
Stable quasiperiodic solutions in the Hopfbifurcation with D4� T 2 symmetry.J. H. P. DawesDepartment of Applied Mathematics and Theoretical Physics, University ofCambridge, Silver Street, Cambridge, CB3 9EW, UK. Tel: +44 1223 337900. Fax:+44-1223-337918. Email: J.H.P.Dawes@damtp.cam.ac.ukAbstractThe Hopf bifurcation with D4� T 2 symmetry generically has open regions ofthe normal form coe�cient space where all branches of periodic solutions bifurcatesupercritically but none is stable [1]. In such regions we prove the existence of anattracting set near the origin. A new possibility for the attractor is a quasiperiodicsolution branch related to Standing Cross Rolls (SCR). The new solution physicallyrepresents a planform we call Drifting Standing Cross Rolls. Unlike Standing CrossRolls, this solution can be stable, as can a further triply-periodic solution. Thisexplains the behaviour in the regions of coe�cient space omitted by Silber andKnobloch [1] and completes their analysis.Key words: quasiperiodic solutions, symmetric bifurcation theoryPACS Codes: 47.20 (bifurcation theory) ; 47.54 (pattern formation).Patterns which are periodic on a square lattice are often seen in numericaland laboratory experiments of a 
uid dynamical, chemical or biological na-ture. This has motivated theoretical analyses of solutions and their stabilityin the relevant equivariant (symmetric) bifurcation problems. In this letterwe consider oscillatory patterns on a square lattice and extend the theoreti-cal analysis of Silber and Knobloch [1] of the Hopf bifurcation with D4� T 2symmetry. Five distinct periodic solutions are guaranteed to appear (by theEquivariant Hopf Theorem [2]) in such a Hopf bifurcation, but there are openregions of the coe�cient space where none is stable. We prove a new resultgiving necessary and su�cient conditions for the existence of a stable solutionbranch. We highlight coe�cient values at which this stable solution is a doublyor triply-periodic oscillation.Section 1 introduces the amplitude equations for the Hopf bifurcation withD4� T 2 symmetry (the notation is the same as in [1]), and contains the state-Preprint submitted to Elsevier Preprint 21 September 1999



ment and proof of the existence of an attractor. The Drifting Standing CrossRoll solution and its relevance to this result is discussed in section 2. Section3 contains an example path through the normal form coe�cient space whichcaptures the associated bifurcation structure. Conclusions are drawn in section4.1 Existence of an attractorFollowing [1] neutrally stable modes at the bifurcation point have the formu=Re(v1eikx + v2eiky + w1e�ikx + w2e�iky)where x and y are the horizontal directions in the planform of the pattern. Re-quiring equivariance with respect to the group D4� T 2 leads us to amplitudeequations for (v1; v2; w1; w2) 2 C 4 :_v1=(� + ajw1j2 + bN1 + cN2)v1 + d �w1v2w2 (1)_v2=(� + ajw2j2 + bN2 + cN1)v2 + d �w2v1w1 (2)_w1=(� + ajv1j2 + bN1 + cN2)w1 + d�v1v2w2 (3)_w2=(� + ajv2j2 + bN2 + cN1)w2 + d�v2v1w1 (4)where N1 = jv1j2 + jw1j2, N2 = jv2j2 + jw2j2 and � = � + i�(�) with � and �both real and �(0) = !c the frequency of periodic solutions at the bifurcationpoint. The coe�cients a, b, c and d will in general be complex; their real andimaginary parts are denoted by subscripts r and i. Truncating the amplitudeequations at third order as we have done here is believed to be su�cient(generically) to determine the behaviour in a neighbourhood of the origin.The amplitude equations (1) - (4) are also equivariant with respect to timetranslations which generate a group S1. This is a symmetry which arises nat-urally in normal forms for Hopf bifurcation problems.The analysis of Silber and Knobloch [1] shows the existence for all coe�-cient values of �ve periodic solution branches to (1) - (4). These have two-dimensional �xed point subspaces and hence maximal isotropy subgroups [2].They are summarised in table 1, and will be referred to as axial branches.Other solution branches introduced later are still primary branches (meaningthat they are created at the origin, when � = 0 and exist for all values of �on one side of the bifurcation point) even though they may be quasiperiodic.Due to the lack of quadratic terms in the normal form, there are no secondarybifurcations in (1) - (4) as we vary � away from � = 0.2



Table 1Axial branches in the Hopf bifurcation with D4� T 2 symmetry.Fixed point Solution Representative Amplitudesubspace branch solution formII Travelling Rolls (TR) (z; 0; 0; 0) jzj2 = � �brIII Travelling Squares (TS) (z; z; 0; 0) jzj2 = � �ar+2brIV Standing Rolls (SR) (z; 0; z; 0) jzj2 = � �br+crV Standing Squares (SS) (z; z; z; z) jzj2 = � �ar+2br+2cr+drVI Alternating Rolls (AR) (z; iz; z; iz) jzj2 = � �ar+2br+2cr�drWriting r1=jv1j, r2=jv2j, r3=jw1j, r4=jw2j, and de�ning  = arg(v1w1 �v2 �w2)we can derive equations for the evolution of the amplitude moduli and thephase variable  :_r1= r1h�+ arr23 + brN1 + crN2i + r3r2r4Re(dei ) (5)_r2= r2h�+ arr24 + brN2 + crN1i + r4r1r3Re(de�i ) (6)_r3= r3h�+ arr21 + brN1 + crN2i + r1r2r4Re(dei ) (7)_r4= r4h�+ arr22 + brN2 + crN1i + r2r1r3Re(de�i ) (8)_ = r1r3�r2r4 + r4r2�Im(de�i )� r2r4�r1r3 + r3r1�Im(dei )+fi(r22 + r24 � r21 � r23) (9)where f = a+ 2b� 2c.Theorem 1 The amplitude equations for a Hopf bifurcation with D4� T 2symmetry are given in equations (1)-(4). Assume that the following combina-tions of coe�cients do not vanish: br, ar + 2br, br + cr, ar + br + 2cr � dr,so that all axial branches bifurcate either subcritically or supercritically. Thenfor all j�j < 1 there exists a compact set U { �xed independent of � { with thefollowing properties:P1: The interior of U contains the origin.P2: The interior of U contains all primary branches.3



P3: U is forward invariant under the 
ow derived from the vector �eld(1) - (4): �t(U) � U 8 t > 0.if and only if all axial branches bifurcate supercritically.Remark 1: There is a topological conjugacy between the 
ow for � = �+ > 1and the 
ow for � = 1 (and similarly for � = �� < �1 and � = �1). So if theconditions on U are satis�ed for j�j = 1, then using the conjugacy (equivalentto a rescaling of time and the amplitudes v1; : : : ; w2) we can �nd a (larger)compact set with the properties P1 - P3 for any value of �.Remark 2: Since the bifurcation at � = 0 is a purely local one it cannota�ect the dynamics on @U (the boundary of U). Moreover, since U contains allobjects created in the bifurcation at � = 0 (by property P2), the dynamics on@U are una�ected by the local bifurcation. In particular, trajectories crossing@U transversely for one value of � will continue to do so for all � 2 [�1; 1].Remark 3: Condition P3 guarantees the existence of a stable branch but itdoes not have to be unique.Proof: ()) We prove the contrapositive. Say an axial branch with isotropysubgroup � bifurcates subcritically. For � = �1, restricting the 
ow to Fix(�)�=C (which is a 
ow-invariant subspace) we have only 2 invariant sets: the originand the periodic orbit P which is unstable within Fix(�). U must contain Pto satisfy P2. As the periodic orbit is unstable, trajectories starting in theconnected component of Fix(�)nP not containing the origin will grow un-boundedly.Since Fix(�)nP intersects U there are points which leave U under the 
ow,hence property P3 cannot be satis�ed. So the existence of a subcritical axialbranch means we cannot �nd a U satisfying P1 - P3. 2Proof: (() To establish the existence of U in � > 0 it is enough to showthat R2 = �r2i satis�es an equation of the form12 d(R2)dt � �R2 + T (r1; : : : ; r4) (10)where T contains only terms of order 4 in the ri and T is strictly negativeeverywhere on the surface of a sphere R2 = C. Then, at large values of R2the quartic terms will dominate, and trajectories starting on the surface of the4



sphere must 
ow inside it (and hence the sphere is 
ow-invariant). This hasalready been done for the case ar < 0 by Silber and Knobloch [1, section 8].Lemma 2 below proves the result for ar � 0. 2Extremal points exist for each case that corresponds to an axial branch. Thecondition for the value of T at the extreme point to be negative (a linearconstraint on the coe�cients) is the same as the condition that the branchbifurcate supercritically. So when all axial branches bifurcate supercritically,a set U with properties P1 - P3 must exist, and hence there must be at leastone stable branch of solutions. By remark 2 this attracting neighbourhoodexists for all �.Lemma 2 Let R2 = �r2i , then the evolution equation for R2 is12 d(R2)dt = �R2 +Q � �R2 + T (11)whereQ=2ar(r21r23 + r22r24) + brR4 + 2(cr � br)N1N2 + 4dr cos r1r2r3r4 (12)T =2ar(r21r23 + r22r24) + brR4 + 2(cr � br)N1N2 + 4jdrjr1r3r2r4 (13)and the subscript r means `the real part of'. L = T + 2�(�r2i � C) is theLagrangian for the problem `minimise T subject to �r2i = C > 0'. � is theLagrange multiplier (the factor 2 is purely for convenience). Assume ar � 0in (1)-(4). If the values of T at all its extremal points given by@L@ri = 0 for all i = 1 : : : 4 (14)are strictly negative then there exists a compact set U satisfying P1 - P3.Proof: By an exhaustive analysis of the possible extremal points of (14) inthe regionS = f(r1; r2; r3; r4) 2 R4+ : �r2i = C; ri > 0 8 ig.This will be split up into di�erent cases, numbered II to XIII to correspond tothe di�erent isotropy subgroups of the original Hopf bifurcation with D4� T 2symmetry, see Silber and Knobloch [1, table 1] and tables 1 and 2. From (14)we requirebrr31 + (ar + br)r1r23 + crr1(r22 + r24) + jdrjr2r3r4 + �r1 = 0 (15)5



Table 2All cases of possible extreme points for L. Each case is numbered according to thecorresponding �xed point subspace for the original Hopf bifurcation problem as givenin [1]. Fixed point Conditions on Number ofsubspace variables zero variablesII r1 6= 0, r2 = r3 = r4 = 0 3III r1 = r2 6= 0, r3 = r4 = 0 2IV r1 = r3 6= 0, r2 = r4 = 0 2V/VI r1 = r2 = r3 = r4 6= 0 0VII r1 = r3 6= r2 = r4 6= 0 0VIII r1 6= r2 6= 0, r3 = r4 = 0 2IX r1 6= r3 6= 0, r2 = r4 = 0 2X/XI r1 = r2 6= r3 = r4 6= 0 0XII r1 = r3 6= r2 6= r4 6= 0 0XIII r1 6= r2 6= r3 6= r4 6= 0 0brr32 + (ar + br)r2r24 + crr2(r21 + r23) + jdrjr1r3r4 + �r2 = 0 (16)brr33 + (ar + br)r3r21 + crr3(r22 + r24) + jdrjr1r2r4 + �r3 = 0 (17)brr34 + (ar + br)r4r22 + crr4(r21 + r23) + jdrjr1r2r3 + �r4 = 0 (18)Finding these extremal points is equivalent to �nding the �xed points for aclearly related `gradient' steady bifurcation problem with the Lagrange mul-tiplier playing the role of the bifurcation parameter.From the form of the last cubic term on the left hand sides in (15)-(18) therecan be no extrema with exactly one variable zero. For each case which corre-sponds to an isotropy subgroup with a two-dimensional �xed point subspace ofthe original D4� T 2-symmetric problem we give the name of the axial branchin brackets. Having eliminated the phase variable  there are two cases wheredi�erent isotropy subgroups for the original Hopf bifurcation problem give thesame solution form here. Our de�nition of  di�ers by a factor of 2 from thatin Silber and Knobloch [1].Case II (Travelling Rolls - TR) r1 6= 0, r2 = r3 = r4 = 0. There is a solutionof (15)-(18) given by r̂21 = ��=br. This is an extremal point. From (13)we see that br < 0 is a su�cient condition to make T (r̂1; 0; 0; 0) < 0. Thiscondition is exactly the one that ensures the TR branch for the originalHopf bifurcation problem bifurcates supercritically.6



Case III (Travelling Squares - TS) r1 = r2 6= 0, r3 = r4 = 0. There is asolution of (15)-(18) given by r̂21 = r̂22 = ��=(br + cr). This is an extremalpoint. From (13) we see that br + cr < 0 is a su�cient condition to makeT (r̂1; r̂2; 0; 0) < 0. Similarly, this condition ensures that the TS branch for(1)-(4) bifurcates supercritically.Case IV (Standing Rolls - SR) r1 = r3 6= 0, r2 = r4 = 0. There is asolution of (15)-(18) given by r̂21 = r̂23 = ��=(ar + 2br). This is an extremalpoint. From (13) we see that ar + 2br < 0 is a su�cient condition to makeT (r̂1; 0; r̂3; 0) < 0. This condition ensures that the SR branch for (1)-(4)bifurcates supercritically.Cases V/VI (Standing Squares / Alternating Rolls - SS / AR) r1 = r2 =r3 = r4 6= 0. There is a solution of (15)-(18) given by r̂21 = r̂22 = r̂23 = r̂24 =��=(ar+2br+2cr+ jdrj). This is an extremal point. From (13) we see thatar+2br+2cr+ jdrj < 0 is a su�cient condition to make T (r̂1; r̂2; r̂3; r̂4) < 0.This condition ensures that the SS and AR branches for (1)-(4) bifurcatesupercritically.Cases VII { XI From the �rst two equations (15) and (16) we can deduce acontradiction: variables which were assumed to be di�erent must be equal.We show case VII as an example: r1 = r3 6= 0, r2 = r4 6= 0. So(15)) arr21 + 2brr21 + 2crr22 + jdrjr22 + � = 0(16)) arr22 + 2brr22 + 2crr21 + jdrjr21 + � = 0which implies r21 = r22 or ar + 2br � 2cr � jdrj = 0. If the �rst conditionholds, we have a contradiction since r1 and r2 were assumed to be di�erent(we are in Case III otherwise). If the second condition holds (a degeneratesituation) then from manipulation of (13) we can deduce thatT (r1; r2; 0; 0) = (ar + 2br)(r21 + r22)2 (19)which implies that the condition derived in Case IV is su�cient to keepT < 0. Cases VIII { XI are exactly similar, and in each case the degeneratesituation is taken care of by one of the inequalities from Cases II { V/VI.Case XII r1 6= r3 6= 0, r2 = r4 6= 0. So(15)r3 � (17)r1 ) arr1r3 + jdrjr22 =0 (20)7



which has no solutions unless ar = dr = 0. If this is the case, then from(13) we �nd that su�cient conditions for T to be negative at any possibleextremal point are br < 0 and br + cr < 0. These conditions are alreadyrequired by the analysis of Cases II and III.Case XIII r1 6= 0, r2 6= 0, r3 6= 0, r4 6= 0.(15)r3 � (17)r1 ) arr1r3 + jdrjr2r4 = 0 (21)which, as in case XII, has no solutions unless ar = dr = 0. If this is the case,the same argument as in Case XII shows that the necessary conditions forT to be negative on S are those given by Cases II and III again.In general there might be points on the boundary of the region S where Tis de�ned which are not extrema but which have larger values of T than allextreme points. We can exclude this possibility here as we have included allparts of the domain boundary in cases II-IV, VIII and IX. 2We conclude that an attractor is guaranteed when all axial branches bifur-cate supercritically. In particular there must be an attractor in the `blackenedregions' omitted by Silber and Knobloch [1]. We now discuss previously unno-ticed possibilities for stable branches of solutions in this region. We cannot ruleout the coexistence of other stable (possibly complicated) types of behaviourin these regions.2 Drifting Standing Cross RollsThe normal form for a D4� T 2 Hopf bifurcation has one periodic branch ofsolutions with submaximal isotropy - Standing Cross Rolls (SCR). The SCRsolution is of the form v1 = w1, v2 = w2. It does not exist for all coe�cientvalues, and when it does exist, it is always unstable [1, section 6] and [3] inthe cubic truncation considered here. The solution amplitudes and the valueof the phase  scr are given bycos scr = Re( �df)jdj2 (22)r21r22 = Im( �df)� jdj2 sin scrIm( �df) + jdj2 sin scr (23)The DSCR solution is of the form  = const, r1 6= r3 6= r2 = r4. As the moduliof three of the amplitudes are unequal, they cannot all oscillate at the same8



frequency: the solution must be quasiperiodic. The frequencies are constrainedby the fact that _ = 0, so there are only two independent frequencies in thesolution, not three. By linearising around the SCR solution we can locate thepitchfork bifurcation creating DSCR solutions from SCR solutions as the nor-mal form coe�cients are varied. We term this kind of bifurcation a coe�cientbifurcation: letjv1j = r1 + u jv2j = jw2j = r2jw1j = r1 � u  =  scr + �so that when u = 0 this is an SCR solution. After substitution into (5)-(9)and linearising, the equation for _� decouples. From the _u equation there is abifurcation when�+ (2br � ar)r21 + (2cr + dr cos scr � di sin scr)r22 =0 (24)The new DSCR solution is not contained in the SCR subspace (de�ned byv1 = w1 and v2 = w2) which may be partly why it has been previouslyoverlooked. The mode amplitudes in a DSCR solution can be determinedfrom the normal form (1)-(4). De�nes1 = r1r2 s2 = r3r2 (25)then, taking the real parts of the amplitude equations (5)-(7) we get:�r22 + brs21 + (ar + br)s22 + 2cr + s2s1Re(dei )= 0 (26)�r22 + ar + 2br + cr(s21 + s22) + s1s2Re(de�i )= 0 (27)�r22 + brs22 + (ar + br)s21 + 2cr + s1s2Re(dei )= 0 (28)From the equation for _ (9):fi(2� s21 � s22) + 2s1s2Im(de�i )� Im(dei )hs1s2 + s2s1 i = 0 (29)which yields an equation for the product s1s2:s1s2 = �Re(dei )ar (30)9



From this and the other equations we can �nd two independent relations fors21 + s22:s21 + s22 = Re(dei )Re(de�i )� frararbrcr = 2Re(dei )Im(de�i )� 2fiarar[ Im(dei )Re(dei )ar � fi] (31)which leads to a cubic equation for tan . Having determined  we can nowuse equations (30) and (31) to determine s1 and s2.3 Stability of DSCRNear the coe�cient bifurcation the DSCR solution must be unstable, as SCRsolutions are always unstable in this problem. However, as the normal formcoe�cients are varied away from the bifurcation point (keeping the usual bifur-cation parameter � �xed and positive) it can be stabilised by a triply-periodicorbit in a `Hopf bifurcation' as the coe�cients are varied. The location of thisbifurcation is algebraically too complicated to determine. This sequence ofevents has been observed along a path in coe�cient space near a Hopf/steady-state mode interaction in three-dimensional magnetoconvection [4], using thecontinuation package AUTO [5]. In this example all coe�cients in the normalform are functions of one free parameter � which lies between 0 and 1. Figure 1
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which lies outside the SCR subspace (labelled asymmetric p.o. on �gure 1, andshown in �gure 2). This triply-periodic orbit is labelled asymmetric becausepoints on the orbit no longer satisfy both jv1j = jw1j and jv2j = jw2j. Theasymmetric orbit undergoes a reverse Hopf bifurcation as the normal formcoe�cients are varied to yield a DSCR solution, shown in �gure 3.
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Fig. 2. A solution trajectory of (1)-(4) showing the stable asymmetric triply-periodicorbit. Coe�cient values are: a = 4:671 � 4:131i, b = �8:983 � 4:812i,c = �3:898 � 33:451i, d = �12:361 � 40:979i.4 ConclusionTopologically, there must be some attractor for the amplitude equations (1)-(4) in � > 0 when there exists a sphere containing the origin which is 
ow-invariant in forward time. In this letter we have shown that this condition isequivalent to ensuring that the �ve axial branches bifurcate supercritically.The criteria for existence of this sphere reduce to a small number of linearconstraints on the normal form coe�cients. The lack of quadratic terms in theamplitude equations, and the consequent structure of L allows us to show thatthe constraints for the existence of the 
ow-invariant sphere must be linearconstraints on the normal form coe�cients. Each of the axial branches givesrise to such a constraint.We also demonstrate the existence of stable doubly and triply-periodic solu-tion branches for the D4� T 2 Hopf bifurcation problem, which have not beennoted before. In their analysis, Silber and Knobloch [1] investigated possibleheteroclinic cycles between various periodic solutions. As they remark, their11
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