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Abstract

The Hopf bifurcation with Dy x T? symmetry generically has open regions of
the normal form coefficient space where all branches of periodic solutions bifurcate
supercritically but none is stable [1]. In such regions we prove the existence of an
attracting set near the origin. A new possibility for the attractor is a quasiperiodic
solution branch related to Standing Cross Rolls (SCR). The new solution physically
represents a planform we call Drifting Standing Cross Rolls. Unlike Standing Cross
Rolls, this solution can be stable, as can a further triply-periodic solution. This
explains the behaviour in the regions of coefficient space omitted by Silber and
Knobloch [1] and completes their analysis.

Key words: quasiperiodic solutions, symmetric bifurcation theory
PACS Codes: 47.20 (bifurcation theory) ; 47.54 (pattern formation).

Patterns which are periodic on a square lattice are often seen in numerical
and laboratory experiments of a fluid dynamical, chemical or biological na-
ture. This has motivated theoretical analyses of solutions and their stability
in the relevant equivariant (symmetric) bifurcation problems. In this letter
we consider oscillatory patterns on a square lattice and extend the theoreti-
cal analysis of Silber and Knobloch [1] of the Hopf bifurcation with D, x T
symmetry. Five distinct periodic solutions are guaranteed to appear (by the
Equivariant Hopf Theorem [2]) in such a Hopf bifurcation, but there are open
regions of the coefficient space where none is stable. We prove a new result
giving necessary and sufficient conditions for the existence of a stable solution
branch. We highlight coefficient values at which this stable solution is a doubly
or triply-periodic oscillation.

Section 1 introduces the amplitude equations for the Hopf bifurcation with
D, x T? symmetry (the notation is the same as in [1]), and contains the state-
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ment and proof of the existence of an attractor. The Drifting Standing Cross
Roll solution and its relevance to this result is discussed in section 2. Section
3 contains an example path through the normal form coefficient space which
captures the associated bifurcation structure. Conclusions are drawn in section
4.

1 Existence of an attractor

Following [1] neutrally stable modes at the bifurcation point have the form

u=Re(v;e*® + vye™ 4 wie™* 4 wye~ V)

where z and y are the horizontal directions in the planform of the pattern. Re-
quiring equivariance with respect to the group Dy x T? leads us to amplitude
equations for (vy, ve, wy, wy) € C:

v = (v + alw[* + DNy + eNy)vy + diyvyws (1)
vy = (v + alwy|* + bNy + cNy vy + dibyviw, (2)
wy = (v + alvi[* + bNy + eNo)w, + divaws (3)
Wy = (v + alvy|* + bNy + Ny )wsy + dvgviw; (4)

where Ny = |v1]? 4+ |wi|?, Ny = |va2 + |ws? and v = X + i0()) with A and o
both real and 0(0) = w, the frequency of periodic solutions at the bifurcation
point. The coefficients a, b, ¢ and d will in general be complex; their real and
imaginary parts are denoted by subscripts r and 7. Truncating the amplitude
equations at third order as we have done here is believed to be sufficient
(generically) to determine the behaviour in a neighbourhood of the origin.

The amplitude equations (1) - (4) are also equivariant with respect to time
translations which generate a group S*. This is a symmetry which arises nat-
urally in normal forms for Hopf bifurcation problems.

The analysis of Silber and Knobloch [1] shows the existence for all coeffi-
cient values of five periodic solution branches to (1) - (4). These have two-
dimensional fixed point subspaces and hence maximal isotropy subgroups [2].
They are summarised in table 1, and will be referred to as azial branches.
Other solution branches introduced later are still primary branches (meaning
that they are created at the origin, when A = 0 and exist for all values of A
on one side of the bifurcation point) even though they may be quasiperiodic.
Due to the lack of quadratic terms in the normal form, there are no secondary
bifurcations in (1) - (4) as we vary A away from A\ = 0.



Table 1
Agzial branches in the Hopf bifurcation with Dy x T? symmetry.

Fixed point Solution Representative  Amplitude

subspace branch solution form

IT Travelling Rolls (TR)  (z,0,0,0) z|? = -2

II1 Travelling Squares (TS) (z,z,0,0) |z|? = —m

Y Standing Rolls (SR) (2,0,2,0) |2|? = — 52

\Y% Standing Squares (SS) (z,2,2,7) |z|? = —m
VI Alternating Rolls (AR)  (z,iz,z,1z) |z|? = —m

Writing r1=|v|, ro=|vs|, rs=|w|, r4=|ws|, and defining ¢ = arg(vyw;va1wy)
we can derive equations for the evolution of the amplitude moduli and the
phase variable :

ri=r [)\ + a,r3 + b, Ny + CrNQ] + T3T2T4Re(d€i¢) (5)
Ty =19 [A + a,r3 + b, Ny + cer] + rarirsRe(de ™) (6)
T3 =T3 [)\ + a,r} + b, Ny + CTNZ] + 117274 Re(de™) (7)
Fa=r4 [A + a,r3 + b, Ny + cer] + rorirsRe(de ™) (8)
. r r ; r r i
)= rlrg(i + T—;I)Im(def“/’) — 7“27“4(é + i)lm(dew)
A =t =) 9

where f =a+ 2b — 2c.

Theorem 1 The amplitude equations for a Hopf bifurcation with Dy x T?
symmetry are given in equations (1)-(4). Assume that the following combina-
tions of coefficients do not vanish: b,, a, + 2b,, b, + ¢,, a, + b, + 2¢, £+ d,,
so that all axial branches bifurcate either subcritically or supercritically. Then
for all |\| < 1 there exists a compact set U — fized independent of X — with the
following properties:

P1: The wnterior of U contains the origin.

P2: The wnterior of U contains all primary branches.



P3: U 1is forward invariant under the flow derived from the vector field

(1)-(4): oU)CcU Y t>0.

if and only if all axial branches bifurcate supercritically.

Remark 1: There is a topological conjugacy between the flow for A = A, > 1
and the flow for A = 1 (and similarly for A = A\_ < —1 and A = —1). So if the
conditions on U are satisfied for |A\| = 1, then using the conjugacy (equivalent
to a rescaling of time and the amplitudes vy, ..., wy) we can find a (larger)
compact set with the properties P1 - P3 for any value of \.

Remark 2: Since the bifurcation at A = 0 is a purely local one it cannot
affect the dynamics on 0U (the boundary of U). Moreover, since U contains all
objects created in the bifurcation at A = 0 (by property P2), the dynamics on
OU are unaffected by the local bifurcation. In particular, trajectories crossing
OU transversely for one value of A will continue to do so for all A € [—1,1].

Remark 3: Condition P3 guarantees the existence of a stable branch but it
does not have to be unique.

Proof: (=) We prove the contrapositive. Say an axial branch with isotropy
subgroup ¥ bifurcates subcritically. For A = —1, restricting the flow to Fix(X)=
C (which is a flow-invariant subspace) we have only 2 invariant sets: the origin
and the periodic orbit P which is unstable within Fix(X). ¢/ must contain P
to satisfy P2. As the periodic orbit is unstable, trajectories starting in the
connected component of Fix(X)\P not containing the origin will grow un-

boundedly.

Since Fix(X)\P intersects U there are points which leave ¢/ under the flow,
hence property P3 cannot be satisfied. So the existence of a subcritical axial
branch means we cannot find a i/ satisfying P1 - P3. a

Proof: (<) To establish the existence of ¢/ in A > 0 it is enough to show
that R? = ¥r? satisfies an equation of the form

1d(R?)

——— 2 < AR+ T(ry,. .. 10

2 dt — + (rla ) 7“4) ( )
where 1" contains only terms of order 4 in the r; and T is strictly negative
everywhere on the surface of a sphere R? = C. Then, at large values of R?

the quartic terms will dominate, and trajectories starting on the surface of the



sphere must flow inside it (and hence the sphere is flow-invariant). This has
already been done for the case a, < 0 by Silber and Knobloch [1, section §].
Lemma 2 below proves the result for a, > 0. O

Extremal points exist for each case that corresponds to an axial branch. The
condition for the value of T at the extreme point to be negative (a linear
constraint on the coefficients) is the same as the condition that the branch
bifurcate supercritically. So when all axial branches bifurcate supercritically,
a set U with properties P1 - P3 must exist, and hence there must be at least
one stable branch of solutions. By remark 2 this attracting neighbourhood
exists for all A.

Lemma 2 Let R?* = Xr2, then the evolution equation for R? is

1d(R?)
2 dt

=AR*+Q < AR*+T (11)

where

Q= 2a,(rfr§ +72r2) + b, R* + 2(¢, — b, ) N1 Ny + 4d, cos prirarsry  (12)
T= 2ar(rfr§ +72r2) + b, R* + 2(c, — b, ) N1 Ny + 4|d,|ri73797m4 (13)

and the subscript v means ‘the real part of . L = T + 2u(3r? — C) is the
Lagrangian for the problem ‘minimise T subject to Xr? = C > 0. u 1is the
Lagrange multiplier (the factor 2 is purely for convenience). Assume a, > 0
in (1)-(4). If the values of T at all its extremal points given by

oL
87"1' N

0 for all i=1...4 (14)

are strictly negative then there exists a compact set U satisfying P1 - P3.

Proof: By an exhaustive analysis of the possible extremal points of (14) in
the region

S={(r1,ro,r5.14) ERL :Zr2=C, 1;>0 Vi}.

This will be split up into different cases, numbered II to XIII to correspond to
the different isotropy subgroups of the original Hopf bifurcation with D, x T2
symmetry, see Silber and Knobloch [1, table 1] and tables 1 and 2. From (14)
we require

by 4 (ap + b,)r1rs + ey (rs 4+ 12) + |dy|rorsry + pry =0 (15)



Table 2
All cases of possible extreme points for L. Each case is numbered according to the
corresponding fized point subspace for the original Hopf bifurcation problem as given

in [1].

Fixed point Conditions on Number of

subspace variables zero variables

1I r1#0, r9=rg=r4=0 3

111 ri=ro#0,r3=r4=0

v ri=r3#0,r9=7r4=0 2

V/VI ri=ro=1r3=1r4#0 0

VII ri=r3#ro=r4#0 0

VIII ri#ro#0,r3=r4=0 2

IX riZrs£Z0,ro=r4=0 2

X /X1 ri=roFrg=ry#0 0

XIT ri=r3#ro#ry#0 0

XIII ri#EroFrgFErys #0 0
byrs + (ay + by)ror] + cpra(r] + 13) + |dy|rirsry + pry =0 (16)
byrs + (ay + by)rsrs 4 cprs(ry +13) + |dy|rirory + prs =0 (17)
by + (ay + by)rars 4 cpra(r + 13) + |dy|rirors + pry =0 (18)

Finding these extremal points is equivalent to finding the fixed points for a
clearly related ‘gradient’ steady bifurcation problem with the Lagrange mul-
tiplier playing the role of the bifurcation parameter.

From the form of the last cubic term on the left hand sides in (15)-(18) there
can be no extrema with exactly one variable zero. For each case which corre-
sponds to an isotropy subgroup with a two-dimensional fixed point subspace of
the original Dy x T?-symmetric problem we give the name of the axial branch
in brackets. Having eliminated the phase variable ¢ there are two cases where
different isotropy subgroups for the original Hopf bifurcation problem give the
same solution form here. Our definition of ¢ differs by a factor of 2 from that
in Silber and Knobloch [1].

Case II (Travelling Rolls - TR) 7y # 0, ro = r3 = r4 = 0. There is a solution
of (15)-(18) given by 7## = —pu/b,. This is an extremal point. From (13)
we see that b, < 0 is a sufficient condition to make T'(71,0,0,0) < 0. This
condition is exactly the one that ensures the TR branch for the original
Hopf bifurcation problem bifurcates supercritically.



Case III (Travelling Squares - TS) r; = r9 # 0, r3 = r4, = 0. There is a
solution of (15)-(18) given by 72 = 75 = —u/(b, + ¢,). This is an extremal
point. From (13) we see that b, + ¢, < 0 is a sufficient condition to make
T(1,79,0,0) < 0. Similarly, this condition ensures that the TS branch for
(1)-(4) bifurcates supercritically.

Case IV (Standing Rolls - SR) ry = r3 # 0, 1o = r4, = 0. There is a
solution of (15)-(18) given by 7% = 72 = —u/(a, + 2b,). This is an extremal
point. From (13) we see that a, + 2b, < 0 is a sufficient condition to make
T(71,0,73,0) < 0. This condition ensures that the SR branch for (1)-(4)
bifurcates supercritically.

Cases V/VI (Standing Squares / Alternating Rolls - SS / AR) ry = ry =
r3 = ry # 0. There is a solution of (15)-(18) given by 7% = 73 = 72 = 72 =
—p/(ar + 2b, + 2¢, + |d,|). This is an extremal point. From (13) we see that
ar +2b, +2¢, + |d,| < 0 is a sufficient condition to make T'(71, 79, 73, 74) < O.
This condition ensures that the SS and AR branches for (1)-(4) bifurcate

supercritically.

Cases VII — XI From the first two equations (15) and (16) we can deduce a
contradiction: variables which were assumed to be different must be equal.
We show case VII as an example: ry = r3 # 0, r9 =14 # 0. So

(15) = a,7} + 2b,73 + 2,75 + |d|r3 + =0
(16) = a,73 + 2b,73 + 2¢,73 + |do|r? + =0

which implies 7# = r2 or a, + 2b, — 2¢, — |d,| = 0. If the first condition
holds, we have a contradiction since r; and r, were assumed to be different
(we are in Case III otherwise). If the second condition holds (a degenerate

situation) then from manipulation of (13) we can deduce that
T(r1,72,0,0) = (a, + 2b,)(r +13)° (19)
which implies that the condition derived in Case IV is sufficient to keep

T < 0. Cases VIII - XI are exactly similar, and in each case the degenerate
situation is taken care of by one of the inequalities from Cases II - V/VL.

Case XII 1 §£’I“3 §£ 0, T9g =Ty §£ 0. So

(15)rs — (17)ry = a,r17r3 + |d,|r3 =0 (20)



which has no solutions unless a, = d, = 0. If this is the case, then from
(13) we find that sufficient conditions for T' to be negative at any possible
extremal point are b, < 0 and b, + ¢, < 0. These conditions are already
required by the analysis of Cases IT and III.

Case XIII vy #0, 19 #0, r3 # 0, ry # 0.
(15)rs — (17)r1 = a,rir3 + |dp|rary =0 (21)

which, as in case XII, has no solutions unless a, = d, = 0. If this is the case,
the same argument as in Case XII shows that the necessary conditions for
T to be negative on § are those given by Cases II and III again.

In general there might be points on the boundary of the region S where T
is defined which are not extrema but which have larger values of T" than all
extreme points. We can exclude this possibility here as we have included all
parts of the domain boundary in cases II-IV, VIII and IX. O

We conclude that an attractor is guaranteed when all axial branches bifur-
cate supercritically. In particular there must be an attractor in the ‘blackened
regions’ omitted by Silber and Knobloch [1]. We now discuss previously unno-
ticed possibilities for stable branches of solutions in this region. We cannot rule
out the coexistence of other stable (possibly complicated) types of behaviour
in these regions.

2 Drifting Standing Cross Rolls

The normal form for a D, x T? Hopf bifurcation has one periodic branch of
solutions with submaximal isotropy - Standing Cross Rolls (SCR). The SCR
solution is of the form v; = w;, v9 = wsy. It does not exist for all coefficient
values, and when it does exist, it is always unstable [1, section 6] and [3] in
the cubic truncation considered here. The solution amplitudes and the value
of the phase 1., are given by

COS Yo = %Tzf) (22)

ﬁ _ Im(c?f) — |d|? sin 9, (23)
r3  Im(df) + |d]? sin e,

The DSCR solution is of the form ¢y = const, ry # r3 # ro = r4. As the moduli
of three of the amplitudes are unequal, they cannot all oscillate at the same




frequency: the solution must be quasiperiodic. The frequencies are constrained
by the fact that 1/1 = 0, so there are only two independent frequencies in the
solution, not three. By linearising around the SCR solution we can locate the
pitchfork bifurcation creating DSCR solutions from SCR solutions as the nor-
mal form coefficients are varied. We term this kind of bifurcation a coefficient
bifurcation: let

v =11 +u lvg| = |ws| =19
lwq| =11 —u V= Pger + @

so that when u = 0 this is an SCR solution. After substitution into (5)-(9)
and linearising, the equation for ¢ decouples. From the @ equation there is a
bifurcation when

A+ (2b, — a,)r? + (2¢, + d, €08 Pger — di SN APgep )73 =0 (24)

The new DSCR solution is not contained in the SCR subspace (defined by
v; = wy and vy = wy) which may be partly why it has been previously
overlooked. The mode amplitudes in a DSCR solution can be determined
from the normal form (1)-(4). Define

™ T3
1 = 25
) 52 ) ( )

S1 =

then, taking the real parts of the amplitude equations (5)-(7) we get:

A :
2 + b.57 + (a, + b,)s2 + 2¢, + Z—jRe(dew) =0 (26)
A 2, 2 iy
o) + a, + 2b, + ¢ (s] + s3) + s152Re(de ™) =0 (27)
2
A :
7 + b.85 + (a, + b,)sT + 2¢, + Z—;Re(dew) =0 (28)

From the equation for 1 (9):

fi(2 — 52 — 52) + 2s15,Im(de” ™) — Im(de™) [S—l + 2] =0 (29)
S9 S1
which yields an equation for the product s;s»:
Re(de®
S50 = _ Re(de™) (30)
Ay



From this and the other equations we can find two independent relations for
2 4 2
51 + s3:

R Re(de™)Re(de ™) — f,a, _ 2Re(dei¢)lml(de*w) — 2f;ay, (31)
1 2 arbrcr N [Im(de@)a . f]
Tl Re(dei?¥) T ¢

which leads to a cubic equation for tan . Having determined 1 we can now
use equations (30) and (31) to determine s; and ss.

3 Stability of DSCR

Near the coefficient bifurcation the DSCR solution must be unstable, as SCR
solutions are always unstable in this problem. However, as the normal form
coefficients are varied away from the bifurcation point (keeping the usual bifur-
cation parameter A fixed and positive) it can be stabilised by a triply-periodic
orbit in a ‘Hopf bifurcation’ as the coefficients are varied. The location of this
bifurcation is algebraically too complicated to determine. This sequence of
events has been observed along a path in coefficient space near a Hopf/steady-
state mode interaction in three-dimensional magnetoconvection [4], using the
continuation package AUTO [5]. In this example all coefficients in the normal
form are functions of one free parameter ¢ which lies between 0 and 1. Figure 1

asymmetric p.o.

Fig. 1. Sketch bifurcation diagram as C increases. H - Hopf bifurcation in the reduced
system (5)-(9), h - homoclinic bifurcation. Solid lines - stable solutions, dashed lines
- unstable solutions. The quasiperiodic solution branches only exist stably in certain
open regions of the coefficient space. The bifurcations occur on the boundaries of
these regions, as the particular path chosen here crosses from one region to another.

shows how the stable primary branch of solutions created in the Hopf bifur-
cation changes as the normal form coefficients are varied along this path. The
vertical scaling of the bifurcation diagram is purely schematic. The symmetric
periodic orbit in figure 1 lies in the SCR subspace, as do the Standing Squares
(SS), Alternating Rolls (AR) and Standing Rolls (SR) solutions. The sym-
metric periodic orbit undergoes a Hopf bifurcation to a triply-periodic orbit
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which lies outside the SCR subspace (labelled asymmetric p.o. on figure 1, and
shown in figure 2). This triply-periodic orbit is labelled asymmetric because
points on the orbit no longer satisfy both |v;| = |wy| and |ve| = |wsy|. The
asymmetric orbit undergoes a reverse Hopf bifurcation as the normal form
coefficients are varied to yield a DSCR solution, shown in figure 3.

Q.72 072 0.40
, 070 g 0.70 v 0.30
S 068 3 068 =
B é 8 020
g 0.66 ~ 0.66 E
> = > 010
0.64 0.64 :
0.62 e 0621 v 0.00t ot
0.000.100.200.300.40 0.200.250.300.350.40 101214161820
v1 modulus w1 modulus time
040 T T 072 T 45
g 035 o 070 40
= =]
3 S 068
ko]
2 0.30 8 2 35
E E 066
E N
0.25 0.64 3.0
020t . . 062t oo 250
101214161820 101214161820 101214161820
time time time

Fig. 2. A solution trajectory of (1)-(4) showing the stable asymmetric triply-periodic
orbit. Coefficient wvalues are: a = 4.671 — 41315, b = —8.983 — 4.812i,
c=—3.898 — 33.4517, d = —12.361 — 40.979:.

4 Conclusion

Topologically, there must be some attractor for the amplitude equations (1)-
(4) in A > 0 when there exists a sphere containing the origin which is flow-
invariant in forward time. In this letter we have shown that this condition is
equivalent to ensuring that the five axial branches bifurcate supercritically.
The criteria for existence of this sphere reduce to a small number of linear
constraints on the normal form coefficients. The lack of quadratic terms in the
amplitude equations, and the consequent structure of £ allows us to show that
the constraints for the existence of the flow-invariant sphere must be linear
constraints on the normal form coefficients. Each of the axial branches gives
rise to such a constraint.

We also demonstrate the existence of stable doubly and triply-periodic solu-
tion branches for the D, x T2 Hopf bifurcation problem, which have not been
noted before. In their analysis, Silber and Knobloch [1] investigated possible
heteroclinic cycles between various periodic solutions. As they remark, their
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Fig. 3. A solution trajectory of (1)-(4) converging to the stable DSCR solution (which
appears as a fized point in these plots). Coefficient values are: a = 3.497 — 5.548i,
b= —8.630 — 5.449i, ¢ = —4.375 — 34.069i, d = —13.036 — 42.079;.

proposed heteroclinic cycle is not stable, so there must necessarily be more
solution branches in this region of coefficient space.

It seems likely that similar straightforward, but careful, arguments can be ap-
plied to many other bifurcation problems, both steady and oscillatory. Further
work is in progress.

Acknowledgements

I have benefited from useful discussions with Michael Proctor and Alastair
Rucklidge. T also wish to thank two anonymous referees for a large number of
helpful comments which have greatly improved the format and clarity of this
paper. This work was funded by the EPSRC.

References

[1] M. Silber and E. Knobloch, Hopf bifurcation on a square lattice. Nonlinearity
4, 1063-1106 (1991)

[2] M. Golubitsky, LLN. Stewart and D.G. Schaeffer, Singularities and Groups in
Bifurcation Theory. Volume II. Springer, Applied Mathematical Sciences Series
69 (1988).

12



[3] J. Swift, Hopf bifurcation with the symmetry of a square. Nonlinearity 1, 333-
377 (1988)

[4] J. H. P. Dawes, The 1 : /2 Hopf/steady-state mode interaction in three-
dimensional magnetoconvection. submitted to Physica D

[5] E. Doedel, A. Champneys, T. Fairgrieve, Y. Kusnetsov, B. Sandstede and
X. Wang AUTO97: Continuation and bifurcation software for ordinary
differential equations. Available via FTP from directory pub/doedel/auto at
ftp.cs.concordia.ca (1997)

13



