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Some aspects of the oscillatory instability have been previously analysed: intwo dimensions Knobloch & Silber [6] analysed the relative stability of travel-ling and standing roll solutions for stress-free vertical boundaries. This workwas extended to rigid vertical boundaries by Clune & Knobloch [7]. Riahi[8] analysed the linear stability of various standing roll planforms in two andthree dimensions to general standing and travelling perturbations at a rangeof angles.Most recently, Julien & Knobloch [12] have performed a three-dimensionalasymptotic analysis in the limit of rapid rotation � ! 1. In this limit theuse of stress-free or rigid upper and lower boundary conditions becomes indis-tinguishable and degeneracies appear in the normal form equations describingthe onset of convection. These degeneracies mean they could not determinethe preferred planform of convection at high Taylor numbers. In section 4 weshow how the results presented here for large � agree with their analysis, andresolve the pattern selection problem. Although we use stress-free boundaryconditions for computational convenience, we do not expect that the behaviourfor large � will qualitatively change if rigid boundaries are imposed in the ver-tical direction since the solution of the linear problem is insensitive to thechoice of upper and lower boundary conditions [7,27].The outline of the paper is as follows. In section 2 we specify the idealised con-vection problem considered, and derive the normal form equations. The resultsof the computations of the normal form coe�cients are presented in Section 3.Section 4 considers the limit of rapid rotation, � !1, and demonstrates thatthe results presented here agree with the analysis of Julien & Knobloch [12].Section 5 considers the stability of travelling roll solutions to perturbations atoblique angles. Conclusions are drawn in section 6.2 Rotating convectionRotating Boussinesq convection is governed by three dimensionless parame-ters: the Prandtl number � = �=� (the ratio of the rates at which velocityand temperature gradients di�use), the Rayleigh number R which is propor-tional to the temperature di�erence across the layer and the square root ofthe Taylor number � = 2
h2=� where h is the depth of the layer, 
 is the ro-tation rate and � is the kinematic viscosity. We assume throughout the paperthat the Boussinesq approximation holds [3]; uid velocities are assumed tobe much smaller than the sound speed, so the uid can be treated as incom-pressible. Comparisons of the resulting linear theory (with rigid boundaries)have been seen to agree well with experimental results, even at large rotationrates (� � 105) [3] lending validity to the use of the Boussinesq equationsover a wide region of parameter space. Let u = (ux; uy; uz) and � be pertur-2



bations to the conduction solution u0 = 0, T0 = 1� z (in a co-rotating frame)for the velocity and temperature �elds respectively. The evolution of theseperturbations is governed by the following non-dimensionalised equations:(@t � �r2)r2u+ ��@z!+ �RD �=r�r� (!� u); (1)(@t �r2)� � uz =�u � r�; (2)r � u=0; (3)where the double curl of the momentum equation has been taken (to eliminatethe modi�ed pressure containing the centrifugal term), ! = r � u and thevector operator D � (@2xz; @2yz;�@2xx � @2yy). We impose periodic boundaries inthe horizontal directions and stress-free, �xed temperature upper and lowerboundaries:@zux = @zuy = uz = � = 0 at z = 0; 1: (4)From a linear stability analysis of the conduction (trivial) solution [3], thecritical Rayleigh number for the onset of oscillatory convection at wavenumber�o is found to beRo = 2�2�2� 2�2o(1 + �) + 2(�2o + �2)3(� + 1)�2o ; (5)the corresponding frequency of the oscillations at onset is given by!20 =(�2o + �2)2�2" � 2�2(1� �)(�2o + �2)3(1 + �) � 1#: (6)2.1 The normal formBy imposing a square lattice we reduce the symmetry group of the problemfrom the non-compact special Euclidean group SE(2) of rotations and trans-lations of the plane to the compact group Z4� T 2. This ensures the existenceof a �nite dimensional centre manifold for the bifurcation problem. The prob-lem of a Hopf bifurcation on a rotating square lattice has been analysed indetail by Knobloch & Silber [13] and their results are quoted in the next twosections. The uid planform (as described by the vertical velocity for example)takes the formuz(x; y; z; t)=Re(A1ei(�x�!0t) + A2e�i(�x+!0t)+B1ei(�y�!0t) +B2e�i(�y+!0t))f(z) (7)3



where f(z) represents the vertical structure of the solution. The amplitudeequations _z = g(z), z = (A1; A2; B1; B2), must be equivariant with respect tothe group Z4� T 2 � S1 generated by quarter-turn rotations about the z-axisand translations in the x and y directions and in time:� : (x; y; t)! (y;�x; t)(A1; A2; B1; B2)! (B1; B2; A2; A1) (8)[(�; �); �] : (x; y; t)! (x + �=�; y + �=�; t+ �=!0)(A1; A2; B1; B2)! (A1ei�; A2e�i�; B1ei�; B2e�i�)e�i� (9)The time translation group S1 is a normal form symmetry that occurs nat-urally for Hopf bifurcation problems. Thus the complete symmetry group ofthe problem is � = Z4� T 2�S1. Requiring equivariance with respect to thesesymmetries leads to the following system of ODEs (truncated at third order)for the four complex amplitudes:_A1=A1[�̂+ ajA1j2 + bjA2j2 + cjB1j2 + djB2j2] + e �A2B1B2 (10)_A2=A2[�̂+ ajA2j2 + bjA1j2 + cjB2j2 + djB1j2] + e �A1B1B2 (11)_B1=B1[�̂+ ajB1j2 + bjB2j2 + cjA2j2 + djA1j2] + e �B2A1A2 (12)_B2=B2[�̂+ ajB2j2 + bjB1j2 + cjA1j2 + djA2j2] + e �B1A1A2 (13)where �̂ = �+ i~!(�) and both � and ~! are real. The coe�cients a - e are alsocomplex, in general. Since the normal form contains no quadratic terms, thebifurcation parameter � can be scaled so that j�j=1; this implies there are nosecondary bifurcations as � increases from zero.2.2 Primary branchesWe recall the de�nitions of an isotropy subgroup �z = f 2 � : z = zg anda �xed point subspace Fix(�) = fz 2 C 4 : z = z 8  2 �g. The Hopfbifurcation with Z4� T 2 symmetry generically produces four branches withtwo dimensional �xed point subspaces [13], which therefore exist for all valuesof the normal form coe�cients by the Equivariant Hopf Theorem [14]. Theseare denoted Travelling Rolls (TR), Standing Rolls (SR), Standing Squares(SS) and Alternating Rolls (AR). A further periodic solution, Standing CrossRolls (SCR), exists for some combinations of normal form coe�cients - itsexistence is not guaranteed by the Equivariant Hopf Theorem since it has afour dimensional �xed point subspace. The stability properties of these pe-riodic orbits depend on the values of the normal form coe�cients a - e and4



are summarised in table 1. Table 1 also contains a quasiperiodic solution, theTravelling Bimodal (TB) branch. This solution also has a four dimensional�xed point subspace and so is not guaranteed to exist for all coe�cient values[13]. We expect that further doubly and triply-periodic solutions can existin open regions of parameter space, as in the Hopf bifurcation with D4� T 2symmetry [15].2.3 The heteroclinic cycleAs noted by Knobloch & Silber [13], in an open region of the parameter spacea structurally stable heteroclinic cycle exists and is asymptotically stable. Inthis section we summarise these existence and stability results. The existenceof the heteroclinic cycle is directly related to the existence of the submaximalTravelling Bimodal (TB) solution. The invariant subspace A2 = B2 = 0 (equalto Fix(�TB)) contains the two TR solutions TR1 = (A1; 0; 0; 0) and TR2 =(0; 0; B1; 0) corresponding to travelling rolls in the positive x-direction andthe positive y-direction respectively and the TB solution (r1ei!1t; 0; r2ei!2t; 0),where r21 = �(ar � cr)=(crdr � a2r) and r22 = �(ar � dr)=(crdr � a2r). The TBsolution only exists when ar� cr and ar� dr have the same sign; from table 1we see that the TB solutions appear when the Travelling Rolls lose or gainstability within this subspace: the TB solution coalesces with a TR �xed pointas either ar�cr ! 0 or ar�dr ! 0. Within Fix(�TB) one of the TR solutionsis a sink and the other is a saddle. As there are now no other invariant sets inFix(�TB) there must be a saddle-sink connection between the two TR orbitsfor an open set of normal form coe�cient values. The rotation symmetry �relating the behaviour near di�erent TR orbits then forces the existence of acycle connecting all four TR solutions, and this symmetry makes the stabilityproperties of the cycle much easier to analyse. Asymptotic stability resultsfor cycles between equilibria have been proved by Krupa & Melbourne [16].These results also cover heteroclinic cycles connecting relative equilibria as isthe case here [17,19]. The TR solution is a relative equilibrium because timeevolution around the orbit is equivalent to the action of a spatial symmetry:for a point z0 on the orbit, �T (z0) = Tz0 for some spatial translation Twhich depends on T . This implies the existence of a continuous group orbit ofTR solutions. None of the other four periodic solutions SR, SS, AR or SCR isa relative equilibrium.The eigenvalues and corresponding eigenvectors for the TR1 solution on thecycle can be labelled in the usual way [16,19] as radial (within Fix(�TR1)),contracting (in the B2 direction), expanding (in the B1 direction) and trans-verse (in the A2 direction). In fact, the linearisation of (10) - (13) at a point onthe TR1 orbit, Dg(z0), is a diagonal matrix with entries which have non-zeroreal parts f�2�; �(1� br=ar); �(1� dr=ar); �(1� cr=ar)g; these are the radial,5



transverse, expanding and contracting eigenvalues respectively. It is only thesereal parts that are important for the stability of the cycle, and �xing � > 0and ar < 0 so that the TR orbits bifurcate supercritically we consider theanticlockwise (A1 ! B1 ! A2 ! B2 ! A1) case wherear � cr > 0 and ar � dr < 0: (14)The symmetry � relating the four TR orbits implies that the stability of thecycle can be deduced from the dynamics near one TR orbit only. Necessaryand su�cient conditions for asymptotic stability of this cycle are that the (realpart of the) transverse eigenvalue to the cycle must be negative, and that theratio of the absolute value of the real parts of the eigenvalues in the contractingand expanding directions must be greater than one. These conditions followfrom a more general analysis of the stability of robust cycles [19], and hereimply the following inequalities:br � ar < 0 and cr + dr � 2ar < 0: (15)The inequalities (14) and (15) may be summarised asmin(ar � cr; dr � br; dr � 2ar) > dr � ar > 0 (16)which is a necessary and su�cient condition for asymptotic stability of thecycle. It is stronger than the su�ciency condition given in [13]: this latterresult is derived directly from the su�ciency theorem of Melbourne et al. [20],and later theoretical work [18] has improved on this result.3 Stable planforms on a square lattice3.1 Periodic solutionsWe calculate the normal form coe�cients in (10) - (13) using modi�ed per-turbation theory, expanding the Rayleigh number R in powers of " as well asthe velocity and temperature �elds:(u; �)= "(u1; �1) + "2(u2; �2) + : : : (17)R=Rc + "R1 + "2R2 + : : : (18)We then equate the terms in (1) - (2) in each power of ". This leads to thefollowing schematic equations: 6



O(") : L(u1; �1)= 0 (19)O("2) : L(u2; �2)=N1(u1; �1) (20)O("3) : L(u3; �3)=N2(u1; �1;u2; �2) (21)where L is the linear operator on the LHS of equations (1) - (2) and N1 and N2represent nonlinear terms. By taking stress-free, �xed temperature boundaryconditions (4) the solution at each order can be expressed completely andsimply in terms of exponentials. It would be possible to use a poloidal-toroidaldecomposition, but the existence of mean ow terms means they would haveto be explicitly added into the scheme. At O("2) in the calculation there is acontribution from the term �RD � containing R1; by applying the solvabilitycondition we �nd that R1 = 0. At third order the values of the normal formcoe�cients are derived. The calculation was performed using the computeralgebra package MAPLE. The algebraic expressions for the coe�cients are fartoo large to give explicitly. Instead, the normal form coe�cients were evaluatedat a 26 � 40 grid of points in the (�,�)-plane: 0:025 � � � 0:65 in steps of0.025 and for 25 � � � 1000 in steps of 25. The stability of the primarybranches discussed in section 2.2 was determined at each point, and stabilityboundaries in the (�,�) plane are indicated in �gure 1.The line `1 separates the regions where steady and oscillatory modes of convec-tion are preferred at onset: above the line oscillatory convection is preferred.Line `2 where ar � br = 0 was derived by Knobloch & Silber [6] since therequired normal form coe�cients can be calculated from the two-dimensionalproblem. It separates regions of stable TR and SR. Below `2 SR are stable.Above `2 TR are preferred, but may be unstable to perturbations in Fix(�TB).To the right of line `3 TR are stable to these perturbations and the quasiperi-odic Travelling Bimodal solution exists (since ar � cr and ar � dr are bothpositive) but it is unstable. As `3 (the line given by ar � dr = 0) is crossedfrom right to left the TB solution disappears (ar � cr is positive for all (�; �)and the product (ar�cr)(ar�dr) is now negative). This leads to the formationof the stable robust heteroclinic cycle between all four TR states, as discussedin section 2.3. As indicated on �gure 1, the stability criterion (16) for the cycleis satis�ed to the left of `3, between `3 and `2.3.2 Dynamics near the region of stable Standing SquaresThe invariant subspace Fix(�SCR) (see table 1) de�ned by A1 = A2 = A andB1 = B2 = B contains the dynamics of a Hopf bifurcation with D4 symmetry[21]. In the context of this problem (and also where it occurs in the Hopfbifurcation with D4� T 2 symmetry) it is called the SCR subspace since itis the �xed point subspace for the (submaximal) isotropy subgroup of theStanding Cross Rolls solution. It also contains the three periodic solutions7



SR, SS and AR. The dynamics within the subspace are given byA= A[�̂+ (a + b)jAj2 + (c+ d)jBj2] + eB2 �A (22)B= B[�̂+ (a+ b)jBj2 + (c+ d)jAj2] + eA2 �B (23)As noted by Swift [21] there is a co-ordinate transformation which reducesthe dimension of the dynamical equations to 2; the reduced equations weredenoted the associated spherical system by Swift. Let A = r1=2ei( +�)=2 cos �=2,B = r1=2ei( ��)=2 sin �=2, then the evolution equations for � and � decoupleafter a time rescaling to remove the dependence on the `radial' co-ordinate r:_�=sin �[cos �(�fr + er cos 2�)� ei sin 2�] (24)_�=cos �(fi � ei cos 2�)� er sin 2� (25)where f = a+ b� c� d and the subscripts r and i refer to real and imaginaryparts respectively. We treat (�; �) as co-ordinates for latitude and longitude onthe sphere. The periodic solutions in the SCR subspace are mapped to �xedpoints in the associated spherical system (24) - (25). Due to the periodicityof the trigonometric functions, we restrict the variables to 0 � � � �=2 and0 � � < � - half of the upper hemisphere in total. The SR solution is mappedto the `North Pole' � = 0, the SS solution to (�; �) = (�=2; 0) and the ARsolution to (�; �) = (�=2; �=2).For the computed coe�cients, it turns out that the AR solutions are neverstable but there is a region of the (�; �) plane between `4 and `5 where the SSsolutions are stable. There are two ways, generically, that the stability of the SSsolution can change: the �rst is via a subcritical pitchfork bifurcation creating�xed points which correspond to the SCR periodic orbits. The second is via aHopf bifurcation, creating a periodic orbit in (24) - (25) which corresponds toa quasiperiodic orbit in the normal form. The Hopf bifurcation from SS occursacross the line `4 in �gure 1, and line `5 marks the pitchfork bifurcation. Theselines meet at a codimension-2 point C = (��; � �) in �gure 1. Near this point inparameter space it is possible to reduce the dynamics (24) - (25) around theSS �xed point to the normal form for a Takens-Bogdanov bifurcation with Z2symmetry [30,29,28]. This proves the existence of a curve of global bifurcationsemanating from C and completes the bifurcation diagram near C, see �gure 2.The remainder of this section summarises the reduction of the dynamics tothe Takens-Bogdanov normal form.The Hopf bifurcation from SS occurs when fr � 3er = 0 and the pitchforkbifurcation occurs when Re(f�e) � jej2 = 0. Near the point (�=2; 0) we write� = ~� + �=2 and � = ~� and expand the sines and cosines in power series,truncating at cubic order. Dropping tildes we �nd:8



_�= �(fr � er)� 2ei�+ 23�3(er � fr) + 2��2er + (43�3 + �2�)ei +O(4);(26)_�= �(ei � fi)� 2er�+ 16�3(fi � ei)� 2��2ei + 43�3ei +O(4); (27)where O(4) denotes terms of degree 4 or higher in � and �. Now we rescale(�; �) ! (�ei; �er) and eliminate the constants fr and fi by moving to thecodimension 2 point in parameter space: set fr = 3er and fi = (jej2� 3e2r)=ei.We use successive transformations to put the equations in normal form. Firstwe eliminate all but one of the linear terms by the linear change of variables(u; v) = (�+�; ���). The resulting equations for _u and _v have a linearisationwith two zero eigenvalues, and a symmetry (u; v) ! (�u;�v). By a near-identity transformation (u; v) ! (x; y) we are able to remove all but two ofthe cubic terms in the ( _u; _v) equations and are left with the following normalform for the Takens-Bogdanov bifurcation:_x= y; (28)_y= �y � �x+ P1x3 + P2x2y; (29)where � and � are unfolding parameters, and P1 = erjej2=4 and P2 = (7e2r �4e2i � 4e3r � 8e2i er)=16. At the point C = (��; � �) the numerical value of thecoe�cient e implies P1 > 0 and P2 < 0. This case of the Takens-Bogdanovbifurcation has been previously studied in connection with thermosolutal con-vection [22,28]. The normal form (28)-(29) correctly describes the behaviourin the SCR subspace close to the codimension-2 point C. In particular thereis a subcritical pitchfork bifurcation when � = 0 and a supercritical Hopf bi-furcation when � = 0 and � > 0. There is also a line of global bifurcationsat � ' ��P2=5 where the periodic orbit collides with the SCR �xed points,corresponding to the dashed line starting from C in �gure 1. Along a line ofconstant � > � �, see �gure 2, exactly this behaviour is seen. This reduction toa normal form also proves the uniqueness of the quasiperiodic orbit for (22)-(23) near the codimension 2 point in parameter space where fr = 3er andfi = (jej2�3e2r)=ei. In passing we remark that uniqueness of the quasiperiodicorbit has also been proved in a neighbourhood of another point in the param-eter space for (22) - (23) by van Gils & Silber [32]. The `bubble' of stable SSsolutions closes as the lines `4 and `5 cross over again at larger � . The analysisof this second Takens-Bogdanov bifurcation is very similar to the �rst and sowill not be discussed further.3.3 Transverse bifurcation from the heteroclinic cycleFor 0:05 < � < 0:2, numerical simulations indicate the presence of otherquasiperiodic solutions, outside the SCR subspace, see �gure 3. These lie close9



to the robust cycle discussed in section 2.3, but they are clearly distinct from itand stable. For some parameter values, at lower �, triply-periodic and chaoticsolutions appear, see �gure 4. In these �gures note that the value of � af-fects the solutions only by scaling mode amplitudes by a constant factor. Thecreation of these quasiperiodic and chaotic solutions can be explained by theloss of stability of the heteroclinic cycle as � decreases across `2. There aretwo ways in which robust heteroclinic cycles generically lose stability: eitherthrough resonant bifurcations where the ratio of the (real parts of the) con-tracting and expanding eigenvalues passes through 1, or through transversebifurcations corresponding to eigenvalues in directions normal to the cyclecrossing the imaginary axis. Here we �nd that the cycle undergoes a trans-verse bifurcation at `2. In this section we examine the dynamics near `2 indetail.The analysis of [18] can be applied to this cycle because (as discussed insection 2.3) although the cycle is between periodic orbits, not equilibria, theTR solutions are relative equilibria. The fact that we do not explicitly needall the phases of the four amplitudes is brought out by a transformation of thenormal form equations (10) - (13) to modulus and argument form. By writingA1 = r1ei�1, A2 = r2ei�2, B1 = r3ei�3, B2 = r4ei�4 we derive equations for themoduli rj. We de�ne  = �4 + �3 � �2 � �1:_r1= r1h�+ arr21 + brr22 + crr23 + drr24i+ e+r2r3r4 (30)_r2= r2h�+ arr22 + brr21 + crr24 + drr23i+ e+r1r3r4 (31)_r3= r3h�+ arr23 + brr24 + crr22 + drr21i+ e�r1r2r4 (32)_r4= r4h�+ arr24 + brr23 + crr21 + drr22i+ e�r1r2r3 (33)_ =	(r1; r2; r3; r4;  ) (34)where e� = er cos � ei sin . In this reduction we can �x  = 0 wheneverone of the rj is zero since it is then unde�ned. As the heteroclinic cycle iscontained entirely within subspaces where two of the rj are zero, we can take = 0 around the complete cycle.Consider the TR1 = (A1; 0; 0; 0) orbit. The heteroclinic connections into andout of TR1 are contained in the two subspaces TRin = f(A1; 0; 0; B2)g andTRout = f(A1; 0; B1; 0)g = Fix(�TB) (see table 1). The bifurcation is said to betransverse because the eigenvector corresponding to the eigenvalue 1�br=ar =0 in (30)-(34) is in the A2-direction which is not contained in the subspaceQ = TRin+TRout = f(A1; 0; B1; B2)g. Chossat et al. [18] classify heterocliniccycles into three types, referred to as A, B and C, depending on whether Qis a �xed-point subspace for some symmetry element  2 �. A cycle is oftype A if Q is not a �xed-point subspace for any ; it is of type B if Q is a10



�xed-point subspace for some  and the entire cycle X � Q. It is of type C ifQ is a �xed-point subspace for some  but X does not lie completely withinQ. Cycles of all three types occur naturally in systems with symmetry, andtransverse bifurcations from each type are studied in [18]. The di�erent cycletypes give rise to di�erent transverse bifurcation phenomena so the grouptheoretic distinction between them is crucial.As a subspace which is not ow-invariant cannot be a �xed-point subspacefor an element  2 �, the subspace Q cannot be a �xed-point subspace (dueto the form of the last term on the RHS of equations (30) - (33)) and so thecycle X under consideration is of type A. Chossat et al. prove [18, theorem4.1] that when an equilibrium on a type A cycle undergoes a non-degenerate(supercritical) pitchfork bifurcation, and hence the transverse eigenvalue be-comes positive, the cycle itself undergoes either a subcritical or a supercriticalglobal bifurcation. This bifurcation creates a unique nearby stable or unstableperiodic orbit close to the cycle. The bifurcation is termed `at' because thedistance between the cycle and the periodic orbit varies as j�j1=� to leadingorder where � is a constant which depends only on the global part of theow between the equilibria, and � is the bifurcation parameter. If j�j < 1 theperiodic orbit is created supercritically and it is stable; if j�j > 1 the periodicorbit is created subcritically and it is unstable. What is remarkable is thatthe direction of branching of the pitchfork bifurcation of the equilibria on thecycle is independent of the direction of branching of the `at' bifurcation of thecycle. Indeed, one is a purely local phenomenon and the other is determinedonly by the dynamics on the sections of the cycle not close to the equilibria.The cycle between TR relative equilibria does not, as it stands, satisfy theconditions of [18, theorem 4.1] because the local bifurcation which transfersstability between TR and SR when ar � br = 0 is degenerate for the cubictruncation we have so far considered, see [23] and [14, chapter XVII]. The`pitchfork' bifurcation at ar� br = 0 does not create any new small amplitudesolutions near the TR orbits. Possible behaviours near this degeneracy havebeen classi�ed completely by [34,35]; the degeneracy is unfolded by the addi-tion of small perturbations in the form of �fth and seventh order terms to (30)- (34). When these higher-order terms are introduced into the normal form,stability is transferred between TR and SR via a branch of Modulated Trav-elling Rolls (MTR) which may itself be stable or unstable, see �gure 5(a) and(b). The stability of the MTR branch does not a�ect the global bifurcationcreating the periodic orbit in (30) - (34) as the stability of the periodic orbitdepends on the global quantity � which is not a�ected at leading order bythese �fth and seventh order terms. To calculate � we integrate the variationalequation around the cycle and compute the eigenvalues of the resulting ma-trix. Since the four equilibria are related by symmetry it is enough to integratethe equations for r1 : : : r4 around one quarter of the cycle: for example withinFix(�TB). Let the variational equation for (30) - (33) be _� = DF (z(t))�. The11



integration along the heteroclinic cycle is for a time interval [0; T ] de�ned bythe initial conditions �(z(0)) = I and r3(0) = �, r21(0) = ��=ar, j�j � 1and the �nal condition r1(t) = �. The matrix DF is block-diagonal and theevolution of the (r2; r4)-variables is independent of that of the (r1; r3) vari-ables. Since we are interested in the transverse (r2) direction, it is enough tointegrate the 2� 2 sub-system in the r2 and r4 variables:_M = 0B@DF22 DF24DF42 DF441CAM = 0B@�+ brr21 + drr23 err1r3err1r3 �+ brr23 + crr21 1CAM; (35)with initial condition M(z(0)) = I. Illustrative coe�cient values are ar =�0:44348, br = �0:43842, cr = �6:5616, dr = 3:566, er = �0:12137 for(�; �) = (0:075; 700) (very close to the line `2). Numerical integrations showthat the matrix M has a positive eigenvalue greater than 1 in the r2 (trans-verse) direction and a positive eigenvalue less than 1 in the r4 direction. Theexact values of these eigenvalues depend on the choice of � but there is anO(1) contribution from the global portion of the trajectory which dominatesO(�) contributions from near the TR equilibria. Thus an unstable periodicorbit bifurcates subcritically from the cycle at line `2 in �gure 1. This periodicorbit for equations (30) - (34) appears as a quasiperiodic orbit for the normalform (10) - (13). For �xed ar < 0, the bifurcation would become supercriticalif dr decreased far enough towards zero. However, numerical calculations showthat in the (�; �) plane the coe�cients do not vary enough for this to occur,and the transverse bifurcation is always subcritical; j�j > 1 over the whole ofthe line `2 to the left of `3.We conjecture that the existence of stable quasiperiodic solutions close tothe transverse loss of stability of the cycle is due to the branch of subcriti-cal quasiperiodic solutions turning around in a saddle-node bifurcation andgiving rise to stable quasiperiodic orbits as indicated in �gure 5(c). The veryslow separation of the unstable orbit and the cycle means that the stable(quasiperiodic) orbit will remain closer to the cycle it coexists with than wemight expect. As we continue to decrease � at �xed � the quasiperiodic or-bit undergoes a bifurcation to a three-torus and then breaks up and becomeschaotic (see �gure 4) for the values of � indicated on �gure 1.4 Asymptotic behaviour as � !1Following the ideas of Bassom & Zhang [11], Julien & Knobloch [12] performeda weakly nonlinear analysis in the limit � ! 1 by scaling (1) - (3) and ap-plying modi�ed perturbation theory to the resulting leading order equations.12



From the point of view of planform selection this limit is very degenerate: atleading order the scaled equations have an unexpected reection symmetrywhich introduces another primary solution branch, and forces a = b, c = dand e = 2a � 2c in the amplitude equations (10) - (13). This highly degen-erate situation means that Julien & Knobloch were unable to give completeresults for planform selection. To determine pattern selection at high � eitherthe asymptotic analysis of [12] must be carried out to include higher orderterms or the normal form coe�cients must be calculated directly. The resultsof direct calculations show that TR are the preferred mode of convection on asquare lattice at high � for all �, agreeing with the partial conclusions of [12].The modi�ed perturbation theory discussed in section 3.1 produces coe�cientswhich di�er by a common scaling (in e�ect, a di�erent choice of normalisa-tion) from those given in the rapidly rotating limit by Julien & Knobloch.Ratios of coe�cients are una�ected by this scaling, and so should agree forthe two calculations. The convergence of the ratio ar=cr in the limit � ! 1is demonstrated in �gure 6 and agrees very well with the results of [12].Clune & Knobloch [7] estimated that the behaviour for � > 106 should agreewell with asymptotic results. We �nd that this holds for moderate �, butfor � � 0:1 the true asymptotic regime is not reached until � is substantiallyhigher, say � ' 1010. Hence calculations at �nite, but large, � may not correctlymodel the asymptotic regime for small �. This indicates the possible relevanceof distinguished limits of small � and rapid rotation: �x �� 1=n = s where s isO(1) and n � 1, but let � ! 1 so that � ! 0 at the same time. The casen = 1 has been considered by Zhang & Roberts [9], and Bassom & Zhang[10] and produces convective modes they term `thermal-inertial' waves. As weconsider limits with larger and larger n we might expect the dynamics in thedistinguished limit to approach those in the simpler limit � ! 1, � � 1analysed by [12]. Further work on this problem is in progress [27].5 Stability to perturbations o� the latticeBy restricting the problem to a square lattice in earlier sections we can only in-vestigate the stability of TR to perturbations at multiples of 90�. In a spatiallyextended layer of uid there may well be instabilities of TR to perturbationsat other angles. This is well-known for steady rolls, demonstrated �rst byK�uppers & Lortz [1] who showed, in the limit of in�nite Prandtl number,that the maximum growth rate of an instability of steady rolls was obtainedto rolls aligned at ' 58� to the original rolls and the instability occurred aslong as � 2 > 2285. Calculations at �nite � have been reported by Clune &Knobloch in [7]. More recently, Cox & Matthews [2] have completed the studyof small-angle instabilities of steady rolls when stress-free vertical boundariesare used. 13



For a �xed angle � we examine the stability of TR to perturbations orientedat a �nite angle by imposing a rhombic lattice generated by vectors k1 = (1; 0)and k2 = (� cos �; sin�), see �gure 7(a), instead of a square one. The uidplanform is nowuz(x; y; z; t)=Re(A1ei(�k1�x�!0t)) + A2e�i(�k1�x+!0t)+B1ei(�k2�x�!0t) +B2e�i(�k2�x+!0t))f(z) (36)The symmetry group of this planform is Z2� T 2 � S1 - the only rotationalsymmetry is a half-turn �2. However, the amplitude equations are required tobe equivariant with respect to additional `hidden' symmetries inherited fromthe SE(2) equivariance of the original problem [31]; they now take the form_A1=A1[�̂+ ajA1j2 + bjA2j2 + cjB1j2 + djB2j2] + e �A2B1B2 (37)_A2=A2[�̂+ ajA2j2 + bjA1j2 + cjB2j2 + djB1j2] + e �A1B1B2 (38)_B1=B1[�̂+ ajB1j2 + bjB2j2 + ~cjA2j2 + ~djA1j2] + ~e �B2A1A2 (39)_B2=B2[�̂+ ajB2j2 + bjB1j2 + ~cjA1j2 + ~djA2j2] + ~e �B1A1A2 (40)where the complex coe�cients a; b; c; d; e; ~c; ~d; ~e depend on the lattice angle �.The stability of a (for example) (0; 0; B2; 0) solution to perturbations in theA1 mode changes when ar � dr = 0 exactly as in the square lattice case: thereis a Travelling Bimodal solution in the A2 = B1 = 0 subspace which exists aslong as ar � dr and ar � ~cr have the same sign. To compute the stability ofTR to perturbations at an angle � we evaluate the coe�cient dr as � varies.These stability calculations show that the region of stable TR shrinks as �decreases: �gure 8 shows the lines ar�dr(�) = 0 for � = 40�; 50�; 60�; 70� and80�. TR are stable to these perturbations to the right of these lines. Note that`3 corresponds to � = 90�. As �! 0 the growth rates of the instability appearto grow unboundedly, see �gure 7(b). This is due to the resonant interaction ofthe two modes ei(�k1�x�!0t) and e�i(�k2�x+!0t) as in steady rotating convection[2]. At O("2) in the modi�ed perturbation calculation we �nd contributionsto the ux solution which, in the limit as �! 0 at �xed " asymptote asux � "2�A1 �B2ei�[(1�cos �)x�y sin�] (41)indicating a breakdown in the scalings adopted in the analysis in the limitof small �. Terms such as this one cause the coe�cient dr(�) to blow up atsmall angles. If dr(�) � 1 for small angles then small-angle perturbationswill grow; if dr(�) becomes large but negative then the TR are increasinglystable to perturbations in the small-angle limit and this blow up does not gen-erate an instability. A similar analysis to that performed by Cox & Matthews14



[2] should be possible to analyse this small-angle instability which may dom-inate the observed behaviour in spatially-extended systems with stress-freeboundaries. It is likely that employing rigid boundaries would damp the re-sulting mean ows and so remove these instabilities. Comparing the variationof the coe�cient dr(�) in �gure 7(b) to [7, �gure 12] (which is calculated for� = 100) we see that the `boundary-layer' behaviour of the coe�cient is ap-parent for � � 10� in both cases, but in the steady case the original rolls arestable to perturbations at angles just outside the `boundary-layer', whereashere perturbations with � ' 10� to the original travelling rolls will grow withan order 1 growth rate, and the smaller the angle, the larger the growth ratesof perturbations become. Because of this, even if rigid boundaries resolvedthe blow up of the growth rates for small � by making the growth rates tendto a �nite (positive) value in the limit � ! 0, we would still expect TR tobe unstable to perturbations at a range of small angles. Since the relevantcalculations with rigid boundaries have not yet been carried out this remainsconjectural. Calculations of the stability of TR in limits of rapid rotation andsmall �, where rigid and stress-free boundaries are indistinguishable, also showa small-angle instability [27]. This is in sharp contrast to the behaviour notedabove for steady rolls, where the use of rigid boundaries stabilises rolls to allperturbations below a critical (order 1) angle.6 Discussion and conclusionsWe have analysed weakly nonlinear three-dimensional rotating convection witha square planform for all values of the Prandtl and Taylor numbers. This analy-sis shows the existence of a structurally stable heteroclinic cycle, quasiperiodic,and chaotic behaviour in the resulting amplitude equations. This analysis, al-though complete in itself, has several limitations. Most importantly, althoughwe have done as much as is possible, the theory does not yet allow for a fulldiscussion of the stability of our solutions to modes at varying angles. Wehave also not discussed modulational instabilities, either to �nite wavelengthperturbations, as discussed for steady hexagonal patterns by Echebarria &Riecke [33], or those on asymptotically long lengthscales.We have seen that although TR are the preferred planform for a large regionof the (�; �) plane for modes restricted to a square lattice, they are unstableto perturbations at smaller angles in the anticlockwise (co-rotating) direction.Likewise, the quasiperiodic solutions in the normal form may also not bestable to these perturbations. This analysis has, however, indicated the strongpossibility of heteroclinic cycles, quasiperiodic and chaotic behaviour at onseteven in small aspect ratio systems. All our calculations have been carried outwith stress-free vertical boundaries for computational convenience. We hopethat qualitative features of the dynamics will persist for rigid boundaries,15



probably shifted to higher Taylor numbers as has been shown to happen forthe line `2 [7]. We remark that the results of sections 3, 4 and 5 do not dependcritically on the Boussinesq symmetry of the PDEs since even in its absencethe normal forms for the Hopf bifurcations will not contain quadratic terms.In the limit of rapid rotation our results agree quantitatively with those ofJulien & Knobloch [12]. The line `3 seems, for large � , to asymptote towardsa curve of the form �4� = const. The signi�cance of this relationship between� and � is examined in detail in [27].We have not investigated further the stability of the SR: Riahi [8] has previ-ously calculated that SR are unstable to perturbations at angles less than 90�.In a spatially extended system we may expect complex dynamics in the regionwhere SR are stable in �gure 1 for the Z4� T 2-symmetric normal form: eithercycling behaviour between sets of SR at di�erent orientations as discussed byKnobloch & Silber [31] or chaotic behaviour associated with the Shil'nikovdynamics investigated by Swift & Barany [24] for SR on a rotating hexagonallattice.The nonlinear development of the small-angle instability identi�ed in section 5and the extent to which these instabilities persist for oscillatory convectionwith rigid boundaries are subjects which it would be of interest to pursuefurther. It should be possible to perform a detailed analysis of the small-angleinstability in a similar way to that already done in the steady case [2], but ifthe instability does not persist when rigid boundaries are used it is probablyof limited physical signi�cance.Experiments using liquid metals such as mercury and gallium, and mixturesof cooled and pressurised gases [25] have resulted in a large number of quan-titative measurements of pattern-formation phenomena in convection at lowPrandtl numbers, and it would be of great interest to compare the results ofexperiments conducted in the oscillatory regime with the dynamics exploredin this paper.
AcknowledgementsI have bene�ted from discussions with Michael Proctor and Alastair Rucklidge.The presentation of this work has been greatly improved by many perceptiveand helpful comments from two anonymous referees. This work was fundedby the UK EPSRC. 16



References[1] G. K�uppers and D. Lortz, Transition from laminar convection to thermalturbulence in a rotating uid layer. J. Fluid Mech. 35 609{620 (1969)[2] S.M. Cox and P.C. Matthews, Instabilities of rotating convection. J. Fluid Mech.403 153{172 (2000)[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. OxfordUniversity Press (1961), republished by Dover Publications, Inc. (1981)[4] R.M. Clever and F.H. Busse, Nonlinear properties of convection rolls in ahorizontal layer rotating about a vertical axis. J. Fluid Mech. 94 609{627 (1979)[5] F.H. Busse and K.E. Heikes, Convection in a rotating layer. Science 208 173{175 (1980)[6] E. Knobloch and M. Silber, Travelling wave convection in a rotating layer.Geophys. Astrophys. Fluid Dynamics. 51 195{209 (1990)[7] T. Clune and E. Knobloch, Pattern selection in rotating convection withexperimental boundary conditions. Phys. Rev. E 47 2536{2550 (1993)[8] D.N. Riahi, Weakly nonlinear oscillatory convection in a rotating uid. Proc.R. Soc. Lond. A 436 33{54 (1992)[9] K. Zhang and P.H. Roberts, Thermal inertial waves in a rotating uid layer:exact and symptotic solutions. Phys. Fluids 9 1980{1987 (1997)[10] A.P. Bassom and K. Zhang, Finite amplitude thermal inertial waves in arotating uid layer. Geophys. Astrophys. Fluid Dynamics 87 193{214 (1998)[11] A.P. Bassom and K. Zhang, Strongly nonlinear convection cells in a rapidlyrotating uid layer. Geophys. Astrophys. Fluid Dynamics 76 223{238 (1994)[12] K. Julien and E. Knobloch, Fully nonlinear three-dimensional convection in arapidly rotating layer. Phys. Fluids 11 1469{1483 (1999)[13] E. Knobloch and M. Silber, Hopf Bifurcation with Z4 � T 2 Symmetry. Int.Series of Numer. Math. 104 241{252 (1992)[14] M. Golubitsky, I.N. Stewart and D.G. Schae�er, Singularities and Groups inBifurcation Theory. Volume II. Springer, Applied Mathematical Sciences Series69 (1988).[15] J.H.P. Dawes, Stable quasiperiodic solutions in the Hopf bifurcation with D4�T 2 symmetry. Physics Letters A 262 158{165 (1999)[16] M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles insystems with symmetry. Ergod. Th. & Dynam. Sys. 15 121{147 (1995)[17] M. Krupa, Bifurcations of relative equilibria. SIAM J. Appl. Math. 21 1453{1486 (1990) 17



[18] P. Chossat, M. Krupa, I. Melbourne and A. Scheel, Transverse bifurcations ofhomoclinic cycles. Physica D 100 85{100 (1997)[19] M. Krupa. Robust heteroclinic cycles. J. Nonlinear Science 7 129{176 (1997)[20] I. Melbourne, P. Chossat and M. Golubitsky, Heteroclinic cycles involvingperiodic solutions in mode interactions with O(2) symmetry. Proc. R. Soc.Edinburgh 113A 315{345 (1989)[21] J. Swift, Hopf bifurcation with the symmetry of a square. Nonlinearity 1, 333{377 (1988)[22] E. Knobloch and M.R.E. Proctor, Nonlinear periodic convection in double-di�usive systems. J. Fluid Mech. 108 291{316 (1981)[23] E. Knobloch, On the degenerate Hopf bifurcation with O(2) symmetry,in Multiparameter Bifurcation Theory (Contemporary Math. 56) eds M.Golubitsky and J. Guckenheimer (AMS, Providence, RI) 193{201 (1986)[24] J.W. Swift and E. Barany, Chaos in the Hopf bifurcation with tetrahedralsymmetry: convection in a rotating uid with low Prandtl number. Eur. J.Mech. B/Fluids 10 suppl. 99{104 (1991)[25] G. Ahlers and K.M.S. Bajaj, Rayleigh-B�enard Convection with Rotationat Small Prandtl Numbers, Proceedings of the IMA Workshop on `PatternFormation in Continuous and Coupled Systems' eds M. Golubitsky, D. Luss,and S. Strogatz. Springer, (1999)[26] J.H.P. Dawes, The transition between steady and oscillatory motion in three-dimensional rotating convection. submitted to Physica D.[27] J.H.P. Dawes, Rapidly rotating thermal convection at low Prandtl number.submitted to J. Fluid Mech.[28] J. Guckenheimer and P.J. Holmes, Nonlinear oscillations, dynamical systemsand bifurcations of vector �elds. Applied Mathematical Sciences Series, volume42. Springer, New York, (1983)[29] P.J. Holmes and D.A. Rand, Phase portraits and bifurcations of the nonlinearoscillator �x+ (� + x2) _x + �x + �x3 = 0. Int. J. Nonlinear Mech. 15 449{458(1980)[30] F. Takens, Forced oscillations and bifurcations. Comm. Math. Inst.,Rijkuniversiteit Utrecht 3 1{59 (1974)[31] E. Knobloch and M. Silber, Oscillatory convection in a rotating layer. PhysicaD 63 213{232 (1993)[32] S.A. van Gils and M. Silber, On the uniqueness of invariant tori in D4 � S1symmetric systems. Nonlinearity 8 615{628 (1995)[33] B. Echebarria and H. Riecke, Instabilities of hexagonal patterns with brokenchiral symmetry. Physica D 139 97{108 (2000)18



[34] M. Golubitsky and M. Roberts, A classi�cation of degenerate Hopf bifurcationswith O(2) symmetry. J. Di�. Eqns. 69 216{264 (1987)[35] J.D. Crawford and E. Knobloch, Classi�cation and unfolding of degenerate Hopfbifurcations with O(2) symmetry: no distinguished parameter. Physica D 31,1{48 (1988)

19



Table 1Solution branches in the Hopf bifurcation with Z4� T 2 symmetry, �xed point sub-spaces and isotropy subgroups, reproduced from [13]. Stability criteria are only givenfor the �rst four solutions which are those guaranteed to exist by the EquivariantHopf Theorem. Generically the SCR solution is unstable when it exists. The groupelements are speci�ed in the form �n[(�; �); �]. A solution is stable when all quan-tities in the last column are negative. f = a + b � c � d and a subscript r denotes`the real part of'.Name Fix(�) � Generators Stability(A1; A2; B1; B2) of �TR (z; 0; 0; 0) S1 � SO(2) [(�; �); �], [(0; �); 0] ar, br � ar,cr � ar, dr � arSR (z; z; 0; 0) SO(2)� Z2 [(0; �); 0], �2 ar + br, ar � br,�fr, jej2 � jf j2SS (z; z; z; z) Z4 � ar + br + cr + dr + er,ar � br � er, fr � 3er,Re(f�e)� jej2AR (z; z; iz; iz) ~Z4 �[(0; �); �=2] ar + br + cr + dr � er,ar � br + er, fr + 3er,�Re(f�e)� jej2SCR (z1; z1; z2; z2) Z2 �2TB (z1; 0; z2; 0) S1 [(�; �); �]
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Fig. 3. An example of a quasiperiodic solution at (�; �) = (0:15; 350). Coe�cients:� = 5:0, a = �0:9264 + 0:7111i, b = �0:8834 � 0:0808i, c = �8:3930 � 2:5889i,d = 1:9512 � 1:4475i, e = �0:32681 � 3:0215i.
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