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Abstract

Three-dimensional pattern selection in a low Prandtl number Boussinesq fluid with
stress-free boundaries, where the onset of convection is oscillatory, is explored. Re-
stricting the problem to a square lattice, the normal form coefficients are calculated
as functions of 7 (the square root of the Taylor number) and the Prandtl number
o. There is a large region of the (o,7) plane where a heteroclinic cycle connect-
ing four Travelling Roll states is stable. As ¢ is decreased the cycle undergoes a
transverse loss of stability, creating quasiperiodic orbits which may themselves be-
come chaotic. All these stable dynamics occur at onset. Although conjectured on
the basis of general results from symmetric bifurcation theory (and well-known for
steady convection as the Kiippers—Lortz instability [1]), cycling behaviour has not
previously been demonstrated directly from the hydrodynamic equations in the os-
cillatory case. A second region of the (o, 7) plane contains stable Travelling Roll
solutions: we examine their stability to perturbations at varying angles and demon-
strate the existence of small-angle instabilities of travelling rolls.
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1 Introduction

It is well-known that the onset of convection in a rotating Boussinesq fluid with
a low Prandtl number (0 < 0.677) is oscillatory if the rotation rate is large
enough [3]; this criterion holds regardless of whether rigid or stress-free upper
and lower boundary conditions are used. The nonlinear development of oscil-
latory convection has not been the subject of as much analysis as the steady
case for which the Kiippers-Lortz instability [1,4,5], and competing small-angle
instabilities (for stress-free vertical boundaries) [2] have been identified.
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Some aspects of the oscillatory instability have been previously analysed: in
two dimensions Knobloch & Silber [6] analysed the relative stability of travel-
ling and standing roll solutions for stress-free vertical boundaries. This work
was extended to rigid vertical boundaries by Clune & Knobloch [7]. Riahi
[8] analysed the linear stability of various standing roll planforms in two and
three dimensions to general standing and travelling perturbations at a range
of angles.

Most recently, Julien & Knobloch [12] have performed a three-dimensional
asymptotic analysis in the limit of rapid rotation 7 — oo. In this limit the
use of stress-free or rigid upper and lower boundary conditions becomes indis-
tinguishable and degeneracies appear in the normal form equations describing
the onset of convection. These degeneracies mean they could not determine
the preferred planform of convection at high Taylor numbers. In section 4 we
show how the results presented here for large 7 agree with their analysis, and
resolve the pattern selection problem. Although we use stress-free boundary
conditions for computational convenience, we do not expect that the behaviour
for large 7 will qualitatively change if rigid boundaries are imposed in the ver-
tical direction since the solution of the linear problem is insensitive to the
choice of upper and lower boundary conditions [7,27].

The outline of the paper is as follows. In section 2 we specify the idealised con-
vection problem considered, and derive the normal form equations. The results
of the computations of the normal form coefficients are presented in Section 3.
Section 4 considers the limit of rapid rotation, 7 — 0o, and demonstrates that
the results presented here agree with the analysis of Julien & Knobloch [12].
Section 5 considers the stability of travelling roll solutions to perturbations at
oblique angles. Conclusions are drawn in section 6.

2 Rotating convection

Rotating Boussinesq convection is governed by three dimensionless parame-
ters: the Prandtl number ¢ = v/k (the ratio of the rates at which velocity
and temperature gradients diffuse), the Rayleigh number R which is propor-
tional to the temperature difference across the layer and the square root of
the Taylor number 7 = 2QAh? /v where h is the depth of the layer, Q is the ro-
tation rate and v is the kinematic viscosity. We assume throughout the paper
that the Boussinesq approximation holds [3]; fluid velocities are assumed to
be much smaller than the sound speed, so the fluid can be treated as incom-
pressible. Comparisons of the resulting linear theory (with rigid boundaries)
have been seen to agree well with experimental results, even at large rotation
rates (7 ~ 10°) [3] lending validity to the use of the Boussinesq equations
over a wide region of parameter space. Let u = (u, u,, u,) and 6 be pertur-



bations to the conduction solution ug = 0, Ty = 1 — z (in a co-rotating frame)
for the velocity and temperature fields respectively. The evolution of these
perturbations is governed by the following non-dimensionalised equations:

(0, — oV*)V*u+ 070,w + cRDO=V x V X (w x 1), (1)
(0, — V0 —u,=—u- V0, (2)
V. u=0, (3)

where the double curl of the momentum equation has been taken (to eliminate
the modified pressure containing the centrifugal term), w = V X u and the
vector operator D = (03,,02,, -0z, — 02,). We impose periodic boundaries in
the horizontal directions and stress-free, fixed temperature upper and lower

boundaries:

Oty = Oytuy = u, =60 =0 at 2=0,1. (4)

From a linear stability analysis of the conduction (trivial) solution [3], the
critical Rayleigh number for the onset of oscillatory convection at wavenumber
o, 1s found to be

R - 2021?72 N 2(a2 4+ 7%)3 (0 + 1), (5)

a;(1+0) a;

o

the corresponding frequency of the oscillations at onset is given by

2 2)2 2 *r’(1 - o) _ 1l (6)

(af +72)*(1 + o)

2.1 The normal form

By imposing a square lattice we reduce the symmetry group of the problem
from the non-compact special Euclidean group SE(2) of rotations and trans-
lations of the plane to the compact group Z4 x T2. This ensures the existence
of a finite dimensional centre manifold for the bifurcation problem. The prob-
lem of a Hopf bifurcation on a rotating square lattice has been analysed in
detail by Knobloch & Silber [13] and their results are quoted in the next two
sections. The fluid planform (as described by the vertical velocity for example)
takes the form

Uy (1‘7 Y, z, t) - Re(Alei(a:B—wot) + A26—i(ax—|—w0t)
+Blei(ay*wot) + B267i(ay+w0t))f(z) (7>



where f(z) represents the vertical structure of the solution. The amplitude
equations z = g(z), z = (A, Ay, By, By), must be equivariant with respect to
the group Z4 x T? x S! generated by quarter-turn rotations about the z-axis
and translations in the x and y directions and in time:

P (x,y,t) — (ya —l‘,t)
(Al,A2,Bl,B2) — (31,32,142,141) (8)

[(€m). ]« (z,y,t) = (& + §/ayy + /ot + ¢/wo)
(A1, Ay, By, By) — (A€, Aye ™, B, Bye M)e ¢ (9)

The time translation group S! is a normal form symmetry that occurs nat-
urally for Hopf bifurcation problems. Thus the complete symmetry group of
the problem is ' = Z, x T? x S*. Requiring equivariance with respect to these
symmetries leads to the following system of ODEs (truncated at third order)
for the four complex amplitudes:

Aifi+ alAr? + b|Ag 2 + ¢| B ? + d| By|?] + eAy B, By
Aot + alAg|* + b| A1 |2 + ¢|Ba|* + d| By |?] + €A, B, By
Bilji + a|Bi|? + b|Ba|* + c|As|? + d| A |*] + eBy A1 Ay
Bslji + a|By|* + b| By |* + c|A1|? + d| A3 *] + eBy A Ay

Ay
Ay
By
B

where i = p+io(p) and both p and @ are real. The coefficients a - e are also
complex, in general. Since the normal form contains no quadratic terms, the
bifurcation parameter p can be scaled so that |u|=1; this implies there are no
secondary bifurcations as p increases from zero.

2.2  Primary branches

We recall the definitions of an isotropy subgroup ¥, = {y € I' : yz = z} and
a fixed point subspace Fix(X) = {z € C* : vz =z V v € T}. The Hopf
bifurcation with Z4x T? symmetry generically produces four branches with
two dimensional fixed point subspaces [13], which therefore exist for all values
of the normal form coefficients by the Equivariant Hopf Theorem [14]. These
are denoted Travelling Rolls (TR), Standing Rolls (SR), Standing Squares
(SS) and Alternating Rolls (AR). A further periodic solution, Standing Cross
Rolls (SCR), exists for some combinations of normal form coefficients - its
existence is not guaranteed by the Equivariant Hopf Theorem since it has a
four dimensional fixed point subspace. The stability properties of these pe-
riodic orbits depend on the values of the normal form coefficients a - e and



are summarised in table 1. Table 1 also contains a quasiperiodic solution, the
Travelling Bimodal (TB) branch. This solution also has a four dimensional
fixed point subspace and so is not guaranteed to exist for all coefficient values
[13]. We expect that further doubly and triply-periodic solutions can exist
in open regions of parameter space, as in the Hopf bifurcation with D, x T2
symmetry [15].

2.3 The heteroclinic cycle

As noted by Knobloch & Silber [13], in an open region of the parameter space
a structurally stable heteroclinic cycle exists and is asymptotically stable. In
this section we summarise these existence and stability results. The existence
of the heteroclinic cycle is directly related to the existence of the submaximal
Travelling Bimodal (TB) solution. The invariant subspace Ay = By = 0 (equal
to Fix(Xrp)) contains the two TR solutions TRy = (4,0,0,0) and TRy =
(0,0, B1,0) corresponding to travelling rolls in the positive z-direction and
the positive y-direction respectively and the TB solution (riel“t, 0, ryel“2t, 0),
where r? = u(a, — ¢,)/(c,d, — a?) and r? = pla, — d,)/(c,d, — a?). The TB
solution only exists when a, — ¢, and a, — d, have the same sign; from table 1
we see that the TB solutions appear when the Travelling Rolls lose or gain
stability within this subspace: the TB solution coalesces with a TR fixed point
as either a, — ¢, — 0 or a, —d, — 0. Within Fix(Xrg) one of the TR solutions
is a sink and the other is a saddle. As there are now no other invariant sets in
Fix(Xrp) there must be a saddle-sink connection between the two TR orbits
for an open set of normal form coefficient values. The rotation symmetry p
relating the behaviour near different TR orbits then forces the existence of a
cycle connecting all four TR solutions, and this symmetry makes the stability
properties of the cycle much easier to analyse. Asymptotic stability results
for cycles between equilibria have been proved by Krupa & Melbourne [16].
These results also cover heteroclinic cycles connecting relative equilibria as is
the case here [17,19]. The TR solution is a relative equilibrium because time
evolution around the orbit is equivalent to the action of a spatial symmetry:
for a point zg on the orbit, ¢r(z9) = Yrzo for some spatial translation vyr
which depends on T'. This implies the existence of a continuous group orbit of
TR solutions. None of the other four periodic solutions SR, SS, AR or SCR is
a relative equilibrium.

The eigenvalues and corresponding eigenvectors for the T'R; solution on the
cycle can be labelled in the usual way [16,19] as radial (within Fix(3rg,)),
contracting (in the By direction), expanding (in the B direction) and trans-
verse (in the Ay direction). In fact, the linearisation of (10) - (13) at a point on
the TRy orbit, Dg(zo), is a diagonal matrix with entries which have non-zero
real parts {—2u, u(1 —b,/a,), p(1 —d,/a,), u(1 — ¢, /a,)}; these are the radial,



transverse, expanding and contracting eigenvalues respectively. It is only these
real parts that are important for the stability of the cycle, and fixing p > 0
and a, < 0 so that the TR orbits bifurcate supercritically we consider the
anticlockwise (A; — By — Ay — By — A;) case where

a, — ¢, >0 and a, —d, <0. (14)

The symmetry p relating the four TR orbits implies that the stability of the
cycle can be deduced from the dynamics near one TR orbit only. Necessary
and sufficient conditions for asymptotic stability of this cycle are that the (real
part of the) transverse eigenvalue to the cycle must be negative, and that the
ratio of the absolute value of the real parts of the eigenvalues in the contracting
and expanding directions must be greater than one. These conditions follow
from a more general analysis of the stability of robust cycles [19], and here
imply the following inequalities:

b, —a, <0 and ¢ +d, — 2a, < 0. (15)

The inequalities (14) and (15) may be summarised as

min(a, — ¢, d, — b, d, — 2a,) > d, —a, >0 (16)

which is a necessary and sufficient condition for asymptotic stability of the
cycle. It is stronger than the sufficiency condition given in [13]: this latter
result is derived directly from the sufficiency theorem of Melbourne et al. [20],
and later theoretical work [18] has improved on this result.

3 Stable planforms on a square lattice

3.1 Periodic solutions

We calculate the normal form coefficients in (10) - (13) using modified per-
turbation theory, expanding the Rayleigh number R in powers of ¢ as well as
the velocity and temperature fields:

(w,0) =c(uy,0,) +&*(ug, by) + ... (17)
R=R.+cR +e’Ry + ... (18)

We then equate the terms in (1) - (2) in each power of . This leads to the
following schematic equations:



0<6) . ﬁ(ul,ﬁl) =0 (19)
0(62) : ﬁ(u2,92) :N1<U1,91) (20)
O(®) = L(ug,03) =Na(uy, 61, uy,6,) (21)

where £ is the linear operator on the LHS of equations (1) - (2) and N} and N,
represent nonlinear terms. By taking stress-free, fixed temperature boundary
conditions (4) the solution at each order can be expressed completely and
simply in terms of exponentials. It would be possible to use a poloidal-toroidal
decomposition, but the existence of mean flow terms means they would have
to be explicitly added into the scheme. At O(g?) in the calculation there is a
contribution from the term o R D 6 containing R;; by applying the solvability
condition we find that Ry = 0. At third order the values of the normal form
coefficients are derived. The calculation was performed using the computer
algebra package MAPLE. The algebraic expressions for the coefficients are far
too large to give explicitly. Instead, the normal form coefficients were evaluated
at a 26 x 40 grid of points in the (o,7)-plane: 0.025 < o < 0.65 in steps of
0.025 and for 25 < 7 < 1000 in steps of 25. The stability of the primary
branches discussed in section 2.2 was determined at each point, and stability
boundaries in the (o,7) plane are indicated in figure 1.

The line ¢, separates the regions where steady and oscillatory modes of convec-
tion are preferred at onset: above the line oscillatory convection is preferred.
Line ¢y where a, — b, = 0 was derived by Knobloch & Silber [6] since the
required normal form coefficients can be calculated from the two-dimensional
problem. It separates regions of stable TR and SR. Below /5 SR are stable.
Above ¢; TR are preferred, but may be unstable to perturbations in Fix(Xrp).
To the right of line /3 TR are stable to these perturbations and the quasiperi-
odic Travelling Bimodal solution exists (since a, — ¢, and a, — d, are both
positive) but it is unstable. As f3 (the line given by a, — d, = 0) is crossed
from right to left the TB solution disappears (a, — ¢, is positive for all (o, 7)
and the product (a, —c¢,)(a, —d,) is now negative). This leads to the formation
of the stable robust heteroclinic cycle between all four TR states, as discussed
in section 2.3. As indicated on figure 1, the stability criterion (16) for the cycle
is satisfied to the left of /5, between /3 and /5.

3.2 Dynamics near the region of stable Standing Squares

The invariant subspace Fix(Xgcr) (see table 1) defined by A; = Ay = A and
By = By = B contains the dynamics of a Hopf bifurcation with D, symmetry
[21]. In the context of this problem (and also where it occurs in the Hopf
bifurcation with D, x T? symmetry) it is called the SCR subspace since it
is the fixed point subspace for the (submaximal) isotropy subgroup of the
Standing Cross Rolls solution. It also contains the three periodic solutions



SR, SS and AR. The dynamics within the subspace are given by

(a+b)|AP” + (c+ d)|B|?] + eB*A (22)
(a+b)|B|* + (c +d)|A]*] + eA’B (23)

As noted by Swift [21] there is a co-ordinate transformation which reduces
the dimension of the dynamical equations to 2; the reduced equations were
denoted the associated spherical system by Swift. Let A = r/2ei(v+9)/2 co5/2,
B = r'/261(v=9)/25in §/2, then the evolution equations for  and ¢ decouple
after a time rescaling to remove the dependence on the ‘radial’ co-ordinate r:

0 = sin O[cos O(— f, + e, cos 2¢) — e; sin 2¢)] (24)

p=cosO(f; — e;cos2¢) — e, sin 2¢ (25)

where f = a+b— c—d and the subscripts r and ¢ refer to real and imaginary
parts respectively. We treat (6, ¢) as co-ordinates for latitude and longitude on
the sphere. The periodic solutions in the SCR subspace are mapped to fixed
points in the associated spherical system (24) - (25). Due to the periodicity
of the trigonometric functions, we restrict the variables to 0 < 6 < 7/2 and
0 < ¢ < 7 - half of the upper hemisphere in total. The SR solution is mapped
to the ‘North Pole’ § = 0, the SS solution to (6, ¢) = (7/2,0) and the AR
solution to (0, ¢) = (7 /2,7/2).

For the computed coefficients, it turns out that the AR solutions are never
stable but there is a region of the (o, 7) plane between ¢, and ¢5 where the SS
solutions are stable. There are two ways, generically, that the stability of the SS
solution can change: the first is via a subcritical pitchfork bifurcation creating
fixed points which correspond to the SCR periodic orbits. The second is via a
Hopf bifurcation, creating a periodic orbit in (24) - (25) which corresponds to
a quasiperiodic orbit in the normal form. The Hopf bifurcation from SS occurs
across the line /4 in figure 1, and line /5 marks the pitchfork bifurcation. These
lines meet at a codimension-2 point C = (¢*, 7*) in figure 1. Near this point in
parameter space it is possible to reduce the dynamics (24) - (25) around the
SS fixed point to the normal form for a Takens-Bogdanov bifurcation with Z,
symmetry [30,29,28]. This proves the existence of a curve of global bifurcations
emanating from C and completes the bifurcation diagram near C, see figure 2.
The remainder of this section summarises the reduction of the dynamics to
the Takens-Bogdanov normal form.

The Hopf bifurcation from SS occurs when f, — 3e, = 0 and the pitchfork
bifurcation occurs when Re(fe) — |e[> = 0. Near the point (7/2,0) we write
6 =0+ /2 and ¢ = gg and expand the sines and cosines in power series,
truncating at cubic order. Dropping tildes we find:



é: g(fr - er) - 2€1¢ + 293<67‘ - fr) + 29¢2er + (§¢3 + 92¢)6i + 0(4126>
d=0(e; — f;) — 2e,¢ + é93(fz‘ — ;) — 200%¢; + §¢3€z‘ +O(4), (27)

where O(4) denotes terms of degree 4 or higher in # and ¢. Now we rescale
(0,6) — (be;, pe,) and eliminate the constants f, and f; by moving to the
codimension 2 point in parameter space: set f, = 3e, and f; = (|e|* — 3e?) /e;.
We use successive transformations to put the equations in normal form. First
we eliminate all but one of the linear terms by the linear change of variables
(u,v) = (0+ ¢, 0 — ¢). The resulting equations for @ and © have a linearisation
with two zero eigenvalues, and a symmetry (u,v) — (—u,—v). By a near-
identity transformation (u,v) — (z,y) we are able to remove all but two of
the cubic terms in the (u,¥) equations and are left with the following normal
form for the Takens-Bogdanov bifurcation:

T=1y, (28)
y=ky — \x + Pi2® + Pya’y, (29)

where k and A are unfolding parameters, and P, = e,/e|?/4 and P, = (7e? —
4e? — 4ed — 8eZe,)/16. At the point C = (¢*,7*) the numerical value of the
coefficient e implies P, > 0 and P, < 0. This case of the Takens-Bogdanov
bifurcation has been previously studied in connection with thermosolutal con-
vection [22,28]. The normal form (28)-(29) correctly describes the behaviour
in the SCR subspace close to the codimension-2 point C. In particular there
is a subcritical pitchfork bifurcation when A = 0 and a supercritical Hopf bi-
furcation when x = 0 and A > 0. There is also a line of global bifurcations
at k ~ —AP,/5 where the periodic orbit collides with the SCR fixed points,
corresponding to the dashed line starting from C in figure 1. Along a line of
constant 7 > 7%, see figure 2, exactly this behaviour is seen. This reduction to
a normal form also proves the uniqueness of the quasiperiodic orbit for (22)-
(23) near the codimension 2 point in parameter space where f, = 3e, and
fi = (le|*> — 3€?) /e;. In passing we remark that uniqueness of the quasiperiodic
orbit has also been proved in a neighbourhood of another point in the param-
eter space for (22) - (23) by van Gils & Silber [32]. The ‘bubble’ of stable SS
solutions closes as the lines ¢4, and /5 cross over again at larger 7. The analysis
of this second Takens-Bogdanov bifurcation is very similar to the first and so
will not be discussed further.

3.3 Transverse bifurcation from the heteroclinic cycle

For 0.05 < ¢ < 0.2, numerical simulations indicate the presence of other
quasiperiodic solutions, outside the SCR subspace, see figure 3. These lie close



to the robust cycle discussed in section 2.3, but they are clearly distinct from it
and stable. For some parameter values, at lower o, triply-periodic and chaotic
solutions appear, see figure 4. In these figures note that the value of p af-
fects the solutions only by scaling mode amplitudes by a constant factor. The
creation of these quasiperiodic and chaotic solutions can be explained by the
loss of stability of the heteroclinic cycle as o decreases across /5. There are
two ways in which robust heteroclinic cycles generically lose stability: either
through resonant bifurcations where the ratio of the (real parts of the) con-
tracting and expanding eigenvalues passes through 1, or through transverse
bifurcations corresponding to eigenvalues in directions normal to the cycle
crossing the imaginary axis. Here we find that the cycle undergoes a trans-
verse bifurcation at /5. In this section we examine the dynamics near ¢y in
detail.

The analysis of [18] can be applied to this cycle because (as discussed in
section 2.3) although the cycle is between periodic orbits, not equilibria, the
TR solutions are relative equilibria. The fact that we do not explicitly need
all the phases of the four amplitudes is brought out by a transformation of the
normal form equations (10) - (13) to modulus and argument form. By writing
Ay =1, Ay = ryel® By = r3ei%, By = r4e?* we derive equations for the

moduli r;. We define ¢ = 04 + 05 — 0, — 0;:

30
31

=17 [Iu + arrf + bﬂ“g + crrg + dﬂ"i] + €4 TaT3Ty
Ty=Ty [,u + CLM"Z + brrg + crrf + dﬂ"; +e_rirers

17& = \Il(rla T2, 73,74, w)

2

. 2 2 2
To="o|lt + ayry + byr] + ¢pry + dyrs| + eprirsry
1

2

3 =73 |+ a,r3 + bri +c,rs + d,r

33

(30)
| (31)
] + e _7rirary (32)
| (33)

(34)
where e1 = e, costY F e;sine. In this reduction we can fix ¢y = 0 whenever
one of the r; is zero since it is then undefined. As the heteroclinic cycle is
contained entirely within subspaces where two of the r; are zero, we can take
Y = 0 around the complete cycle.

Consider the TRy = (A1,0,0,0) orbit. The heteroclinic connections into and
out of TRy are contained in the two subspaces TR;, = {(A41,0,0, By)} and
TRy = {(A1,0,B1,0)} = Fix(Xrp) (see table 1). The bifurcation is said to be
transverse because the eigenvector corresponding to the eigenvalue 1—b, /a, =
0 in (30)-(34) is in the Ay-direction which is not contained in the subspace
Q =TRi + TRy = {(A1,0, By, By)}. Chossat et al. [18] classify heteroclinic
cycles into three types, referred to as A, B and C, depending on whether @)
is a fixed-point subspace for some symmetry element v € I'. A cycle is of
type A if @) is not a fixed-point subspace for any +; it is of type B if @) is a
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fixed-point subspace for some v and the entire cycle X C Q. It is of type C if
Q is a fixed-point subspace for some v but X does not lie completely within
Q. Cycles of all three types occur naturally in systems with symmetry, and
transverse bifurcations from each type are studied in [18]. The different cycle
types give rise to different transverse bifurcation phenomena so the group
theoretic distinction between them is crucial.

As a subspace which is not flow-invariant cannot be a fixed-point subspace
for an element v € T', the subspace @) cannot be a fixed-point subspace (due
to the form of the last term on the RHS of equations (30) - (33)) and so the
cycle X under consideration is of type A. Chossat et al. prove [18, theorem
4.1] that when an equilibrium on a type A cycle undergoes a non-degenerate
(supercritical) pitchfork bifurcation, and hence the transverse eigenvalue be-
comes positive, the cycle itself undergoes either a subcritical or a supercritical
global bifurcation. This bifurcation creates a unique nearby stable or unstable
periodic orbit close to the cycle. The bifurcation is termed ‘flat” because the
distance between the cycle and the periodic orbit varies as |A|'/* to leading
order where A is a constant which depends only on the global part of the
flow between the equilibria, and A is the bifurcation parameter. If |A| < 1 the
periodic orbit is created supercritically and it is stable; if |A| > 1 the periodic
orbit is created subcritically and it is unstable. What is remarkable is that
the direction of branching of the pitchfork bifurcation of the equilibria on the
cycle is independent of the direction of branching of the ‘flat’ bifurcation of the
cycle. Indeed, one is a purely local phenomenon and the other is determined
only by the dynamics on the sections of the cycle not close to the equilibria.

The cycle between TR relative equilibria does not, as it stands, satisfy the
conditions of [18, theorem 4.1] because the local bifurcation which transfers
stability between TR and SR when a, — b, = 0 is degenerate for the cubic
truncation we have so far considered, see [23] and [14, chapter XVII]. The
‘pitchfork’ bifurcation at a, — b, = 0 does not create any new small amplitude
solutions near the TR orbits. Possible behaviours near this degeneracy have
been classified completely by [34,35]; the degeneracy is unfolded by the addi-
tion of small perturbations in the form of fifth and seventh order terms to (30)
- (34). When these higher-order terms are introduced into the normal form,
stability is transferred between TR and SR via a branch of Modulated Trav-
elling Rolls (MTR) which may itself be stable or unstable, see figure 5(a) and
(b). The stability of the MTR branch does not affect the global bifurcation
creating the periodic orbit in (30) - (34) as the stability of the periodic orbit
depends on the global quantity A which is not affected at leading order by
these fifth and seventh order terms. To calculate A we integrate the variational
equation around the cycle and compute the eigenvalues of the resulting ma-
trix. Since the four equilibria are related by symmetry it is enough to integrate
the equations for ry...rs around one quarter of the cycle: for example within
Fix(YZrp). Let the variational equation for (30) - (33) be ® = DF(z(t))®. The
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integration along the heteroclinic cycle is for a time interval [0, T'| defined by
the initial conditions ®(z(0)) = I and r3(0) = 4, r¥(0) = —u/a,, |6 < 1
and the final condition 7, (¢) = §. The matrix DF is block-diagonal and the
evolution of the (ry,r4)-variables is independent of that of the (ry,rs) vari-
ables. Since we are interested in the transverse (r3) direction, it is enough to
integrate the 2 x 2 sub-system in the r, and r4 variables:

) DFy DF. + b,r2 4+ d,r? eprr
M= 22 24 M= K 1 3 173 M, (35)
DF42 DF44 €rri7s3 1% + br’l“g) + C,«’I“%

with initial condition M (z(0)) = I. Illustrative coefficient values are a, =
—0.44348, b, = —0.43842, ¢, = —6.5616, d, = 3.566, e, = —0.12137 for
(o,7) = (0.075,700) (very close to the line f5). Numerical integrations show
that the matrix M has a positive eigenvalue greater than 1 in the ro (trans-
verse) direction and a positive eigenvalue less than 1 in the r4 direction. The
exact values of these eigenvalues depend on the choice of § but there is an
O(1) contribution from the global portion of the trajectory which dominates
O(0) contributions from near the TR equilibria. Thus an unstable periodic
orbit bifurcates subcritically from the cycle at line /5 in figure 1. This periodic
orbit for equations (30) - (34) appears as a quasiperiodic orbit for the normal
form (10) - (13). For fixed a, < 0, the bifurcation would become supercritical
if d, decreased far enough towards zero. However, numerical calculations show
that in the (o, 7) plane the coefficients do not vary enough for this to occur,
and the transverse bifurcation is always subcritical; |A| > 1 over the whole of
the line /5 to the left of /5.

We conjecture that the existence of stable quasiperiodic solutions close to
the transverse loss of stability of the cycle is due to the branch of subcriti-
cal quasiperiodic solutions turning around in a saddle-node bifurcation and
giving rise to stable quasiperiodic orbits as indicated in figure 5(c). The very
slow separation of the unstable orbit and the cycle means that the stable
(quasiperiodic) orbit will remain closer to the cycle it coexists with than we
might expect. As we continue to decrease o at fixed 7 the quasiperiodic or-
bit undergoes a bifurcation to a three-torus and then breaks up and becomes
chaotic (see figure 4) for the values of 7 indicated on figure 1.

4 Asymptotic behaviour as 7 — o©

Following the ideas of Bassom & Zhang [11], Julien & Knobloch [12] performed
a weakly nonlinear analysis in the limit 7 — oo by scaling (1) - (3) and ap-
plying modified perturbation theory to the resulting leading order equations.
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From the point of view of planform selection this limit is very degenerate: at
leading order the scaled equations have an unexpected reflection symmetry
which introduces another primary solution branch, and forces a = b, ¢ = d
and e = 2a — 2¢ in the amplitude equations (10) - (13). This highly degen-
erate situation means that Julien & Knobloch were unable to give complete
results for planform selection. To determine pattern selection at high 7 either
the asymptotic analysis of [12] must be carried out to include higher order
terms or the normal form coefficients must be calculated directly. The results
of direct calculations show that TR are the preferred mode of convection on a
square lattice at high 7 for all o, agreeing with the partial conclusions of [12].
The modified perturbation theory discussed in section 3.1 produces coefficients
which differ by a common scaling (in effect, a different choice of normalisa-
tion) from those given in the rapidly rotating limit by Julien & Knobloch.
Ratios of coefficients are unaffected by this scaling, and so should agree for
the two calculations. The convergence of the ratio a,/c, in the limit 7 — oo
is demonstrated in figure 6 and agrees very well with the results of [12].

Clune & Knobloch [7] estimated that the behaviour for 7 > 10° should agree
well with asymptotic results. We find that this holds for moderate o, but
for 0 < 0.1 the true asymptotic regime is not reached until 7 is substantially
higher, say 7 ~ 10!, Hence calculations at finite, but large, 7 may not correctly
model the asymptotic regime for small ¢. This indicates the possible relevance
of distinguished limits of small ¢ and rapid rotation: fix o7/ = s where s is
O(1) and n > 1, but let 7 — oo so that ¢ — 0 at the same time. The case
n = 1 has been considered by Zhang & Roberts [9], and Bassom & Zhang
[10] and produces convective modes they term ‘thermal-inertial” waves. As we
consider limits with larger and larger n we might expect the dynamics in the
distinguished limit to approach those in the simpler limit 7 — oo, 0 ~ 1
analysed by [12]. Further work on this problem is in progress [27].

5 Stability to perturbations off the lattice

By restricting the problem to a square lattice in earlier sections we can only in-
vestigate the stability of TR to perturbations at multiples of 90°. In a spatially
extended layer of fluid there may well be instabilities of TR to perturbations
at other angles. This is well-known for steady rolls, demonstrated first by
Kiippers & Lortz [1] who showed, in the limit of infinite Prandtl number,
that the maximum growth rate of an instability of steady rolls was obtained
to rolls aligned at ~ 58° to the original rolls and the instability occurred as
long as 72 > 2285. Calculations at finite o have been reported by Clune &
Knobloch in [7]. More recently, Cox & Matthews [2] have completed the study
of small-angle instabilities of steady rolls when stress-free vertical boundaries
are used.
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For a fixed angle © we examine the stability of TR to perturbations oriented
at a finite angle by imposing a rhombic lattice generated by vectors ky = (1,0)
and ko = (— cos ©,sin 0), see figure 7(a), instead of a square one. The fluid
planform is now

Uz(l', Y, 2, t) — Re(Alei(akl-xfwgt)) + AZefi(ozkl-xﬁugt)
+Blei(ak2-x—w0t) 4 B2e—i(ak2-x+w0t))f<z) (36)

The symmetry group of this planform is Zy x T2 x S! - the only rotational
symmetry is a half-turn p?. However, the amplitude equations are required to
be equivariant with respect to additional ‘hidden’ symmetries inherited from
the SE(2) equivariance of the original problem [31]; they now take the form

A+ al Ay + b|Ag? + ¢| By > + d| By|?] + €Ay By By (37)
Ao[fi + al Ay |* + b| A1 + ¢|By|* + d| By ] + €A, B, B, (38)
Bilji + a|By|* + 0| By|* + &|Ay > + d| A *] + éByA, A,y (39)
Bylji + a|By|* + 0| By |* + ¢|A, [ + d|Ay*] + éB, A, A,y (40)

~
A~
~

Ay
A
By
B

where the complex coefficients a, b, ¢, d, e, ¢, ci, ¢ depend on the lattice angle ©.
The stability of a (for example) (0,0, By, 0) solution to perturbations in the
A1 mode changes when a, — d, = 0 exactly as in the square lattice case: there
is a Travelling Bimodal solution in the Ay = B; = 0 subspace which exists as
long as a, — d, and a, — ¢, have the same sign. To compute the stability of
TR to perturbations at an angle © we evaluate the coefficient d, as © varies.
These stability calculations show that the region of stable TR shrinks as ©
decreases: figure 8 shows the lines a, —d,.(©) = 0 for © = 40°,50°,60°, 70° and
80°. TR are stable to these perturbations to the right of these lines. Note that
{5 corresponds to © = 90°. As © — 0 the growth rates of the instability appear
to grow unboundedly, see figure 7(b). This is due to the resonant interaction of
the two modes el(®k1x-wob) and e-ilekaxtwol) 54 ip steady rotating convection
[2]. At O(£?) in the modified perturbation calculation we find contributions
to the u, solution which, in the limit as © — 0 at fixed ¢ asymptote as

2
Uy ~ %AngQia[(l—cos ©)z—ysin O] (41)

indicating a breakdown in the scalings adopted in the analysis in the limit
of small ©. Terms such as this one cause the coefficient d,(©) to blow up at
small angles. If d,.(©) > 1 for small angles then small-angle perturbations
will grow; if d,(©) becomes large but negative then the TR are increasingly
stable to perturbations in the small-angle limit and this blow up does not gen-
erate an instability. A similar analysis to that performed by Cox & Matthews
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[2] should be possible to analyse this small-angle instability which may dom-
inate the observed behaviour in spatially-extended systems with stress-free
boundaries. It is likely that employing rigid boundaries would damp the re-
sulting mean flows and so remove these instabilities. Comparing the variation
of the coefficient d,(©) in figure 7(b) to [7, figure 12] (which is calculated for
o = 100) we see that the ‘boundary-layer’ behaviour of the coefficient is ap-
parent for © < 10° in both cases, but in the steady case the original rolls are
stable to perturbations at angles just outside the ‘boundary-layer’, whereas
here perturbations with © ~ 10° to the original travelling rolls will grow with
an order 1 growth rate, and the smaller the angle, the larger the growth rates
of perturbations become. Because of this, even if rigid boundaries resolved
the blow up of the growth rates for small © by making the growth rates tend
to a finite (positive) value in the limit © — 0, we would still expect TR to
be unstable to perturbations at a range of small angles. Since the relevant
calculations with rigid boundaries have not yet been carried out this remains
conjectural. Calculations of the stability of TR in limits of rapid rotation and
small o, where rigid and stress-free boundaries are indistinguishable, also show
a small-angle instability [27]. This is in sharp contrast to the behaviour noted
above for steady rolls, where the use of rigid boundaries stabilises rolls to all
perturbations below a critical (order 1) angle.

6 Discussion and conclusions

We have analysed weakly nonlinear three-dimensional rotating convection with
a square planform for all values of the Prandtl and Taylor numbers. This analy-
sis shows the existence of a structurally stable heteroclinic cycle, quasiperiodic,
and chaotic behaviour in the resulting amplitude equations. This analysis, al-
though complete in itself, has several limitations. Most importantly, although
we have done as much as is possible, the theory does not yet allow for a full
discussion of the stability of our solutions to modes at varying angles. We
have also not discussed modulational instabilities, either to finite wavelength
perturbations, as discussed for steady hexagonal patterns by Echebarria &
Riecke [33], or those on asymptotically long lengthscales.

We have seen that although TR are the preferred planform for a large region
of the (o, 7) plane for modes restricted to a square lattice, they are unstable
to perturbations at smaller angles in the anticlockwise (co-rotating) direction.
Likewise, the quasiperiodic solutions in the normal form may also not be
stable to these perturbations. This analysis has, however, indicated the strong
possibility of heteroclinic cycles, quasiperiodic and chaotic behaviour at onset
even in small aspect ratio systems. All our calculations have been carried out
with stress-free vertical boundaries for computational convenience. We hope
that qualitative features of the dynamics will persist for rigid boundaries,
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probably shifted to higher Taylor numbers as has been shown to happen for
the line ¢y [7]. We remark that the results of sections 3, 4 and 5 do not depend
critically on the Boussinesq symmetry of the PDEs since even in its absence
the normal forms for the Hopf bifurcations will not contain quadratic terms.

In the limit of rapid rotation our results agree quantitatively with those of
Julien & Knobloch [12]. The line /3 seems, for large 7, to asymptote towards
a curve of the form o*r = const. The significance of this relationship between
o and 7 is examined in detail in [27].

We have not investigated further the stability of the SR: Riahi [8] has previ-
ously calculated that SR are unstable to perturbations at angles less than 90°.
In a spatially extended system we may expect complex dynamics in the region
where SR are stable in figure 1 for the Z4 X T?-symmetric normal form: either
cycling behaviour between sets of SR at different orientations as discussed by
Knobloch & Silber [31] or chaotic behaviour associated with the Shil'nikov
dynamics investigated by Swift & Barany [24] for SR on a rotating hexagonal
lattice.

The nonlinear development of the small-angle instability identified in section 5
and the extent to which these instabilities persist for oscillatory convection
with rigid boundaries are subjects which it would be of interest to pursue
further. It should be possible to perform a detailed analysis of the small-angle
instability in a similar way to that already done in the steady case [2], but if
the instability does not persist when rigid boundaries are used it is probably
of limited physical significance.

Experiments using liquid metals such as mercury and gallium, and mixtures
of cooled and pressurised gases [25] have resulted in a large number of quan-
titative measurements of pattern-formation phenomena in convection at low
Prandtl numbers, and it would be of great interest to compare the results of
experiments conducted in the oscillatory regime with the dynamics explored
in this paper.

Acknowledgements

I have benefited from discussions with Michael Proctor and Alastair Rucklidge.
The presentation of this work has been greatly improved by many perceptive

and helpful comments from two anonymous referees. This work was funded
by the UK EPSRC.

16



References

[1] G. Kippers and D. Lortz, Transition from laminar convection to thermal
turbulence in a rotating fluid layer. J. Fluid Mech. 35 609620 (1969)

[2] S.M. Cox and P.C. Matthews, Instabilities of rotating convection. J. Fluid Mech.
403 153-172 (2000)

[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Oxford
University Press (1961), republished by Dover Publications, Inc. (1981)

[4] R.M. Clever and F.H. Busse, Nonlinear properties of convection rolls in a
horizontal layer rotating about a vertical axis. J. Fluid Mech. 94 609-627 (1979)

[5] F.H. Busse and K.E. Heikes, Convection in a rotating layer. Science 208 173
175 (1980)

[6] E. Knobloch and M. Silber, Travelling wave convection in a rotating layer.
Geophys. Astrophys. Fluid Dynamics. 51 195-209 (1990)

[7] T. Clune and E. Knobloch, Pattern selection in rotating convection with
experimental boundary conditions. Phys. Rev. E 47 2536-2550 (1993)

[8] D.N. Riahi, Weakly nonlinear oscillatory convection in a rotating fluid. Proc.
R. Soc. Lond. A 436 33-54 (1992)

9] K. Zhang and P.H. Roberts, Thermal inertial waves in a rotating fluid layer:
exact and symptotic solutions. Phys. Fluids 9 1980-1987 (1997)

[10] A.P. Bassom and K. Zhang, Finite amplitude thermal inertial waves in a
rotating fluid layer. Geophys. Astrophys. Fluid Dynamics 87 193-214 (1998)

[11] A.P. Bassom and K. Zhang, Strongly nonlinear convection cells in a rapidly
rotating fluid layer. Geophys. Astrophys. Fluid Dynamics 76 223-238 (1994)

[12] K. Julien and E. Knobloch, Fully nonlinear three-dimensional convection in a
rapidly rotating layer. Phys. Fluids 11 1469-1483 (1999)

[13] E. Knobloch and M. Silber, Hopf Bifurcation with Z4 x T? Symmetry. Int.
Series of Numer. Math. 104 241-252 (1992)

[14] M. Golubitsky, IN. Stewart and D.G. Schaeffer, Singularities and Groups in
Bifurcation Theory. Volume II. Springer, Applied Mathematical Sciences Series
69 (1988).

[15] J.H.P. Dawes, Stable quasiperiodic solutions in the Hopf bifurcation with Dy x
T? symmetry. Physics Letters A 262 158-165 (1999)

[16] M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles in
systems with symmetry. Ergod. Th. & Dynam. Sys. 15 121-147 (1995)

[17] M. Krupa, Bifurcations of relative equilibria. STAM J. Appl. Math. 21 1453—
1486 (1990)

17



[18] P. Chossat, M. Krupa, I. Melbourne and A. Scheel, Transverse bifurcations of
homoclinic cycles. Physica D 100 85-100 (1997)

[19] M. Krupa. Robust heteroclinic cycles. J. Nonlinear Science 7 129-176 (1997)

[20] I. Melbourne, P. Chossat and M. Golubitsky, Heteroclinic cycles involving
periodic solutions in mode interactions with O(2) symmetry. Proc. R. Soc.
Edinburgh 113A 315-345 (1989)

[21] J. Swift, Hopf bifurcation with the symmetry of a square. Nonlinearity 1, 333—
377 (1988)

[22] E. Knobloch and M.R.E. Proctor, Nonlinear periodic convection in double-
diffusive systems. J. Fluid Mech. 108 291-316 (1981)

[23] E. Knobloch, On the degenerate Hopf bifurcation with O(2) symmetry,
in Multiparameter Bifurcation Theory (Contemporary Math. 56) eds M.
Golubitsky and J. Guckenheimer (AMS, Providence, RI) 193-201 (1986)

[24] J.W. Swift and E. Barany, Chaos in the Hopf bifurcation with tetrahedral
symmetry: convection in a rotating fluid with low Prandtl number. Eur. J.
Mech. B/Fluids 10 suppl. 99-104 (1991)

[25] G. Ahlers and K.M.S. Bajaj, Rayleigh-Bénard Convection with Rotation
at Small Prandtl Numbers, Proceedings of the IMA Workshop on ‘Pattern
Formation in Continuous and Coupled Systems’ eds M. Golubitsky, D. Luss,
and S. Strogatz. Springer, (1999)

[26] J.H.P. Dawes, The transition between steady and oscillatory motion in three-
dimensional rotating convection. submitted to Physica D.

[27] J.H.P. Dawes, Rapidly rotating thermal convection at low Prandtl number.
submutted to J. Fluid Mech.

[28] J. Guckenheimer and P.J. Holmes, Nonlinear oscillations, dynamical systems
and bifurcations of vector fields. Applied Mathematical Sciences Series, volume
42. Springer, New York, (1983)

[29] P.J. Holmes and D.A. Rand, Phase portraits and bifurcations of the nonlinear
oscillator & + (a + vx2)3 + Bx + dx3 = 0. Int. J. Nonlinear Mech. 15 449-458
(1980)

[30] F. Takens, Forced oscillations and bifurcations. Comm. Math. Inst.,
Rigkuniversiteit Utrecht 3 1-59 (1974)

[31] E. Knobloch and M. Silber, Oscillatory convection in a rotating layer. Physica
D 63 213-232 (1993)

[32] S.A. van Gils and M. Silber, On the uniqueness of invariant tori in Dy x S!
symmetric systems. Nonlinearity 8 615-628 (1995)

[33] B. Echebarria and H. Riecke, Instabilities of hexagonal patterns with broken
chiral symmetry. Physica D 139 97-108 (2000)

18



[34] M. Golubitsky and M. Roberts, A classification of degenerate Hopf bifurcations
with O(2) symmetry. J. Diff. Eqns. 69 216-264 (1987)

[35] J.D. Crawford and E. Knobloch, Classification and unfolding of degenerate Hopf
bifurcations with O(2) symmetry: no distinguished parameter. Physica D 31,
1-48 (1988)

19



Table 1

Solution branches in the Hopf bifurcation with Z4 x T2 symmetry, fixed point sub-
spaces and isotropy subgroups, reproduced from [13]. Stability criteria are only given
for the first four solutions which are those guaranteed to exist by the Equivariant
Hopf Theorem. Generically the SCR solution is unstable when it exists. The group
elements are specified in the form p"[(£,7n), ¢]. A solution is stable when all quan-
tities in the last column are negative. f = a + b — ¢ — d and a subscript r denotes
‘the real part of’.

Name Fix(X) z Generators Stability
(AlaAQaBlaBQ) of ¥
TR (2,0,0,0) S'x S0(2) [(6,9),¢l, [(0,4),0] ar, by —ay,

Cr — Qp, dp — ay

SR (Za Z,O,U) 50(2) X g [(0, ¢)70]7 :02 ar + by, a, — by,
_fra |€‘2 - |f|2
SS (z,2,2,2) Zy p ar + b, + ¢ +d, + e,
ar — b, — e, fr—3ep,
Re(fe) — |e|?
AR (z,2,iz,12) Zy4 pl(0,7),m/2] ar + b, + ¢ +d, — e,
ar — by + ey, fr + 3er,
—Re(fe) — |e]?
SCR (21,21,22,22) ZQ p2
B (21,0,22,0) Sl [(¢7 ¢)a¢]
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Fig. 1. Regions of the (o,7) plane where periodic solutions are stable. Other
quasiperiodic and chaotic solutions are denoted by symbols: < - quasiperiodic so-
lution near the heteroclinic cycle (see figure 3), A - triply-periodic solution, * -
chaotic solution (see figure 4), O - quasiperiodic solution within the SCR subspace.
The dashed line ending at C gives the approximate location of the global bifurcation
where the O solutions disappear.

L2

Fig. 2. Bifurcation behaviour in the normal form as o increases (from left to right) on
a line of constant 7 = 525 > 7*. 0,51 = 0.1064, 0}, = 0.2267 (a point on the dashed
line starting from C in figure 1), oy = 0.2372 (on {5 in figure 1), 0,70 = 0.2447 (on
¢4 in figure 1). Solid (dashed) lines represent stable (unstable) solutions respectively.
The quasiperiodic solutions existing for o, < ¢ < op are denoted O on figure 1.
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Fig. 3. An example of a quasiperiodic solution at (o, 7) = (0.15, 350). Coefficients:
= 5.0, a =-0.9264 + 0.7111i, b = —0.8834 — 0.0808i, ¢ = —8.3930 — 2.58809i,
d =1.9512 — 1.4475i, e = —0.32681 — 3.0215i.
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Fig. 4. An example of a chaotic solution at (o,7) = (0.15,275). Coefficients:
p = 5.0, a = —1.0479 4+ 1.2076i, b = —0.7108 + 0.0309i, ¢ = —7.6543 — 3.86861,
d=1.3770 — 1.8864i, e = —1.0565 — 3.2504i.
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Fig. 5. Possible local and global bifurcation behaviour near ¢y in figure 1. (a) and
(b) show the two possible unfoldings of the degenerate situation a, — b, = 0; in (a)
the Modulated Travelling Rolls (MTR) are unstable, and in (b) they are stable. (c)
The global bifurcation when |A| > 1: an unstable periodic orbit bifurcates subcrit-
ically. (d) The global bifurcation when |A| < 1: a stable periodic orbit bifurcates
supercritically.
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Fig. 6. Convergence of the ratio of normal form coefficients a, /¢, as 7 — oo. From
lowest upwards the lines are at constant values of 7: 10%, 10°, ..., 10'°. The solid
straight line is the asymptotic behaviour obtained by Julien & Knobloch [12]. Note
the very slow rate of convergence at low o.
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Fig. 7. (a) The marginal wavevectors ki and kg (solid lines) superimposed on the
rhombic lattice (dotted lines). (b) The coefficient d, as a function of the angle
of the rhombic lattice ©, measured in degrees, at (o,7) = (0.5,500). For these
parameter values the normal form coefficients calculated for a square lattice are
a=—4.420—-5.163i, b = —8.387—6.5751, ¢ = —46.07—1.391i, d = —23.428 — 2.364i,
e = 27.639 — 7.334i.
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Fig. 8. The marginal stability of TR to inclined perturbations: to the right of the
dotted lines, TR solutions are stable to perturbations at 80° - *; 70° - x; 60° - +;
50° - A; 40° - O. Points are exact, dotted lines are guides to the eye.
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