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Abstract

We investigate the transition between oscillatory and steady convection at onset
in low Prandtl number rotating convection. This is found to be dominated by a
three-dimensional mode interaction. We construct the normal form and compute
the normal form coefficients at the codimension 2 point directly from the PDEs
for Boussinesq rotating convection. The normal form dynamics exhibit irregular
bursting behaviour created by a heteroclinic cycle containing points ‘at infinity’.
The full dynamics in the region of the codimension 2 point are investigated and
show the existence of additional quasiperiodic oscillations and further heteroclinic
cycles near onset.
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1 Introduction

It is well-known that the onset of convection in a rotating Boussinesq fluid with
a low Prandtl number (0 < 0.677) is oscillatory if the rotation rate is large
enough [1]. From linear theory there is a sharp transition between the regions
in the (o, 7) plane where the onset of convection is steady or oscillatory, with a
corresponding jump in the critical wavenumber of convection. This transition
boundary can be analysed by considering a codimension 2 mode interaction
which describes the dynamics at one point on the boundary between the two
regions. In fact, as is often the case, the normal form dynamics give a good
guide to the observed behaviour in a large neighbourhood of the transition
boundary due to the generality of the structure of the normal form and the
fact that the ratio of the most unstable wavenumbers for steady and oscillatory
convection does not vary greatly along the transition line.
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Previous work on steady convection has focussed on the Kiippers—Lortz insta-
bility [2-4] where (if the rotation rate is large enough) rolls are unstable at the
onset of convection to perturbations in the form of rolls aligned at an angle
to the original rolls. This angle of instability depends very sensitively on the
Prandtl number: in the limit ¢ — oo the critical angle is found to be approx-
imately 58°. The use of stress-free boundaries introduces further instabilities
of steady rolls, to perturbations aligned at very small angles [5]. These small—
angle instabilities are not seen when no—slip boundaries are imposed, and like
the Kiippers—Lortz instability, can be described dynamically as a heteroclinic
cycle connecting rolls at varying orientations.

In the oscillatory regime two-dimensional analyses have shown that either
Travelling Rolls or Standing Rolls can be preferred [6]. In three dimensions
the possibilities are more complex, and have been investigated only recently
[7]. In particular, there is an analogous Kiippers—Lortz type of instability for
Travelling Rolls which occurs for values of ¢ < 0.3.

The outline of the paper is as follows. In section 2 we specify the idealised
convection problem considered, derive the normal form equations which govern
behaviour near the codimension 2 point and discuss the dynamics of the steady
and oscillatory parts of the problem separately. A complete analysis of the
dynamics of the mode interaction is presented in section 3. Section 4 contains
a discussion and presents conclusions.

2 Rotating convection

Rotating Boussinesq convection is governed by three dimensionless parame-
ters: the Prandtl number o = v/k (the ratio of the rates at which velocity and
temperature gradients diffuse), the Rayleigh number R which is proportional
to the temperature difference across the layer and the square root of the Tay-
lor number 7 = 2h?Q /v where h is the depth of the layer,  is the rotation
rate and v is the kinematic viscosity.

Let u = (uy, uy, u,) and 0 be perturbations to the conduction solution uy = 0,
Ty = 1 — z for the velocity and temperature fields respectively. The evolu-
tion of these perturbations is governed by the following non-dimensionalised
equations (in the co-rotating frame):

(0, — oV*)V*u+ 070,w + e RDH=V x V x (w x 1) (1)

(0, — V0 —u,=—u- V0 (2)



V-u=0 (3)

where the double curl of the momentum equation has been taken (to eliminate
the pressure term), w = V x u and the vector operator D = (9,,0;,, =05, —
agy) We impose periodic boundaries in the horizontal directions and stress-

free, fixed temperature upper and lower boundaries.

Oy = Ouy =u, =0 =0 at 2=0,1 (4)

From a linear stability analysis of the conduction (trivial) solution (see, for
example Chandrasekhar [1]) the critical Rayleigh number for the onset of
steady convection at wavenumber «; is
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and, when o < 0.677 and 7 > 7.(0) the transition to steady convection is
preceeded by a Hopf bifurcation from the trivial solution. The critical Rayleigh
number for the onset of oscillatory convection at wavenumber ¢, is found to
be
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The frequency of the Hopf bifurcation at onset is given by

2 9
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wo = (0 +7)%0 (a2+7r2)3(1+0)_1 (7)

The line marked ¢; in figure 1 separates regions of the (o,7)-plane where
steady or oscillatory convection is preferred at onset; the line is defined by
the condition that the critical Rayleigh numbers for steady and oscillatory
convection are equal. We restict attention to wavenumbers a, and «, which
minimise R; and R, respectively as in an extended layer we expect to see
convection cells with these horizontal scales.

As we cross line /; in figure 1, the preferred horizontal wavenumber jumps,
because a; # «, in general, during what must somehow be a smooth transi-
tion from steady to oscillatory behaviour. We can explain this transition fully
in the neighbourhood of the codimension 2 point where the ratio of critical
wavenumbers a,/a, = /2 by fitting the marginal modes for steady convec-
tion onto a square lattice (which is required to keep the centre manifold of the
bifurcation problem finite dimensional), see figure 2(a). To locate this 1 : /2
resonance we have to satisfy the following four conditions:
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a5 = V2 (11)

These conditions are satisfied at parameter values o, = 0.61288, 7. = 332.22
and R. = R; = R, = 22661 giving a critical steady wavenumber o, = 8.7773.
This point is marked P on figure 1. The dashed line in figure 1 shows the result
of satisfying conditions (8), (9) and (11) simultaneously. This illustrates how
close the ratio s = a,/q, stays to V2 along ¢;. This is also demonstrated in
figure 2(b).

2.1 The normal form

By imposing a square lattice we reduce the symmetry group of the problem
from the non-compact special Euclidean group SE(2) of rotations and trans-
lations of the plane to the compact group Z, x T?. This ensures the existence
of a finite dimensional centre manifold for the bifurcation problem and en-
ables us to derive a set of ODEs (amplitude equations) for the dynamics. The
form of the amplitude equations can be determined purely from symmetry
considerations. The role of the governing fluid equations is to determine the
numerical values of the coefficients in the normal form.

We impose a square planform so that the vertical velocity is represented as
a sum of four travelling waves in the +x and 4y directions and two steady
modes along the diagonals of the square lattice, see figure 2(a).

uz(x, Y, 2, t) :Re(Alei(a:v—wt)) + A26—i(ax+wt) + Blei(ay—wt)
_i_BZ€7i(ay+u)t) + Ceia(:z:+y) + Deia(mfy)>f<z> (12>
where f(z) represents the vertical structure of the velocity field. The amplitude
equations describing the evolution of Ay,..., D on a slower timescale must

be equivariant under the group Z4x T? generated by quarter-turn rotations
about the z-axis and translations in the x and y directions:

p: (‘T’y) - (ya —l') : (AlaAZaBlaBQ;C: D) - (BlaBQJAQ;AlaDJ C) (13>



Ocy: (2,y) = (2 + &/, y+n/a)
(Ala A?a Bl; BZ) Ca D) - (Aleiga A267i§, Bleina BQeiin; Cei(f‘HY), DEZ(S(—Y]Z})

We also impose the Boussinesq symmetry:

mZ:Z—>1_Z: (AlaAQaB1a327C7D)—>_(A17A27BlaB27C7D) (]‘5)

These equivariance conditions lead to the following amplitude equations on
the centre manifold (truncated at third order):

Ay = Ay + alAr|? 4+ blAs)? 4 ¢|By |2 + d|Bo|? + M |C|? 4+ M| D
+eAyB1 By + A\3A,CD (16)

Ay = Aoy + alAs|? 4+ b|AL? + ¢[By|? + d| By > + M |C|? + \o| D|?]
+€A1B1B2 + )\3A10D (17)

By =By[ju + a|By* + b Bo* + c|As|* + d|Ay |2 + X[ D + M| CP]
+€BQA1AQ + )\3BQCD (18)

BQ = Bg[ﬂl + (I|BQ‘2 + b‘Bl‘2 + C|A1‘2 + d‘AQF + )\1|l)|2 + )\Q‘CF}
+€BlA1AQ + AgBléD (19)

C=Cluz + B|CI* + Bo| DI* + 5| A1|* + Bs] Aa|* + Ba| B1|* + Ba| Bo|’]
+V1B132D + V2A1A2D (20)

D=Dlu + 1|D* + B|C|* + B3| Bo|” + Bs|B1|* + Bal Ai|* + Ba| As ]
+V1A1AQC_’ + I/QBlBQC (21)

As usual for problems involving Hopf bifurcations in normal form there is
also a normal form symmetry which corresponds to a time translation. This
generates an additional S! group:

9(}5 =1+ ¢/w0 (Ala A?; Bl; BZ; Ca D) - (Aleiid)a A2€7i¢: Bleiidja B2eii¢a C? D)

Hence the complete symmetry group of the problem is I' = Z, x T? x S'. The
third-order truncation is generically found to be sufficient to determine the
dynamics near codimension 2 bifurcation points such as this. The coefficients
o, (1, B2, 1 and vy are forced to be real by symmetry, but all other coefficients
are, in general, complex. We write fi; = p; + iw(p1) where p; and @ are both
real.



When C = D = 0 the equations reduce to the normal form for a Hopf bifurca-
tion with Z, x T? symmetry. This has been studied in detail by Knobloch and
Silber [8] and is summarised in section 2.2. When A; = Ay = By = By, = 0
the equations for C' and D describe the usual steady bifurcation to either roll
or square solutions, discussed in section 2.3.

2.2 The Hopf bifurcation

We recall the definitions of an isotropy subgroup ¥4 = {y € I' : yx = x} and
a fixed point subspace Fix(¥) = {x : yx = x V v € X}. The Hopf bifur-
cation with Z, x T? symmetry generically produces four branches with two
dimensional fixed point subspaces [8], which therefore exist for all values of
the normal form coefficients by the Equivariant Hopf Theorem [9]. These are
denoted Travelling Rolls (TR), Standing Rolls (SR), Standing Squares (SS)
and Alternating Rolls (AR). A further periodic solution, Standing Cross Rolls
(SCR), exists for some combinations of normal form coefficients - its existence
is not guaranteed by the Equivariant Hopf Theorem since it has a four dimen-
sional fixed point subspace. The stability properties of these periodic orbits
depend on the values of the normal form coefficients a - e and are summarised
in table 1. Table 1 also contains a quasiperiodic solution, the Travelling Bi-
modal (TB) branch. This solution also has a four dimensional fixed point
subspace and so is not guaranteed to appear for all coefficient values [8]. We
expect that further doubly and triply-periodic solutions can exist in regions
of parameter space, as when ¢ = d the quasiperiodic solutions found in [10]
will exist.

The Travelling Roll periodic orbit is an example of a relative equilibrium, it
is a periodic orbit where time evolution around the orbit is equivalent to the
action of a spatial symmetry: for a point ug on the orbit, ¢;(ug) = vug for
some spatial translation ; which depends on t. For the Travelling Roll solution
any time advance is equivalent to a suitable spatial translation: this implies
the existence of a continuous group orbit of TR solutions. None of the other
four periodic solutions is a relative equilibrium.

Just as for the Hopf bifurcation with D, x T? symmetry, there exist open
regions of the parameter space where none of the branches with two dimen-
sional fixed point subspaces are stable. Unlike the D, x T? - symmetric case,
a further possibility for the dynamics is the formation of a structurally stable
heteroclinic cycle connecting four Travelling Roll states. This is not possible
in the Dy x T? - symmetric case as the reflection symmetries ensure that the
stability of a TR orbit to perturbations at 90° clockwise to it is the same as
its stability to perturbations at 90° anticlockwise.



2.3 The steady bifurcation

When A, = Ay = By = By = 0 the phases of C' and D decouple from
equations from their moduli. Applying the equivariant branching lemma we
can guarantee that two branches of solutions bifurcate when ps = 0. These are
of the form C # 0, D = 0, denoted rolls, and C = D # 0, denoted squares.
When the normal form coefficients are non-degenerate (the non-degeneracy
conditions are that a finite number of combinations of the coefficients do not
vanish) the third order truncation fully describes the dynamics and these are
all the solutions that appear. When both bifurcate supercritically, exactly one
of them is stable, and when one or both bifurcate subcritically, neither can be
stable.

2.4 Calculation of the normal form coefficients

We calculate the normal form coefficients in (16) - (21) using modified per-
turbation theory, expanding the Rayleigh number R and square root of the
Taylor number 7 in powers of € in addition to the velocity and temperature
fields:

u=cuy + Uy + ... (22)
O=cl, +e*0y + ... (23)
R=R,+¢cR; +e*Ry + ... (24)
T=Te+em+em+... (25)

The numerical values of R, and 7, give the location of the 1 : v/2 point located
in section 2. We then equate the terms in (1) - (2) in each power of €. This
leads to the following schematic equations:

0(6) . ﬁ(ul,Hl) =0 (26)
0(62) : ﬁ(UQ,HQ) :Nl(ul,ﬁl) (27)
O(e®): L(ug, 03) =Ny(uy, 01, 1y, 65) (28)

where L is the linear operator on the LHS of equations (1) - (2) and N; and
N represent nonlinear terms.

By taking stress-free, fixed temperature boundary conditions (4) the solution
can be expressed completely and simply in terms of exponentials; the lin-
ear operator has exponentials as eigenfunctions. We use the incompressibility
condition (3) as an independent check that the calculation is correct at each
order. It would be possible to use a poloidal-toroidal decomposition, but the



existence of mean flow terms means they would have to be explicitly added
into the scheme. At second order in ¢ in the calculation we apply the solv-
ability condition to find that R; = 77 = 0. At third order the values of the
normal form coefficients are derived and the modes Ay, ..., D evolve on a slow
timescale #' = £2t. We will drop the prime from now on, and denote the slow
timescale simply by ¢.

The bifurcation parameters p; and py are linearly related by the modified
perturbation expansion to Ry and 7o:

[ + i@ 1.493 + 2.451i —0.1184 — 0.3745i \ [ R»/1000 (29)
1o 6.441 —0.5482 T

The form of this transformation agrees with intuition: increasing Ry will in-
crease both bifurcation parameters, and increasing 75 will decrease them. The
subsequent analysis of equations (16) - (21) explains the transition from steady
to oscillatory motion near the 1: /2 point P.

3 1:+/2 resonance in rotating convection
3.1  Bifurcations from the trivial solution

The trivial (conduction) solution is stable in the quadrant (u; < 0, s < 0).
It loses stability in a Hopf bifurcation when pu; = 0, us < 0 and in a steady-
state bifurcation when p; < 0, us = 0. By rescaling the amplitudes A; =
1211\/,171, O = C'\//TQ etc we see that the bifurcation parameters p; and o
only enter the rescaled equations in the combination p;/us: all bifurcations
occur on straight lines through the origin. The bifurcation diagram can be
most easily presented by defining § = tan™'(us/u1) and following a path of
increasing 0, —7/2 < 6 < m. The Hopf bifurcation occurs at § = —7/2 and the
steady-state one at & = m. The full bifurcation diagram is shown in figure 3.

At 6 = —r/2 the trivial solution loses stability to the four oscillatory modes
Ay, Ay, By and By; this is the Hopf bifurcation with Z,x T? symmmetry
analysed in section 2.2: all four periodic solution branches bifurcate super-
critically, and the Travelling Roll branch is stable, as shown in figure 1. The
stability of the TR solution |A;|?> = —u;/a,, Ay = By = By = 0 to perturba-
tions in the C' and D modes is given by the linearisation of (16) - (21) around
the TR solution:



C=C (MQ _ 53111) D=D (MQ _ ﬂ4u1> (30)

r r

where sub or superscripts r and 7 denote the real and imaginary parts of a
coefficient. Using the numerically calculated values of the coefficients, the TR
solution is stable in the region —7/2 < 6 < tan™' 8} /a, = —1.5266 where
it loses stability in a subcritical pitchfork bifurcation which creates solutions
with (for example) A; and C both non-zero. These unstable solutions are
denoted Travelling Rolls plus Diagonal Rolls (TR+DR):

31
103 — arf 103 — ar (3

3.2 Bursting behaviour

Numerical investigations of the normal form above this bifurcation point show
irregular “bursts” of activity (see figure 4): trajectories approach the unsta-
ble TR orbit and follow its unstable manifold out to large amplitudes before
being re-injected to the neighbourhood of a Standing Rolls (SR) orbit in the
invariant subspace & = {(A;, A2,0,0,0,0)}. The SR orbit is, for this region
of 6, stable to perturbations in the C' and D modes, but it is unstable to the
TR orbit within &; so points close to the SR orbit move towards the TR orbit
staying close to the subspace S. Near the TR orbit they follow the unstable
manifold of the TR orbit and perturbations in the C-direction grow rapidly.
In the invariant subspace Sy = {(A1,0,0,0,C,0)} the unstable manifold of
the TR orbit extends to infinity for tan™! 85 /a, = —1.5266 < 6 < /2, i.e.
commencing at the subcritical pitchfork bifurcation. Trajectories close to this
subspace reach very large amplitudes before being attracted back towards the
SR orbit and the subspace S;, causing the cycle to repeat. This is illustrated
schematically in figure 5.

The existence of a structurally stable connection between the TR orbit and
a point at infinity enables the dynamics to exhibit bursts of finite duration,
but unbounded amplitude. Bursts with these properties have been observed
in experiments on (non-rotating) binary fluid convection [11] and a dynamical
explanation for the experimental observations involving a system of two os-
cillatory modes with weakly broken D, symmetry is discussed in [12, section
3]. This nearly D,-symmetric system also contains a structurally stable con-
nection to a point at infinity and the mechanism for the generation of bursts
is formally very similar. The major differences between the two examples are
that the equations (16) - (21) are exactly Z4 x T?-symmetric and involve an
interaction between steady and oscillatory modes. There is also no convenient
coordinate transformation to study the dynamics in the invariant subspace ‘at



infinity’ for (16) - (21) analytically, as there is for [12].

The dynamics within the S subspace can be analysed by restricting equa-
tions (16) - (21) to Sa:

A= Ay[fin +al A, > + ) |CP) (32)
C=Cluz + Bi|C* + B3] A1 ] (33)

To determine the behaviour as |A| and |C| become large, we write A; =
Re cosn and C = Resinn. We also rescale time by a factor of R?. The
new time variable is 7' = R?t. The evolution equations for R, n, 6; and 6, are

dR 1

T E(Ml cos® 1 + pp sin® 1) + Rla, cos n + (A + 85) cos® nsin®n + B sin’ 1)
(34)

dn _ cosnsinn(ps — )

+ cosnsinn[(B1 — A1) sin? n + (65 — ay) cos’n] (35)

dr R?

do ’ .

d—; = % + a; cos® n + A sin® (36)
ar B3 cos™n (37)

From (35) we can see that as R — oo (in a finite time),

ar_ﬁg

Br— A

1/2
n— n* =tan ( ) ~ 0.91829 (38)

and 0, and 0, evolve at constant rates, say ¢; = a; cos’> n* + N} sin?n* and
¢y = [icos’n*, in the limit of large R. The bifurcation parameters fi; and
fo do not play a role in the dynamics at large R so they may be ignored.
The stability of the S, subspace to perturbations in the A; and D modes can
now be investigated by linearising equations (17) and (21) about the large-R
solution for A; and C. Using the scaled time variable T, and neglecting the
(small) linear terms, we obtain:

dA,y

Rgd—T = Ay[b| A 2 + N |C)?] + A3DR2e!1=%2)T cogn* sin (39)
dD  _ - ;
R2d_T = D[B|C|* + Ba] A1]?] + v AgR2e 01797 cog n* sinn* (40)

where the complex conjugate of the D equation has been taken. We can now
perform a change of variables to eliminate the exponentials on the RHS of (39)
- (40). Writing
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Ay = Ayeilor—oT/2 and D = De i(¢1-¢2)T/2 (41)

we drop the carats on A, and D and substitute for |4;? and |C|? to obtain

dA . . . . )
d—; =4 [(b - %ai + %69 cos® 1" + (A] + %Ai) sin? 7" | + A3 D cos * sir(#2)
_dD 3 ‘ i i 2, % i 1Y @32 % % s

= D {(54 + 50 - 553) cos” n* + (fBe + 5)\1) sin? n*| + v Ay cos n* sifid]

The eigenvalues of this (complex) linearisation are in two complex conjugate
pairs. One pair has a negative real part, and one pair has a positive real part
indicating instability to perturbations transverse to S,.

The nonlinear development of the instability can most easily be analysed by
returning to the full equations (16) - (21), performing the time rescaling T' =
R?t and ignoring the linear terms as before. The time rescaling effectively
means the trajectory spends much more time at large amplitudes, enabling
the dynamics at large R to be found by numerical integration. The results
of such an integration are shown in figure 6 and show a stable quasiperiodic
trajectory on which |A;| = |Ay| and R is decreasing. From equation (34) for
dR/dT, for example, we can derive an equation for () = 1/R. The equation
for @ is

aQ _
T~

which shows that the equations governing the dynamics near infinity have an
invariant subspace @ = 0. (The same is true if we define R? = |A; > + |Ay|* +
|C|?> + |D|? and @ = 1/R). This flow-invariance enables us to propose that
there is a structurally stable connection between the intersection of & and
@ = 0 and the quasiperiodic solution in ) = 0. While the intersection of S,
and ) = 0 is stable in S, and unstable in () = 0, the quasiperiodic solution is
stable within () = 0 and unstable to transverse perturbations. This gives rise
to the spiralling behaviour as the trajectory returns from a large amplitude
excursion close to the invariant subspace () = 0. On such a trajectory we find
that as R decreases so do |C| and |D| and the trajectory spirals in towards
the SR solution in &; to repeat the cycle.

The re-injection mechanism (trajectories from infinity being attracted towards
the SR orbit) is due to the collision of a 3-torus with the SR orbit: as 6 increases
further, numerical integrations show that a 3-torus moves away from the SR
orbit, gains stability, and the bursting ceases. This global bifurcation can best
be described as a boundary crisis of the 3-torus, and occurs at approximately
0= —1.41.

11

—Q* (11 cos® n + ppsin® n) — Qla, cos® ) + (A} + fB5) cos® nsin® n + Gy sin® ]

(44)



3.8 Bifurcation structure for larger 6

At larger values of 6 the 3-torus, which lies in the invariant subspace B; =
By = 0, undergoes a reverse Hopf bifurcation into a stable quasiperiodic orbit.
numerical investigations indicate that this bifurcation occurs at # ~ —1.20.
As 0 increases further, this quasiperiodic orbit (seen as a periodic orbit in
modulus/argument co-ordinates) approaches the Diagonal Roll fixed point
at |C|> = —u/B1. At 6 = 1.7126 the quasiperiodic orbit becomes part of
a stable heteroclinic cycle connecting the two Diagonal Roll states (|C|? =

—p2/B1, D =0) and (C = 0,|D|* = —pz/ ).

The stability of this robust cycle can be analytically determined from the lin-
earisation about the DR fixed point (|C|> = —ua/B1, D = 0). The linearisation
has eigenvalues with real parts 1y — oA} /A1 in the Ay and A, directions, and
eigenvalues with real parts pu; — usA\y/5; in the By and By directions. When
p1 — peA]/Br > 0 and gy — peAy /B < 0, the DR solution is unstable with
respect to perturbations in the A; modes, and stable with respect to perturba-
tions in the B; modes. The flow-invariant subspaces S3 = {(0,0, By, By, C, D)}
and Sy = {(A41,A45,0,0,C, D)} are related by the quarter-turn rotation sym-
metry p which exchanges the two DR fixed points. The DR cycle is asymptoti-
cally stable if eigenvalues transverse to the cycle have negative real parts (45a),
and if the ratio of the real parts of the eigenvalues in the stable and unstable
directions is greater than one (45b). This leads to the following conditions

‘Nl - M2)\5/51|
i — 27/ B

This last condition on the ratio of the real parts of the eigenvalues holds for § >
1.7126 = tan™' 2, /(A\] + A}). At this value of §, then, the cycle undergoes a
resonant heteroclinic bifurcation. This global bifurcation is similar to that seen
in the 2 : 1 steady-state mode interaction investigated by Proctor and Jones
[13]. The cycle is stable until § = 2.2727 at which point the DR fixed point
gains stability in a subcritical pitchfork bifurcation with the Travelling Rolls
plus Diagonal Rolls solution which was mentioned earlier. The DR solution is
stable for 2.2727 < 6 < m: § = 7 is the location of the steady-state bifurcation
from the origin. This bifurcation sequence is summarised in figure 3.

fo— 5 <0 > 1 (45)

3.4 Bursting behaviour along (1

The behaviour found in the region of the codimension 2 point P extends
over a wide range of the (o, 7) plane, and explains the general features of the
transition above the point where the lines ¢; and {5 meet in figure 1. Below this
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point the Hopf bifurcation produces stable SR solutions, not TR, and we would
not expect the dynamics to resemble those near P. Numerical integrations of
the governing PDEs (1) - (3) using the code of Cox and Matthews [14] have
indicated a sequence of periodic, bursting and then triply-periodic dynamics
in agreement with the normal form behaviour, over the region between the
two black squares on figure 1 (see figure 7). We expect that the dynamics for
Taylor numbers larger than 7, (i.e. above P in figure 1) are very similar, but
at these high values of 7 the numerical experiments become more difficult and
time-consuming to perform.

4 Discussion and conclusions

We have analysed a properly three-dimensional interaction between steady and
oscillatory modes of convection which involves the most unstable wavenum-
bers selected at the onset of convection. As such we expect the dynamics of
the resulting ODEs to be relevant to understanding the fluid dynamics near
onset. The analysis, although complete in itself, has several limitations. Most
importantly the theory does not allow for the analysis of the stability of the
dynamics near the 1 : /2 point to modes at varying angles. We have also not
discussed long wavelength modulational instabilities that may arise.

The results presented here would have to be modified if the Boussinesq sym-
metry of the normal form was absent: then the normal form for the mode
interaction would contain quadratic terms combining steady and oscillatory
modes. These might greatly alter the dynamics (see [15] for example).

We expect the 1 : /2 normal form to describe the transition from oscillatory to
steady convection over a large part of /; since the ratio of critical wavenumbers
as/a, varies only very little as o increases along /1, see figure 2(b). For ratios
of wavenumbers close to 1 : v/2 we can rigorously derive amplitude equations
on the centre manifold which have the same structure as (16)-(21) because,
for nearby wavenumber ratios, there are only T?-equivariant terms at cubic
order which are equivalent to those used to construct the 1 : v/2 normal form.
This is perhaps unexpected, as the 1 : /2 resonance is the only possible
mode interaction using the ‘fundamental representations’ for both steady and
oscillatory modes: each gives only 4 points on the critical circle of wavevectors.
For nearby wavenumber ratios we will have to consider either 4 oscillatory and
4 steady modes or 8 oscillatory and 2 steady modes to fully describe the mode
interaction. This will be studied in more detail in a future paper.

The subcritical bifurcations in the normal form dynamics coupled with the
lack of reflection symmetries gives rise to bursting and robust heteroclinic
cycling dynamics. The overall bifurcation diagram is very different to the se-
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quence of symmetry-breaking bifurcations seen in the magnetoconvective case
[15]. The mechanism for the appearance of bursting behaviour in the 1 : /2
mode interaction involves both a boundary crisis of a torus, where it collides
with a periodic orbit which has stable and unstable manifolds, and a struc-
turally stable connection from the periodic orbit to infinity contained within
an invariant subspace. Without the invariant subspace such a boundary cri-
sis would lead to bursts with only a finite amplitude. However, the existence
of the heteroclinic connection to infinity within an invariant subspace allows
the bursting in the normal form an unbounded range although the exact am-
plitudes achieved will be sensitive to numerical and experimental noise. The
generation of bursting dynamics by heteroclinic connections to infinity has
been observed in other contexts [12].

Unlike the small-angle instabilities mentioned in the introduction, this 1 : v/2
mode interaction will persist when no-slip boundaries instead of stress-free
ones are used. Due to the shift of £, to larger values of 7, the 1 : v/2 point occurs
at a substantially lower value of o, with 7 changing little. From the results
of [4] we can estimate the position of the resonance as (o,7) ~ (0.17,300).
The dynamics on either side of /; at this point are very different: for lower o,
Standing Rolls are preferred over Travelling Rolls and in the region of steady
convection the initial bifurcation to rolls is subcritical instead of supercritical.
Nevertheless, the normal form equations (16) - (21) are still valid and the
new values of the coefficients can be calculated by a modified perturbation
expansion. The results of [4] also indicate that the ratio of critical wavenumbers
does not very greatly along /; in the case of no-slip boundaries, so the resulting
dynamics should be seen over a similarly wide range of the line dividing regions
of steady and oscillatory motion.

It would be interesting to conduct experiments at the relevant parameter val-
ues to verify the dynamics analysed in this paper. Experiments on convection
in mercury (o ~ 0.025) suffer from the fact that flow visualisation is very
difficult. Experiments with mixtures of pressurised, cooled gases are easier to
perform, and Prandtl numbers as low as 0.16 can be easily obtained [16].
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Table 1

Solution branches in the Hopf bifurcation with Z4 x T2 symmetry, fixed point sub-
spaces and isotropy subgroups. Stability criteria are only given for the first four
solutions which are those guaranteed to exist by the Equivariant Hopf Theorem.
The symmetry elements are specified as p™[(f¢,0,),04]. A solution is stable when
all quantities in the last column are negative. f = a + b — ¢ — d and a subscript r
denotes ‘the real part of’.

Name Fix(X) z Generators Stability
(A17A27BI;BQ) of X
TR (Za 07 0’ 0) Sl X SO(Q) [(¢a ¢)7 ¢]’ [(Oa ¢)7 0] ar, bT — Qyp, Cp — Gy, dT — Ay
SR (z,2,0,0) SO(2) x Zs [(0,¢),0], p? ar + by, ar —br, —fr, le|? — |f]?
SS (z,2,2,2) Zy p ar +b, +c +d. +e., a,—b.—e,

fr —3er, Re(fe)— ‘€|2

AR (z,2,1z,i2z) Zy pl(0,7),m/2] ar + b, +c¢ +dr —eq, a, — b, +e,
fr+3er, —Re(fe) — ‘€|2

SCR (Zl,Zl,ZQ,ZQ) ZQ p2

B (ZlaOaZQaO) st [(¢a ¢)a¢]
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Fig. 1. The line ¢; separates regions of steady and oscillatory convection: steady
convection occurs to the right of /1. The dashed line indicates where the ratio of
critical wavenumbers is exactly 1 : v/2. The point P where these two lines cross
defines the 1 : /2 point. The dotted line fo divides the regions of stability of
Travelling Rolls (TR) and Standing Rolls (SR) near ¢;; different planforms are
stable for lower o [7].
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Fig. 2. (a) The geometry of the square planform for the Z, x T? mode interaction.
Ay, Ay, By and Bs are the oscillatory modes; C' and D are the steady modes. (b) The
variation in the ratio of critical wavenumbers a;/q, along line /1 where Ry = R,.
The dashed line indicates the ratio v/2.
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Fig. 3. Bifurcation diagram as 6 increases (from left to right) anticlockwise around
the origin. Stable solutions are represented by solid lines, unstable solutions by
dashed lines. Global bifurcations are shown as open circles, and local bifurcations

by filled circles. The shaded region represents the interval of bursting behaviour.
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Fig. 4. The time evolution of | 4] (solid line), |As| (dashed), |C| (dash-dash-dotted)

and |D| (dash-dot-dotted) for # = —1.46 showing a trajectory close to the hetero-
clinic cycle exhibiting irregular bursting behaviour.
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Dynamics at infinity

IAd
R S

Fig. 5. Schematic representation of the subspaces S; and Ss, the heteroclinic con-
nection to infinity and the large amplitude quasiperiodic oscillations which make up
one cycle of the bursting behaviour. The thick lines show heteroclinic connections
within §1, S and the invariant subspace at infinity. The dashed trajectory indicates
the unstable manifold of the quasiperiodic solution at infinity; it spirals in towards
the SR fixed point.
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Fig. 6. Quasiperiodic oscillations at large amplitude, a solution trajectory of (16) -
(21) after the time rescaling, and ignoring the linear terms.
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Fig. 7. Bursting seen in numerical integrations of the full PDEs (1) - (3). The solid
line gives the amplitude of modes in the £z direction (corresponding to |A;|+ |As|)
and the dashed line gives the amplitude of the mode in the z = y direction, rep-
resenting |C|. Intervals where the solid line is constant correspond to Travelling
Rolls while the fast oscillations show the approach to the Standing Roll orbit. The
physical parameters are R = 19720, 7 = 300 and ¢ = 0.6. Bursting behaviour has
been located numerically throughout the region between the two black squares on
figure 1.
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