rotating thermal convection at low Prandtl number 11At second order in " equations for �0;2;  0;2; �0;2 and �T0;2(z) are derived. Imposing thesolvability condition implies @t0;1A1 = 0 as expected. The solution at O("2) contains alarge number of quadratic terms and is not given explicitly here. The mean temperaturepro�le indicates that all four modes contribute equally to its deviation from the linearstate, and agrees with the fully nonlinear result (5.11):�T0;2(z) = ��4 sin 2�z2�(�4 + !20) �jA1j2 + jA2j2 + jB1j2 + jB2j2� (6.11)6.2. Solution at O("3)At third order we anticipate that use of the solvability condition will enable deductionof an amplitude equation describing the slow-time evolution of A1. After applying thesolvability condition we obtain a nonlinear evolution equation for A1:@t0;2A1 = i�44!0A1 �jB1j2 + jB2j2� (6.12)This equation, since the coe�cient is purely imaginary, describes the nonlinear change(due to B1 and B2) in only the phase of A1, not its modulus. There is no linear termbecause it would depend on the distance R � Rc above the critical Rayleigh numberfor the onset of convection, and R � Rc only appears at order E1=4"3 in the expansion.There are also no terms A1jA1j2 or A1jA2j2 since the Jacobian terms vanish for termswhich have no dependence on the y coordinate. To obtain an evolution equation involvingcoe�cients which have real parts (from which we can extract stability information) wemust proceed to higher orders with the calculation.6.3. Solutions at O(E1=4") and O(E1=4"2)We expand the Rayleigh number R = Rc+"2R2+ : : : anticipating that there is no " termbecause the amplitude of convection scales as the square root of the distance above onset.We also do not compute higher order terms in the � or �T equations as the solvabilitycondition (5.15) depends only on the � and  equation at each order. At O(E1=4") weobtain 1s@t0r2H�1;1 � @zr2H 1;1 = r4H�0;1 � 1s@t1;0r2H�0;1 (6.13)1s@t0r4H 1;1 + @zr2H�1;1 = r6H 0;1 �Rcr2H�0;1 � 1s@t1;0r4H 0;1 (6.14)which, after applying the solvability condition, yields expressions for the evolution of A1on the timescale t1;0 and the critical Rayleigh number Rc:@t1;0A1 = is!0A1 and Rc = 2(�4 + !20) (6.15)so A1 = Â1e�i!1t1;0 where !1 = �s!0 (we drop the carat on Â1 at higher orders). Theseresults agree with the fully nonlinear analysis of x 5. As (6.13) and (6.14) are linear wecan, without loss of generality, set �1;1 =  1;1 = 0 since any non-zero solution could beremoved by rede�ning E.At O(E1=4"2) the nonlinear terms M0 and M1 (given explicitly in Appendix A) enterthe equations and the solution contains lengthy quadratic expressions for �1;2 and  1;2.From applying the solvability condition we deduce that @t1;1A1 = 0.6.4. Solution at O(E1=4"3)Finally we arrive at the order where it is possible to derive a more informative amplitudeequation for the evolution of A1 on the slow timescale t1;2. By computing the nonlinear
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(b)Figure 2. (a) Variation in coe�cients ar (dashed line), cr � ar (dash-dotted line) and dr � ar(dash-dot-dot-dotted line) with s in the case n = 4. For s < 2:361 travelling rolls are unstable toperturbations at +90� as dr�ar > 0. (b) Value scrit(�) below which travelling rolls are unstableto perturbations at an angle �. The dashed line is the asymptotic result scrit � 16:1��3=4 .terms at this order and applying the solvability condition we derive equations (relatedby symmetry) of the form@t1;2A1 = A1[�+ ajA1j2 + bjA2j2 + cjB1j2 + djB2j2] + eA�2B1B2 (6.16)for the evolution of each of A1; : : : ; B2; see Knobloch & Silber (1992). The complexcoe�cients are calculated to be� = R2(�2 + i!0) (6.17)a = b = ��4(�2 + i!0) (6.18)c = � �5s2�2�2 + 3�8 + 4�3�2 � 4is��(�4 + �2)� (�2 + i!0)=4!20 (6.19)d = � �5s2�2�2 + 3�8 � 4�3�2 � 4is��(�4 � �2)� (�2 + i!0)=4!20 (6.20)after rescaling t1;2 by a factor 2(�4 + !20)=s. The value of e is not needed to determinethe stability of travelling rolls. We note �rst that travelling rolls bifurcate supercriticallyas ar < 0 for all s (a subscript r denotes the real part of a quantity).A travelling roll solution jA1j2 = ��r=ar is stable to perturbations in the other threemodes if the three quantities(ar � br)=ar; (ar � cr)=ar; (ar � dr)=ar (6.21a{c)are all negative Knobloch & Silber (1992). As also found by Julien & Knobloch (1999),(6.21a) is zero, meaning that the relative stability of travelling rolls and standing rollsjA1j2 = jA2j2 = ��r=(ar + br) is determined at a yet higher order in the perturbationtheory. However, from calculations at �nite Taylor number by Dawes (2000), and thediscussion in x 7 below, we can assert con�dently that travelling rolls are stable withrespect to standing rolls. What is not clear is whether travelling rolls are stable to per-turbations in the B modes. Figure 2(a) shows the variation in (6.21b,c) with s. Whens < scrit = 2:361, travelling rolls are unstable to perturbations at +90�. The quadraticterms M0 and M1 are responsible for the di�erence in stability towards perturbationsat +90� and �90� and the corresponding sign changes in the expressions for c and d,(6.19) - (6.20). In the simple limit Ta !1 with � � 1 which was analysed by Julien &



Rapidly rotating thermal convection at low Prandtl number 13Knobloch (1999), the coe�cients c and d are forced to be equal at leading order by the`unwanted' reection symmetry (4.7).6.5. Stability to perturbations at smaller anglesSince the perturbations to travelling rolls which have the highest growth rate may notbe those at 90�, but instead at some smaller angle, the previous analysis can be recast toexamine stability to perturbations at any angle � < 90�. If the planform function h0(x; y)at O(") (6.10) is modi�ed to beh0(x; y) = A1ei�x +A2e�i�x +B1ei(��x cos �+�y sin �) +B2ei(�x cos ���y sin �) (6.22)the analysis of xx 6.1 - 6.4 can be carried out (using MAPLE for example) for arbitrary �.For any �xed � there is a critical value scrit(�) below which travelling rolls are unstableto perturbations at an angle � to the original rolls, see �gure 2(b). Note that scrit(�)tends to in�nity as � ! 0. This agrees with calculations at �nite � and Ta of the growthrates of perturbations at di�erent angles to travelling roll solutions. For small angles itappears that scrit(�) � ��3=4 asymptotically.In conclusion we do not expect travelling roll solutions to be stable near the onset ofconvection. It seems likely that fully nonlinear roll solutions are also unstable to theseperturbations and there are no stable two-dimensional solutions to (5.1) - (5.4).7. Weakly nonlinear theory for n = 1The scaled equations that were derived in x 4 do not apply in the limit (2.6) correspond-ing to n = 1 since the preferred wavenumber remains O(1) in the limit and the scalingarguments break down. However, this limit is of interest since the transition line betweenregions of travelling and standing rolls asymptotes to a curve of the form �Ta1=2 = constat high Taylor number as shown by Knobloch & Silber (1990). The weakly nonlinear be-haviour in this limit has been partially investigated by Bassom & Zhang (1998), but theywere able to deduce only that travelling rolls bifurcate supercritically at onset. In fact,their analysis can be extended to compute the relative stability of travelling and stand-ing rolls, which are a priori equally possible candidates for the form of two-dimensionaloscillatory convection near onset. The relevant symmetry group of the problem is O(2):the (two-dimensional, i.e. no y-dependence) in�nite plane layer is invariant under a circleof translations in the x-direction (due to the imposition of periodicity in the x-direction)and a half-turn rotation about the z-axis which takes x! �x. The result of the abstracttheory is that if we propose a solution planform which takes the form of a superpositionof travelling rolls with amplitudes A1 and A2, at leading order:(�0;1;  0;1; �0;1) = �i cos�z; sin�z� ; � sin�z�2 � i!0�h0(x; y)e�i!0t0) + c:c: (7.1)h0(x; y) = A1ei�x +A2e�i�x (7.2)then the solvability condition at third order leads generically to amplitude equations ofthe following form: _A1 = A1[�+ ajA1j2 + bjA2j2] (7.3)_A2 = A2[�+ ajA2j2 + bjA1j2] (7.4)If ar < 0 (as before, a subscript r denotes the real part of the coe�cient) then travellingrolls (a solution of the form jA1j = ��r=ar, A2 = 0) bifurcate supercritically. This isthe result of the calculation of Bassom & Zhang (1994), derived by performing a double



14 J. H. P. DAWESexpansion similar to that given in x 6. To test the relative stability of travelling andstanding rolls it is necessary also to calculate br. This calculation shows, in agreementwith Knobloch & Silber (1990), that there is a critical value of s above which travellingrolls are stable and below which standing rolls (which also bifurcate supercritically forall s) are preferred. The stability criteria for travelling rolls are plotted in �gure 3(a): allstability curves must be negative for stability at a given value of s. When s < sc � 52:48,we �nd br � ar > 0 (the dashed curve) and travelling rolls are unstable with respect tostanding rolls: when s > sc the inequality is reversed and travelling rolls are stable withrespect to standing rolls.Moreover, as in the case n = 4, we can analyse the stability of both travelling andstanding rolls to perturbations in the y-directions by including terms for modes B1 andB2 in the planform expression (7.2) in the perturbation expansion. It turns out thattravelling rolls are unstable to these perturbations (the dot-dashed lines in �gure 3(a)),and on a faster timescale than that associated with the eigenvalue which determineswhether travelling or standing rolls are preferred! Perturbations in the y direction aretherefore of greater importance than the relative stability of travelling and standing rolls.Figure 3(a) shows that travelling rolls bifurcate supercritically for all s, as ar < 0 always.They are stable with respect to standing rolls when the dashed line br�ar < 0 but one ofthe other two curves is always positive, indicating instability to y-direction perturbations.In �gure 3(b) the solid curve is always negative, implying that standing rolls also bifurcatesupercritically for all s. The enlargement �gure 3(c) shows that over a very small range,45 < s < 70, standing rolls are unstable to three-dimensional patterns, but for s > scthe dashed line indicates that standing rolls are unstable to travelling rolls. The valuesof cr and dr (the real parts of the coe�cients of the terms A1jB1j2 and A1jB2j2 in the A1equation) appear at O("3) in the perturbation expansion where the evolution timescaleis t0;2 = "2t, but the values of ar and br can only be found by continuing to O(E"3) (asdetailed by Bassom & Zhang 1998) where the relevant timescale is t1;2 = E"2t. Hencethe coe�cients ar and br are formally a factor of E smaller than cr and dr.An interesting feature of �gure 3(a) is that cr = �dr at leading order. This may beexplained by considering the e�ect of changing y ! �y and t ! �t in the leadingorder governing equations for the case n = 1 (derived by taking the double curl of themomentum equation (2.1) to eliminate the pressure, writing � = sE, and ignoring thehigher order terms which comprise the right hand side). Equation (2.1) then becomes@tr2u+ s@z!= r�r� (!� u) (7.5)The change (y; t)! (�y;�t) implies that (@x; @y; @z; ux; uy; uz)! (@x;�@y; @z; ux;�uy; uz)and hence (!x; !y; !z)! (�!x; !y;�!z). Only the second component of !� u changessign, hence the second component of the right hand side changes sign under (y; t) !(�y;�t). However, the �rst and third components are the ones which change sign onthe left hand side of (7.5). Hence the transformation (y; t) ! (�y;�t) is equivalent tointroducing a minus sign into the nonlinear term on the right hand side. Consideration ofthe nonlinear terms at each order in the perturbation expansion shows that changing thesign of the nonlinear term on the right hand side does not a�ect either the value of thecoe�cients cr and dr or the evolution equation for A1 derived at O("3). However, sincethis sign change is equivalent to (y; t)! (�y;�t), the amplitude equation that is derivedat third order in ", analogous to (6.12), must also be invariant under the sign change ofy and t. This implies that changing the sign of the time derivative and exchanging B1and B2 leaves the evolution equation unchanged, i.e.:@t0;2A1 = A1[crjB1j2 + drjB2j2] = �A1[crjB2j2 + drjB1j2]
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(c)Figure 3. (a) Stability criteria for travelling rolls in the limit n = 1: ar (solid line) and br � ar(dashed line) are determined at O(E"3), but cr (dash-dotted line) and dr (dash-dot-dot-dottedline) are determined at O("3). Travelling rolls are stable with respect to standing rolls whenbr�ar < 0. The values of cr and dr have been scaled up by a factor of 10 for ease of display. (b)Stability criteria for standing rolls: ar (solid line), ar�br (dashed line) and�fr � cr+dr�ar�br(dash-dotted line) are determined at O(E"3); jej2�jf j2 (dash-dot-dot-dotted line) is determinedat O("3). (c) Enlargement of (b) in the range 30 � s � 100.Invariance implies that cr = �dr which is clearly demonstrated by �gure 3(a). Thissymmetry is broken by the addition of the di�usion and buoyancy terms at higher orders.The leading order result is, however, expected to hold throughout regime III, i.e. wheneverthe nonlinearities dominate the di�usive terms. This leads to the more general conclusionthat throughout regime III travelling rolls are never stable to perturbations both at +90�and �90�. This is in contrast to the results for standing rolls which are stable to planformscontaining these modes in the n = 1 limit when s is low enough, as shown by �gure 3(b).



16 J. H. P. DAWESFurther details of some of the complex dynamics that are present at �nite � and Ta aregiven in Dawes (2000).8. Comparison with experimental workThe preceeding analysis shows that three contrasting asymptotic theories dominatedi�erent regions of the (�;Ta) plane: the limit of rapid rotation only (n =1), the casen = 4 and the case n = 1 where the critical wavenumber at onset remains O(1). Theleading order equations (5.1) - (5.4) in the limiting case n = 4 are applicable when theparameter s is O(1), say 0:1 � s � 10:0 and the lower order corrections to (5.1) - (5.4)are negligible. Since these corrections are a factor E1=4 smaller, we formally require both10�4 � �4Ta1=2 � 104 and Ta1=2 � 104 (requiring E1=4 � 0:1). These conditions yielda range of Ta for a given �. When � = 0:025 this indicates 104 � Ta1=2 � 3 � 1010 asan approximate range of Ta within which the n = 4 limit is valid. At a given Prandtlnumber, the dynamics at Taylor numbers outside this range would be better describedby the cases n =1 (Julien & Knobloch 1999) or n = 1 (Bassom & Zhang 1994).After a thorough search of the literature on rotating convection there appear to be onlytwo sets of laboratory experiments which report detailed measurements on low Prandtlnumber uids: those of Rossby (1969) and Fauve, Laroche & Perrin (1985). In additionwe compare these results with the numerical simulations of Julien, Knobloch & Werne(1998). Throughout the 1950s and 1960s a number of rotating convection experimentswere carried out, but these focussed on determination of the critical Rayleigh numberfor the onset of convection and did not explore behaviour much above onset. Both setsof experiments use mercury (� � 0:025) as the working uid. Rossby's experimentsencompass a range of Taylor numbers 103 < Ta < 109 and those of Fauve, Laroche &Perrin (1985) have 104 < Ta < 105. The small number of Rossby's results which do liein the range of validity de�ned above for n = 4 show a much slower rise in the Nusseltnumber with R=Rc than that predicted by (5.16). As his photographs and observationsmake clear, convection becomes irregularly three-dimensional almost immediately aboveonset. In the region 104 < Ta < 105 both sets of experimental data show a hysteretictransition between two stable convective states with distinct Nusselt numbers. This waspointed out by Fauve, Laroche & Perrin (1985) who described the interaction betweenthe two states as a codimension{2 pitchfork{Hopf bifurcation. For this description to bevalid the rotation rate cannot be assumed to be large which suggests that this hysteresisphenomenon cannot be captured by an asymptotic theory. That hysteresis also occurs inthe results of Rossby has not been noted before.Numerical simulations of the equations of convection in the limit of rapid rotationwith � � 1 have been carried out by Julien, Knobloch & Werne (1998). These showconvergence to a statistically steady state comprising vortices which extend almost theentire depth of the layer. A comparison with 5.16 of the resulting mean temperaturepro�le obtained numerically for a Nusselt number Nu = 4:0 is given in �gure 4. In thelimit solely of rapid rotation the di�usive terms remain part of the leading order equationsof motion. It is therefore to be expected that their presence causes the resulting meantemperature pro�le to be less angular than that suggested by 5.16 at the same Nusseltnumber.Moreover, we have made the assumption that the layer of uid is in�nite in extent.Experimental results, in contrast, are always a�ected by �nite-size e�ects. E�ects intro-duced by lateral boundaries include allowing `wall-modes' of convective motion whichallow convective heat transport at Rayleigh numbers below that predicted from the lin-ear theory for an in�nite layer (this is discussed in detail theoretically by Goldstein et
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Figure 4. Comparison of the mean temperature pro�le from a fully resolved three-dimensionalnumerical simulation of Julien, Knobloch & Werne (1998) - 3 - with (5.11) - solid line - at thesame (time-averaged) Nusselt number Nu = 4:0.al. 1994) and the spontaneous nucleation of defects at the walls which then break up apattern of rolls as discussed by Hu, Ecke & Ahlers (1997).9. Discussion and conclusionsWe have examined rapidly rotating convection at low Prandtl number. By takingdistinguished limits and scaling the velocity �eld, temperature �eld, length and timescalesand physical parameters appropriately we have derived scaled equations which describethe asymptotic dynamics of convection.The scaled equations are tractable analytically because they contain very few nonlinearterms: moreover the u � ru term does not contribute at all for particular planformswhich depend on only one horizontal wavenumber. At leading order the rapid rotationis balanced by the time derivative part of the inertial term. This balance of linear termsleads to oscillatory convection with a fast timescale. The buoyancy term is balanced bydi�usion at next order, both these processes evolving on a slower timescale. The dominantnonlinearity comes from the equation for the mean temperature pro�le. The results ofx 3 show that the properties of convection near onset are independent of the imposedvertical boundary conditions: we expect that weakly nonlinear results and possibly fullynonlinear ones are identical for stress-free and no-slip boundaries.The dynamics in di�erent distinguished limits are inuenced by di�erent terms inthe original equations: in particular the relative importance of the di�usive terms andsubdominant nonlinearities is important, and we divide the asymptotic behaviour intothree regimes of which the most interesting and useful one (the case n = 4) is wherethese subdominant terms balance. A fully nonlinear solution for the vertical structureand heat transport through the layer can be obtained analytically at leading order - thishas not been found possible in previous related work.The two central analytic results of this paper (5.11) and (5.16), formally for fully non-



18 J. H. P. DAWESlinear convection, are independent of the parameters n > 1 and s which determine thedistinguished limit. This independence motivates the claim that they are widely appli-cable: indeed convection experiments on a wide range of uids with or without rotationshow mean temperature pro�les similar to �gure 1. Any suitable analytic expression hasnot, to the best of the author's knowledge, been derived for it previously.Weakly nonlinear analysis of the scaled equations in the cases n = 4 and n = 1 con�rmsthe asymptotic behaviour of results on pattern selection at onset at �nite Taylor numberand Prandtl number. The curve which forms the stability boundary of two-dimensionaltravelling rolls to perturbations at a �xed angle � scales as �4Ta1=2 = const for largeTa , but the constant increases unboundedly as � ! 0. Thus within the region of the(�;Ta) plane where the limit corresponding to n = 4 applies we do not expect two-dimensional solutions to be stable. This is in agreement with experimental results. Therelative importance of the subdominant nonlinear terms and the di�usive terms plays akey role in determining the growth rates of K�uppers{Lortz type instabilities of travellingrolls.The case n = 1 identi�es the transition between K�uppers-Lortz unstable travelling rollsand stable standing rolls. This transition was not captured by the analysis of Bassom &Zhang (1998) since they did not compute the full amplitude equations describing the Hopfbifurcation with O(2) symmetry that takes place: they omitted the term A1jA2j2 in (7.3)and the evolution equation for A2 (7.4). In x 7 we also considered the stability of travellingand standing rolls to perturbations in modes at right-angles to them. At �nite rotationrates this transition between travelling rolls and standing rolls was �rst investigated byKnobloch & Silber (1990): the analysis has been extended to three dimensions by Dawes(2000).Further analytical work on this problem is planned: the inclusion of mean-ow e�ects,and the oscillatory analogue of the work of Cox & Matthews (2000) on small-angleinstabilities of steady rolls. Much interest has also been generated in similar scalingarguments applied to thermal convection in a vertical magnetic �eld (Julien, Knobloch &Tobias 1999; Matthews 1999). The strong similarities between the two problems suggeststhat these ideas could be applied pro�tably there.Experiments on rotating convection at low Prandtl number show a plethora of as yetunexplained phenomena: those of Pfotenhauer, Lucas & Donnelly (1984) using liquid4He indicate that, at least for � = 0:49, the initial slope of the Nu{R=Rc curve increasesrapidly as the rotation rate increases from zero to Ta1=2 � 900. The results of Ker, Li &Lin (1998) using air (� = 0:7) demonstrate that even if the onset of convection is steady,the ow may become strongly oscillatory close to onset. One of the most interesting ofthese phenomena is the appearance of `spiral-defect chaos' instead of an ordered rollpattern close to onset. This is particularly the case for low Prandtl number uids, asdiscussed by Ahlers & Bajaj (1999) and Hu, Ecke & Ahlers (1997).In conclusion it is hoped that this theoretical work will contribute to the understandingand interpretation of experimental results: experiments with liquid metals (mercury,liquid sodium, liquid gallium) or cooled gas mixtures (Helium, Helium-Xenon, Hydrogen-Xenon) are able to access the required parameter ranges and should give further physicalinsights into this problem.I have bene�ted greatly from discussions with Michael Proctor, Alastair Rucklidge andSteve Tobias. I am very grateful to Prof S. Fauve, Dr K. Julien, Prof Y-T. Ker and ProfH.T. Rossby for supplying me with experimental results and answering queries. I wouldalso like to thank two anonymous referees for many comments which have improved thepresentation and content of this work. This work was funded by the EPSRC.



Rapidly rotating thermal convection at low Prandtl number 19Appendix A. Nonlinear termsThe full expressions for N�(�;  ), N (�;  ) and NT (�;  ; T ) are included here forcompleteness. They are de�ned by (2.14) - (2.16) in terms of the poloidal and toroidalcomponents � and  . We de�ne the horizontal Jacobian J [f; g] � @xf@yg � @yf@xg.N�(�;  ) = �J [�;r2H�]� J [r2 ;r2H ] +rH(r2H�) � rH(@z )�rH(@z�) � rH(r2H )�r2H r2H(@z�) +r2H�r2H (@z ) (A 1)N (�;  ) = �r2fJ [�;r2�] + J [@z�; @z ]�rH� � rH(@z�)�rH(@z ) � rH(r2 )g � @zfJ [@z ;r2�]� J [�;r2@z ]�2J [@z�;r2 ] +rH� � rH(r2�) +rH(@z ) � rH(r2@z )+r2H r2(r2H ) + jrH(@z�)j2 + jrH (r2 )j2 + (r2H�)2g (A 2)NT (�;  ; T ) = �J [�; T ] +rH(@z ) � rHT �r2H @zT (A 3)After the scalings of section 4, di�erent terms in (A 1) - (A 3) appear at di�erent ordersin the asymptotic expansion: those contained in the subdominant terms M0 and M1 aregiven below. For convenience, M0 and M1 are de�ned containing factors of 1=s.M0(�;  ) = 1s �(r2H�)r2H@z � (r2H )r2H@z�+rH(r2H�) � rH(@z )�rH(@z�) � rH(r2H )� (A 4)M1(�;  ) = 1s �r2H(rH� � rH@z�) +r2H(rH(@z ) � rH (r2H ))�@zf(r2H )r4H + (rH�) � rH(r2H�) + jrH(r2H )j2+(r2H�)2g� (A 5)Appendix B. Vertical structure in the rigid boundary caseThe coe�cients Bj appearing in (3.2) take the asymptotic values:B0 = �~!2~�2(~�2 + i~!)E8 +O(E1+11)B1 = �s2(~�2 + i~!)E8 +O(E6)B2 = s2E6 +O(E4)B3 = �2is~!E1+5 +O(E2+8)using the scalings (2.7) - (2.9). Hence the roots of (3.2) are�20 = (~�2 + i~!)E2 +O(1) (B 1)�21 = � ~!2~�2s2 +O(E�2) (B 2)�22 = iE�1 +O(E�1�) (B 3)�23 = �iE�1 +O(E�1�): (B 4)The no-slip boundary conditions (3.3) demand that3Xj=0Aj = 3Xj=0Aj (�2j � �2 � i!)�Ta1=2�(�2j � �2)� i! �j = 0 (B 5)
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