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Abstract
Techniques of equivariant bifurcation theory are used to study the Hopf
bifurcation problem on a square lattice where the group � = D4 � T 2 acts
�-simply on C

8. This enables the analysis of the stability of solutions found in
a previous analysis (Silber and Knobloch 1991 Nonlinearity 4 1063–106) of the
�-simple representation on C

4 to both solutions which are spatially periodic on
a rhombic lattice, and to a countably infinite number of oscillatory ‘superlattice’
solutions. The normal form for the bifurcation is computed, and conditions for
the stability of all 17 C-axial branches are given.

Numerical investigations indicate that there exist open regions of
coefficient space where the dynamics of the cubic order truncation of the normal
form are chaotic. Chaotic dynamics have not previously been found in simpler
Hopf bifurcation problems in normal form.

PACS numbers: 0545, 4754, 4720

1. Introduction

A common situation arising in chemical reactions, biological systems and physical experiments
is the existence of a pattern-forming instability on the plane R

2; a uniform, time-independent
initial state loses stability to perturbations with a non-zero wavenumber as a physical parameter
is varied. The homogeneous state is invariant under the group E(2) of planar translations,
reflections and rotations and hence the centre manifold E

c(R2) at the bifurcation point must
contain Fourier modes of the critical wavenumber pointing in every horizontal direction. Thus
E
c(R2) is infinite dimensional. Since many of the patterns that result from such an instability

are (at least approximately) spatially periodic, a common approach to studying the formation
of these spatially periodic patterns on R

2 from a homogeneousE(2)-invariant state is to restrict
attention to classes of solutions which are periodic in the plane with respect to a lattice L. In
this paper we will consider only square lattices. Such a restriction results in a reduction in the
symmetry of the problem from the Euclidean group E(2) to the compact group D4 � T 2 and
enables equivariant bifurcation theory to be applied.
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Many previous studies of Hopf bifurcations on square lattices inE(2)-equivariant physical
systems have relied on the theoretical results of Silber and Knobloch [5] for the eight-
dimensional representation of D4 � T 2 on C

4. In this analysis the spacing of the lattice L
equalled the wavelength of the perturbations considered. This does not have to be the case, and
consideration of other lattices leads naturally to the analysis of the countably infinite number of
16-dimensional representations of D4 �T 2 on C

8. Consideration of these higher-dimensional
representations enables a more general study of the stability of previously identified patterns.
Moreover, ‘superlattice’ patterns appear as C-axial branches in the bifurcation problem. Since
the irreducible representations of D4 � T 2 are either four or eight dimensional, this paper
completes the analysis of branches of solutions for Hopf bifurcations in the presence of a
�-simple action of D4 � T 2.

In what follows we make extensive use of the previous group-theoretic results of [3],
and assume familiarity with the previous results of [2, 5] for related Hopf bifurcations with
symmetry. The paper is organized as follows. In section 2 the details of the bifurcation problem
are fleshed out. Section 3 tabulates and summarizes the C-axial solution branches and their
isotropy subgroups. The normal form for the bifurcation problem is derived in section 4,
and complete stability results for the C-axial branches are calculated in section 5. Section 6
briefly indicates that it is possible for branches of stable chaotic dynamics to be created in the
bifurcation.

2. Statement of the problem

We consider a set of smooth PDEs written in evolutionary form

∂u

∂t
= F(u, µ) (1)

which has a solution u(x, y, z, t) = 0 for all values of the parameter µ. We assume that this
uniform, time-independent state loses stability in an oscillatory bifurcation to perturbations
with a non-zero wavenumber kc as the bifurcation parameter µ increases through zero. The
uniform state is invariant under the non-compact Euclidean group E(2) of planar translations,
rotations and reflections. The Euclidean group is a semi-direct product E(2) = O(2)� R

2 of
the group O(2) of orthogonal transformations of the (x, y)-plane (rotations about the origin
and reflections in lines containing the origin) and the group of planar translations R

2. The
group E(2) acts in a natural way on the variables (x, y) and this induces an action on u. In
this paper we consider only the scalar representation of E(2) and do not discuss the alternative
pseudoscalar representation [10, 12]. In all that follows we suppress the dependence of u

on the z-coordinate. A direct consequence of the E(2) symmetry of the solution u = 0
is that the centre manifold at the bifurcation point is infinite dimensional; it describes the
continuous circle of wavevectors of length kc. To reduce the problem to one with a finite-
dimensional centre manifold we restrict the analysis to solutions which lie on the square lattice
L = {n�1 + m�2 : (n,m) ∈ Z

2, �1 = (2π, 0), �2 = (0, 2π)} in the (x, y)-plane. Thus
u(x + 2πn, y + 2πm, z, t) = u(x, y, z, t) for any pair of integers (n,m).

We also define the dual lattice L∗, spanned by integer combinations of the unit wavevectors
(1, 0) and (0, 1). The dual lattice L∗ (identical, apart from a scaling, to the real-space lattice
L in this case) intersects the critical circle of radius kc in only a finite number of points,
generally only four or eight. Since these intersections correspond to modes which together
span the centre manifold, the centre manifold is rendered finite dimensional and all other
points in L∗ are bounded away from the critical circle. The four-point intersection yields a
�-simple representation of D4 � T 2 × S1 on C

4: this Hopf bifurcation was studied in detail
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Figure 1. Superlattice planform for the case α = 2, β = 1: the full circle indicates the
circle of critical modes. This intersects the dual lattice L∗ at eight points giving the wavevectors
±k1, . . . ,±k4. Note that in this problem the lattice L and the dual lattice L∗ are equal.

by Silber and Knobloch [5]. In this paper we study the eight-point intersection which yields
an irreducible representation of D4 � T 2 × S1 on C

8. There are countably many of these
larger irreducible representations which we distinguish by the integers α and β which define
the periodic lattice. Figure 1 shows the circle of critical wavevectors and the intersections
with the dual lattice L∗ giving the eight critical wavevectors ±k1, . . . ,±k4, defined to be
k1 = (α, β),k2 = (−β, α),k3 = (β, α),k4 = (−α, β). Without loss of generality we have
scaled lengths in the original partial differential equations (PDEs) (1) so that k2

c = α2 + β2.
Restricted to the lattice, we express the perturbations to the uniform solution u = 0 in the
form of a sum of these Fourier modes:

û = Re
[
z1ei(αx+βy−ω0t) + z2ei(−βx+αy−ω0t) + z3ei(−αx−βy−ω0t) + z4ei(βx−αy−ω0t)

+w1ei(αx−βy−ω0t) + w2ei(βx+αy−ω0t) + w3ei(−αx+βy−ω0t) + w4ei(−βx−αy−ω0t)
]
. (2)

The space of all such perturbations û is (isomorphic to) a vector space W ∼= C
8 whose

elements are vectors w = (z1, z2, z3, z4, w1, w2, w3, w4). This planform is shown graphically
in figure 1. The planform inherits spatial symmetries � = D4 � T 2 from the original E(2)-
equivariance and, in normal form, also has a time-translation symmetry group S1. The group
D4 is generated by a reflection in the x-axis, denoted by mx , and a rotation of π/2 denoted by
ρ. These act on the mode amplitudes w ∈ W ∼= C

8 according to

mx : (x, y) → (x,−y) (3)

w → (w1, w4, w3, w2, z1, z4, z3, z2) (4)

ρ: (x, y) → (y,−x) (5)

w → (z2, z3, z4, z1, w2, w3, w4, w1). (6)
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The group T 2 × S1 of translations in the x and y directions and in time acts as follows

[(ξ, η), φ]: (x, y, t) → (x + ξ, y + η, t + φ) (7)

w → (z1ei(αξ+βη), z2ei(αη−βξ), z3ei(−αξ−βη), z4ei(βξ−αη),

w1ei(αξ−βη), w2ei(βξ+αη), w3ei(−αη+βη), w4ei(−βξ−αη))e−iω0φ (8)

where (ξ, η) ∈ T 2 and φ ∈ S1. Following Dionne et al [1] and using exactly the same
reasoning as they employed (namely to ensure that we have imposed the finest lattice which
will support the set of critical modes) we require α and β to be relatively prime and not both
odd. Without loss of generality we assume α > β � 1. The representation of D4 � T 2 × S1

defined by (4), (6) and (8) is �-simple since it is isomorphic to two copies of an absolutely
irreducible representation acting independently on (z1 + z̄3, z2 + z̄4, w1 + w̄3, w2 + w̄4) and
(i(z1 − z̄3), i(z2 − z̄4), i(w1 − w̄3), i(w2 − w̄4)).

3. C-axial branches and their isotropy subgroups

An isotropy subgroup #w is the collection of symmetries γ which leave the point w ∈ W

invariant: #w = {γ ∈ � × S1 : γw = w}. An idea closely related to this is that of
a fixed-point subspace of an isotropy subgroup: Fix(#) = {w ∈ W : σw = w,∀σ ∈
#}. For a (non-degenerate) Hopf bifurcation problem with symmetry group � the main
result on the existence of branches of periodic solutions is the equivariant Hopf theorem
[4, 9]: a branch of solutions with isotropy subgroup # ⊂ � × S1 is guaranteed for every
isotropy subgroup that has dim Fix(#) = 2. Such branches of solutions are called C-
axial.

The group action defined by (4), (6) and (8) on the vector space W ∼= C
8 defines the

equivariant bifurcation problem. The general, and entirely group-theoretic, analysis of Dionne
et al [3] proves the existence of exactly four branches of C-axial periodic solutions which
have translation-free isotropy subgroups. There are 13 other branches of periodic solutions
which have two-dimensional fixed-point subspaces and hence are guaranteed to exist by the
equivariant Hopf theorem. However, none of the 13 other branches have translation-free
isotropy subgroups: they are all spatially periodic on a finer lattice than that on which the
problem has been posed. To examine these non-translation-free C-axial branches we define
the following three subspaces of W :

S1 = {w ∈ W : w = (z1, z2, z3, z4, 0, 0, 0, 0)} (9)

S2 = {w ∈ W : w = (z1, 0, z3, 0, w1, 0, w3, 0)} (10)

S3 = {w ∈ W : w = (z1, 0, z3, 0, 0, w2, 0, w4)}. (11)

That all C-axial solution branches with non-translation-free isotropy subgroups must be
contained in one of these subspaces is clear because if a fixed-point subspace contains
points where more than four mode amplitudes are non-zero, the corresponding isotropy
subgroup can contain no non-trivial spatial translations and hence the fixed-point subspace
must be that of a translation-free branch. All possibilities (up to conjugacy) for
subspaces with four or fewer non-zero amplitudes are covered by S1, . . . ,S3. The
dynamics within S1 ∼= C

4 corresponds exactly to the analysis of the eight-dimensional
representation of � by Silber and Knobloch [5]. The dynamics within S2 and S3

correspond to Hopf bifurcations on two distinct rhombic lattices. The Hopf bifurcation
on a rhombic lattice has been previously studied by Silber et al [2] and we quote their
results.
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Table 1. Subspace S1: C-axial branches with dim Fix(#) = 2. The last column defines the isotropy
subgroups in terms of their generators. Groups isomorphic to a circle group S1 are denoted S1∗
(where ∗ is some label to distinguish different groups), except for SO(2). Cyclic groups of order
q are similarly denoted Z

∗
q . Discrete spatial translation groups are denoted St,∗. For each solution,

all variables omitted from the description of the fixed-point subspace are set to zero.

Solution branch, (abbreviation) Isotropy Group definitions
and fixed-point subspace subgroup and generators

1 Travelling rolls (TR) SO(2) × S1
T R SO(2) =

〈[(
−φ

α
,
φ

β

)
, 0
]〉

z1 S1
T R =

〈[(
−φ

α
, 0
)
, φ
]〉

2 Standing rolls (SR) Z
c
2 × Z

ρ2

2 × SO(2) Z
c
2 =

〈[(π(α + β)

α2 + β2
,
π(β − α)

α2 + β2

)
, π
]〉

z1 = z3 Z
ρ2

2 = 〈ρ2〉

3 Travelling squares (TS) S1
T S × St,1 S1

T S =
〈[( β − α

α2 + β2
φ,− (α + β)

α2 + β2
φ
)
, φ
]〉

z1 = z2 St,1 =
〈[( 2πα

α2 + β2
,

2πβ

α2 + β2

)
, 0
]〉

4 Standing squares (SS) Z
SS
4 × Z

c
2 × St,1 Z

SS
4 = 〈ρ〉

z1 = z2 = z3 = z4

5 Alternating rolls (AR) Z
AR
4 × Z

c
2 × St,1 Z

AR
4 =

〈[(
− πα

α2 + β2
,− πβ

α2 + β2

)
,
π

2

]
◦ ρ
〉

z1 = z2 = iz3 = iz4

Table 2. Subspace S2: C-axial branches with dim Fix(#) = 2. The last column defines the
isotropy subgroups in terms of their generators. D∗

2 denotes a dihedral group of order 4, where ∗
is a distinguishing label for each group. See the caption to table 1 for other labelling conventions.
For each solution, all variables omitted from the description of the fixed-point subspace are set to
zero.

Solution branch (abbreviation) Isotropy Group definitions
and fixed-point subspace subgroup and generators

6 Travelling rhombs 1 (TRh1) Z
x
2 × S1

TRh1 × St,2 Z
x
2 = 〈mx〉

z1 = w1 S1
TRh1 =

〈[(
−φ

α
, 0
)
, φ
]〉

≡ S1
T R

St,2 =
〈[(π

α
,
π

β

)
, 0
]〉

7 Travelling rhombs 2 (TRh2) Z
y

2 × S1
TRh2 × St,2 Z

y

2 = 〈my〉
z1 = w3 S1

TRh2 =
〈[(

0,−φ

β

)
, φ
]〉

10 Standing rectangles 1 (SRec1) D
x,y

2 × St,2 D
x,y

2 = 〈mx, my〉
z1 = z3 = w1 = w3

12 Alternating rectangles 1 (ARec1) D̃x
2 × St,2 D̃x

2 =
〈
ρ2,

[(
− π

2α
,− π

2β

)
,
π

2

]
◦ mx

〉
iz1 = iz3 = w1 = w3

Since there are five C-axial branches contained in S1 (see table 1), a further four contained
in each of S2 and S3 (tables 2 and 3) and four ‘superlattice’ branches, there are exactly 17
branches guaranteed to exist by the equivariant Hopf theorem. Further branches of periodic
solutions are possible (for example, the standing cross-rolls solution in S1); these have
submaximal isotropy subgroups. The translation-free branches identified by [3] are listed
in table 5. In [3] the four branches standing super-squares, standing anti-squares, alternating
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Table 3. Subspace S3: C-axial branches with dim Fix(#) = 2. The last column defines the
isotropy subgroups in terms of their generators. See the captions to tables 1 and 2 for group
labelling conventions. For each solution, all variables omitted from the description of the fixed-
point subspace are set to zero.

Solution branch (abbreviation) Isotropy Group definitions
and fixed-point subspace subgroup and generators

8 Travelling rhombs 3 (TRh3) Z
d
2 × S1

TRh3 × St,3 Z
d
2 = 〈md 〉

z1 = w2 S1
TRh3 =

〈[(
− φ

α + β
,− φ

α + β

)
, φ
]〉

St,3 =
〈[( 2πα

α2 − β2
,− 2πβ

α2 − β2

)
, 0
]〉

9 Travelling rhombs 4 (TRh4) Z
d ′
2 × S1

TRh4 × St,3 Z
d ′
2 = 〈md ′ 〉

z1 = w4 S1
TRh4 =

〈[( φ

β − α
,− φ

α − β

)
, φ
]〉

11 Standing rectangles 2 (SRec2) D
d,d ′
2 × St,3 D

d,d ′
2 = 〈md, md ′ 〉

z1 = z3 = w2 = w4

13 Alternating rectangles 2 (ARec2) D̃d
2 × St,3 D̃d

2 =
〈
ρ2,

[(
− πα

α2 − β2
,

πβ

α2 − β2

)
,
π

2

]
◦ md

〉
iz1 = iz3 = w2 = w4

super-squares and alternating anti-squares were denoted by S2α,β , S4α,β , S1α,β and S3α,β ,
respectively. For alternating super-squares and alternating anti-squares the exact form of the
fixed-point subspace depends on the parity of α and β (either α or β is odd, but not both or else
a finer lattice which supports these solution branches can be found) but the isotropy subgroup
itself does not.

3.1. Hidden symmetries

In the computations of the stability of these periodic solutions in section 5 we take into account
various hidden symmetries of solution branches [4, 11]. Hidden symmetries are elements of
E(2)which are not elements of� but which nevertheless restrict the normal form equations and
the Jacobian evaluated in the corresponding fixed-point subspace. Only the C-axial branches
in subspace S1 are affected by these calculations. A symmetry operation γ̃ /∈ � is a hidden
symmetry if there is a fixed-point subspace Fix(#) such that U ≡ Fix(#) ∩ γ̃ (Fix(#)) �= ∅
but U �= Fix(#). Then γ̃ : U → U is a symmetry on U and any �-equivariant function f

must in addition satisfy f(γ̃u) = γ̃f(u) for all u ∈ U . Specifically, we define the hidden
symmetry R to be the anticlockwise rotation by an angle θ = 2 tan−1(β/α). Then mx ◦ R−1

acts only on S1:

mx ◦ R−1 : (z1, z2, z3, z4, 0, 0, 0, 0) → (z1, z4, z3, z2, 0, 0, 0, 0). (12)

In terms of the definition of a hidden symmetry given above, let # be the translation group
St,1 generated by the translation [(ξ, η), φ] = [( 2πα

α2+β2 ,
2πβ
α2+β2 ), 0]. Then Fix(#) = S1, and

U = Fix(#) ∩ mx ◦ R−1Fix(#) = {(z1, z2, z3, z2, 0, 0, 0, 0) ∼= C
3}. See section 3.2

of [1] for a discussion of hidden symmetries in related steady-state bifurcation problems.
The five C-axial branches in S1 are periodic on a lattice L̂ which is finer than L; by
considering these branches to be periodic with respect to L̂ we can compute their full symmetry
groups which include these hidden symmetries. These larger symmetry groups are given in
table 4.
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Table 4. Subspace S1: C-axial branches with dim Fix(#) = 2 and their complete symmetry
groups, including hidden symmetries. Refer to table 1 for group labelling conventions and the
omitted group definitions.

Symmetry Group
Solution branch group definitions

1 Travelling rolls O(2) × S1
T R O(2) =

〈
mx ◦ R−1,

[(
−φ

α
,
φ

β

)
, 0
]〉

2 Standing rolls Z
c
2 × Z

ρ2

2 × O(2)

3 Travelling squares S1
T S × St,1 × Z

dR
2 Z

dR
2 = 〈md ◦ R−1〉

4 Standing squares DSS
4 × Z

c
2 × St,1 DSS

4 = 〈ρ,mx ◦ R−1〉

5 Alternating rolls DAR
4 × Z

c
2 × St,1 DAR

4 =
〈[(

− πα

α2 + β2
,− πβ

α2 + β2

)
,
π

2

]
◦ ρ,mx ◦ R−1

〉

Table 5. C-axial branches with translation-free isotropy subgroups. The groups denoted by D∗
4

are dihedral groups of order 8. All other group labelling conventions are given in the captions to
tables 1 and 2.

Solution branch Fixed-point subspace, isotropy subgroup and generators
(abbreviation)

14 Standing super-squares z1 = z2 = z3 = z4 = w1 = w2 = w3 = w4

(SSS)
DSSS

4 × Z
π
2 DSSS

4 = 〈ρ,mx〉
Z
π
2 = 〈[(π, π), π ]〉

15 Standing anti-squares −z1 = −z2 = −z3 = −z4 = w1 = w2 = w3 = w4

(SAS)
DSAS

4 × Z
π
2 DSAS

4 = 〈ρ, [(π, π), 0] ◦ mx〉
16 Alternating super-squares α odd: z1 = z3 = w1 = w3 = −iz2 = −iz4 = −iw2 = −iw4

(ASS) β odd: z1 = z3 = w1 = w3 = iz2 = iz4 = iw2 = iw4

DASS
4 × Z

π
2 DASS

4 =
〈[
(π, 0),

π

2

]
◦ ρ,mx

〉
17 Alternating anti-squares α odd: z1 = z3 = −w1 = −w3 = iz2 = iz4 = −iw2 = −iw4

(AAS) β odd: z1 = z3 = −w1 = −w3 = −iz2 = −iz4 = iw2 = iw4

DAAS
4 × Z

π
2 DAAS

4 =
〈[
(0, π),

π

2

]
◦ ρ, [(π, π), 0] ◦ mx

〉

3.2. The isotropy lattice

The calculation of the four-dimensional fixed-point subspaces is a natural way to proceed
after all C-axial branches are known. This information is essential to investigate possible
heteroclinic cycles between different periodic solutions. Although the analysis of heteroclinic
cycles has not been pursued in detail, the calculation of the four-dimensional fixed-
point subspaces is still important: it is of interest for calculating the relative stability
of two periodic solutions which lie within the same four-dimensional subspace, and
such stability calculations should agree with the stability results computed from the
Jacobian matrix via isotypic decomposition. To determine the dynamics within a four-
dimensional subspace Fix(#) we calculate the normalizer N (#) = {γ ∈ � × S1 :
γ−1#γ = #} of each corresponding isotropy subgroup #. The dynamics within Fix(#)

is N (#)/#-equivariant (note that # acts trivially on Fix(#) by definition), but may also
be restricted by the form of the normal form equations restricted to Fix(#). Table 6
lists the 25 four-dimensional fixed-point subspaces and their normalizers and table 7
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Table 6. Four-dimensional fixed-point subspaces. Note that the C-axial branches are numbered
1–17. For each subspace, all variables omitted from the second column are set to zero and
unconstrained variables are independent. A group isomorphic to the action of the normalizer is
given in the last column: the elements generating isomorphic normalizers are different for different
four-dimensional subspaces.

Subspace Fixed-point Structure of
number subspace N (#)/#

18 z1, z3 O(2) × S1

19 z1, z2 O(2) × S1

20 z1 = z2, z3 = z4 O(2) × S1

21 iz1 = z2, iz3 = z4 O(2) × S1

22 z1 = z3, z2 = z4 D4 × S1

23 z1, w1 O(2) × S1

24 z1, w3 O(2) × S1

25 z1, w2 O(2) × S1

26 z1, w4 O(2) × S1

27 z1 = w1, z3 = w3 O(2) × S1

28 z1 = w3, z3 = w1 O(2) × S1

29 z1 = z3, w1 = w3 D4 × S1

30 iz1 = w1, iz3 = w3 O(2) × S1

31 iz1 = w3, iz3 = w1 O(2) × S1

32 z1 = w2, z3 = w4 O(2) × S1

33 z1 = w4, z3 = w2 O(2) × S1

34 z1 = z3, w2 = w4 D4 × S1

35 iz1 = w2, iz3 = w4 O(2) × S1

36 iz1 = w4, iz3 = w2 O(2) × S1

37 z1 = z2 = z3 = z4, w1 = w2 = w3 = w4 Z
2
2 × S1

38 z1 = z3 = w1 = w3, z2 = w2 = z4 = w4 D4 × S1

39 z1 = z3 = w2 = w4, z2 = z4 = w1 = w3 Z
2
2 × S1

40 z1 = z3 = −w1 = −w3, z2 = z4 = −w2 = −w4 D4 × S1

41 z1 = z3 = −w2 = −w4, z2 = z4 = −w1 = −w3 Z
2
2 × S1

42 z1 = z3 = iz2 = iz4, w1 = w3 = iw2 = iw4 Z
2
2 × S1

summarizes the structure of inclusions of C-axial branches within four-dimensional fixed-
point subspaces.

4. Derivation of the normal form

To determine conditions for the stability of the periodic solutions guaranteed by the equivariant
Hopf theorem we first derive the form of the amplitude equations on the centre manifold. These
amplitude equations are restricted by their equivariance with respect to the action of � defined
by (4), (6) and (8):

ẇ = f(w, µ), f(γw, µ) = γf(w, µ) ∀ γ ∈ � × S1. (13)

Assuming f is a smooth function, it can be written as a sum of terms

f(w, µ) =
n∑

j=1

gj (w, µ)hj (w) (14)

where the terms g1(w, µ), . . . , gn(w, µ) are � × S1-equivariant and the hj (w) terms are
polynomials in the invariants under �×S1. So we are required to find all low-order invariants
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Table 7. The inclusions of C-axial branches in four-dimensional fixed-point subspaces. This
information is sufficient to construct the isotropy lattice.

Subspace C-axial Contained in these
number branch subspaces of dimension 4

1 TR 18, 19, 23, 24, 25, 26
2 SR 18, 22, 29, 34
3 TS 19, 20, 21
4 SS 20, 22, 37
5 AR 21, 22, 42
6 TRh1 23, 27, 30
7 TRh2 24, 28, 31
8 TRh3 25, 32, 35
9 TRh4 26, 33, 36

10 SRec1 27, 28, 29, 38, 40
11 SRec2 32, 33, 34, 39, 41
12 ARec1 29, 30, 31
13 ARec2 34, 35, 36
14 SSS 37, 38, 39
15 SAS 37, 40, 41
16 ASS 38, 42
17 AAS 40, 42

under the action of � × S1. The action of the interchange symmetries (4) and (6) determine
the form of f2, . . . , f8 once the form of the first component of f is found. Hence we will
determine the form of f1, the evolution equation for z1; the equation ż1 = f1(w, µ) is required
to be equivariant with respect to the T 2 × S1 action defined by (8).

4.1. T 2 × S1 invariants

Let I = zm1 z
n
2z

p

3 z
q

4w
r
1w

s
2w

t
3w

u
4 be a general invariant term, where m, . . . , u are integers. We

introduce the usual convention that zm1 ≡ z̄
|m|
1 if m < 0. The order O(I ) of an invariant I is

defined to be O(I ) = |m| + |n| + |p| + |q| + |r| + |s| + |t | + |u|. S1 invariance immediately
implies that all invariants must be of even order. Furthermore, the only invariants of order 2
are the usual ones |z1|2, . . . , |w4|2. We assume that the expression I has had all possible order
2 invariants removed from it. Then T 2 invariance implies

(m − p + r − t)α + (q − n + s − u)β = 0 (15)

(n − q + s − u)α + (m − p − r + t)β = 0 (16)

since ξ and η are independent. Since α and β are relatively prime we deduce

m − p + r − t = jβ, q − n + s − u = −jα (17)

n − q + s − u = kβ, m − p − r + t = −kα (18)

where j and k are integers. Define A = m− p, B = r − t , C = n− q and D = s − u so that
these conditions become

A + B = jβ, A − B = −kα (19)

C + D = kβ, C − D = jα (20)

which have a solution

A = (jβ − kα)/2, B = (jβ + kα)/2 (21)

C = (kβ + jα)/2, D = (kβ − jα)/2. (22)
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However, A, . . . ,D are integers, hence jβ − kα, etc are all even. As exactly one of α and β

is even, this further implies that both j and k must be even. So we may define j ′ = j/2 and
k′ = k/2. We now look for low-order invariants in the three cases: (a) j ′ = k′ = 0, (b) j ′ = 0,
k′ �= 0 and (c) j ′ �= 0, k′ = 0.

Case (a) produces all possible invariants of order 4. For example, to find all order 4
invariants containing z1, we fix m = 1. Then, as j ′ = k′ = 0 implies A = B = C = D = 0
we must set p = 1 and one pair of (n, q), (r, t) and (s, u) equal to (−1,−1), hence O(I ) = 4.
This results in the three invariants

z1z3z̄2z̄4, z1z3w̄1w̄3, z1z3w̄2w̄4. (23)

All other order 4 invariants are produced by considering the remaining possibilities.
In case (b) it suffices to consider j ′ = 0, k′ = 1 since all other integers for k′ merely

introduce multiples of the order 4 invariants found in case (a). This results in four distinct
invariants of order 2(α + β):

z̄α1 z
β

2w
α
1 w̄

β

4 , z̄α1 z̄
β

4w
α
1w

β

2 (24)

z
β

2 z
α
3 w̄

α
3 w̄

β

4 , zα3 z̄
β

4w
β

2 w̄
α
3 . (25)

A further four invariants of order 2(α + β) are derived in case (c):

z
β

1 z
α
2 w̄

α
2 w̄

β

3 , z
β

1 z̄
α
4 w̄

β

3 w
α
4 (26)

zα2 z̄
β

3w
β

1 w̄
α
2 , z̄

β

3 z̄
α
4w

β

1 w
α
4 . (27)

To prove that these three cases produce all invariants of order less than 2(α+β +1) we consider
all the remaining values of the pair (j ′, k′). These divide into two cases; either the product
j ′k′ > 0 or j ′k′ < 0. In the case j ′k′ > 0 we have (since α > β > 0):

O(I ) � |A| + |B| + |C| + |D| � |A + D| + |B + C|
� |(j ′ + k′)(β − α)| + |(j ′ + k′)(α + β)|
� 2|α − β| + 2|α + β| � 2(α + β + 1). (28)

Similarly, when j ′k′ < 0 we have

O(I ) � |A| + |B| + |C| + |D| � |A − D| + |B − C|
� |(j ′ − k′)(α + β)| + |(j ′ − k′)(β − α)|
� 2|α − β| + 2|α + β| � 2(α + β + 1). (29)

In summary there are exactly eight order 2 invariants |z1|2, . . . , |w4|2, three invariants of order
4 (23) and eight invariants of order 2(α + β), listed in (24)–(27).

4.2. Amplitude equations in normal form

Assuming that the origin is stable below the bifurcation point, and using the information on
the invariant functions hj (w), the third-order truncation of the amplitude equation for ż1 is

ż1 = z1
[
µ + iω(µ) + λ1|z1|2 + λ2|z3|2 + λ3|z2|2 + λ̃3|z4|2 + λ4|w1|2

+λ5|w2|2 + λ6|w3|2 + λ7|w4|2
]

+ α1z̄3z2z4 + α2z̄3w1w3 + α3z̄3w2w4 (30)

with the evolution equations for z2, . . . , w4 related by the interchange symmetries (4) and (6).
The frequency ω will in general depend on the bifurcation parameter µ; at the bifurcation
point ω(0) = 0 since the frequency ω0 of linear oscillations has already been factored out
in equation (8). The normal form (30) does not take into account the action of the hidden
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symmetry (12): this forces the coefficients λ3 and λ̃3 to be equal. In this way the restriction of
the third-order truncation of the amplitude equations to the subspace S1 is equal to that derived
for Hopf bifurcations on the simpler square lattice by Knobloch and Silber [5]. In addition,
terms at order 2(α + β)− 1 on the right-hand side are needed to determine the stability of the
four translation-free C-axial branches. For the ż1 equation these are

ż1 = · · · + b1z̄
α−1
1 z

β

2w
α
1 w̄

β

4 + b2z̄
α−1
1 z̄

β

4w
α
1w

β

2 + b3z̄
β−1
1 z̄α2w

α
2w

β

3 + b4z̄
β−1
1 zα4w

β

3 w̄
α
4 (31)

with similar, symmetrically related, expressions for each of the ż2, . . . , ẇ4 equations. Using
the result of [9], branches of small-amplitude periodic solutions correspond to solutions of

φ(w, µ, τ ) ≡ f(w, µ) − i(ω(µ) + τ)w = 0 (32)

where τ is the correction to the frequency of the periodic solution away from the bifurcation
point. The oscillation frequency of a branch of solutions is then given by ω0 + ω(µ) + τ . The
linear (orbital) stability of the non-translation-free C-axial branches is generically determined
by the third-order truncation 9(w, µ, τ ) of φ(w, µ, τ ).

5. Stability of the C-axial branches

The computation of conditions for the (orbital) stability of the non-translation-free C-axial
branches proceeds along familiar lines: all stability conditions depend only on the coefficients
of the third-order truncation. The details of the calculations are not presented here: the reader
is referred to [5] for further details. The computation of the stability of the four translation-free
branches is more involved and hence is presented much more fully.

5.1. Non-translation-free C-axial branches

Table 8 summarizes the stability criteria for the non-translation-free solution branches.
These results may be derived by considering the isotypic decomposition of W ∼= C

8 for
corresponding isotropy subgroups or equivalently by considering the restriction of the third-
order truncation (30) to each four-dimensional subspace that contains the periodic solution,
as listed in table 7. The dynamics of the third-order truncation within each of these four-
dimensional subspaces is either O(2)×S1-equivariant or D4 ×S1-equivariant and the relevant
stability criteria for these problems are well known. Note that the full amplitude equations
restricted to one of subspaces 37, 39, 41 or 42 are not D4 × S1-equivariant, but only
Z

2
2 ×S1-equivariant; the third-order truncation of the normal form contains an extra, spurious,

symmetry.

5.2. Standing super-squares and standing anti-squares

Standing super-squares and standing anti-squares are distinguished only by the terms at
O(2(α +β)−1) in the normal form. Furthermore, they are related by the parameter symmetry
which takes (b1, b2, b3, b4) → −(b1, b2, b3, b4) and leaves all other coefficients unchanged.
Hence we can easily derive the stability criteria for standing anti-squares by changing the signs
of the b1, . . . , b4 coefficients in the stability criteria for standing super-squares. Moreover,
some of the eigenvalues of the Jacobian matrix must involve the coefficients b1, . . . , b4 to
yield the relative stability of the two branches. Due to these complications not present in
the calculations for the non-translation-free branches we present the stability calculation in
full. The approach is of a standard nature; similar calculations to these are given, for different
bifurcation problems, in [6] and [7].
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Table 8. Stability criteria for the 13 C-axial non-translation-free branches. A branch of solutions to
the third-order truncation 9(w, µ, τ ) is stable when all stability criteria are negative. Superscript
r denotes ‘the real part of’. B1 = λ1 +λ2 − 2λ3, B2 = λ1 +λ2 −λ4 −λ6, B3 = λ1 +λ2 −λ5 −λ7.

Solution Number of zero
branch eigenvalues Stability criteria

TR 1 λr1 λr2 − λr1 λr3 − λr1 λr4 − λr1
λr5 − λr1 λr6 − λr1 λr7 − λr1

SR 2 λr1 + λr2 λr1 − λr2 −Br
1 |B1|2 − |α1|2

−Br
2 |B2|2 − |α2|2 −Br

3 |B3|2 − |α3|2
TS 2 λr1 + λr3 λr1 − λr3

λr2 + αr1 − λr1 − λr3 λr2 − αr1 − λr1 − λr3
λr4 + λr5 − λr1 − λr3 λr5 + λr6 − λr1 − λr3
λr6 + λr7 − λr1 − λr3 λr7 + λr4 − λr1 − λr3

SS 3 λr1 + λr2 + 2λr3 + αr1 λr1 − λr2 − αr1
Br

1 − 3αr1 Re[B1ᾱ1] − |α1|2
Br

1 − Br
2 − Br

3 − αr1 |B1 − B2 − B3 − α1|2 − |α2 + α3|2
AR 3 λr1 + λr2 + 2λr3 − αr1 λr1 − λr2 + αr1

Br
1 + 3αr1 − Re[B1ᾱ1] − |α1|2

Br
1 − Br

2 − Br
3 + αr1 |B1 − B2 − B3 + α1|2 − |α2 − α3|2

TRh1 2 λr1 + λr4 λr1 − λr4
λr3 + λr5 − λr1 − λr4 λr3 + λr7 − λr1 − λr4
λr2 + λr6 − αr2 − λr1 − λr4 λr2 + λr6 + αr2 − λr1 − λr4

TRh2 2 λr1 + λr6 λr1 − λr6
λr3 + λr5 − λr1 − λr6 λr3 + λr7 − λr1 − λr6
λr2 + λr4 − αr2 − λr1 − λr6 λr2 + λr4 + αr2 − λr1 − λr6

TRh3 2 λr1 + λr5 λr1 − λr5
λr3 + λr4 − λr1 − λr5 λr3 + λr6 − λr1 − λr5
λr2 + λr7 − αr3 − λr1 − λr5 λr2 + λr7 + αr3 − λr1 − λr5

TRh4 2 λr1 + λr7 λr1 − λr7
λr3 + λr6 − λr1 − λr7 λr3 + λr4 − λr1 − λr7
λr2 + λr5 − αr3 − λr1 − λr7 λr2 + λr5 + αr3 − λr1 − λr7

SRec1 3 λr1 + λr2 + λr4 + λr6 + αr2
λr1 + λr4 − λr2 − λr6 − αr2 λr1 + λr6 − λr2 − λr4 − αr2
Br

2 − 3αr2 Re[B2ᾱ2] − |α2|2
Br

2 − Br
1 − Br

3 − αr2 |α1 + α3|2 − |B1 − B2 + B3 + α2|2
SRec2 3 λr1 + λr2 + λr5 + λr7 + αr3

λr1 + λr5 − λr2 − λr7 − αr3 λr1 + λr7 − λr2 − λr5 − αr3
Br

3 − 3αr3 Re[B3ᾱ3] − |α3|2
Br

3 − Br
1 − Br

2 − αr3 |α1 + α2|2 − |B1 + B2 − B3 + α3|2
ARec1 3 λr1 + λr2 + λr4 + λr6 − αr2

λr1 − λr2 + λr4 − λr6 + αr2 λr1 − λr2 − λr4 + λr6 + αr2
Br

2 + 3αr2 − Re[B2ᾱ2] − |α2|2
ARec2 3 λr1 + λr2 + λr5 + λr7 − αr3

λr1 − λr2 + λr5 − λr7 + αr3 λr1 − λr2 − λr5 + λr7 + αr3
Br

3 + 3αr3 − Re[B3ᾱ3] − |α3|2

The �-equivariance of φ implies that the Jacobian matrix Dφ evaluated on the standing
super-squares solution branch commutes with the matrices generating the action of �:

RρDφR−1
ρ = Dφ, Rmx

DφR−1
mx

= Dφ (33)



Hopf bifurcation on a square superlattice 503

which implies that Dφ is a matrix of the form

DφSSS =




A B C D E F G H
D A B C H E F G
C D A B G H E F
B C D A F G H E

E H G F A D C B
F E H G B A D C
G F E H C B A D
H G F E D C B A




(34)

(the full lines are to indicate the structure of the matrix), where each of A, . . . , H is itself a
2 × 2 matrix:

A =
(

∂φ1/∂z1 ∂φ1/∂z̄1

∂φ̄1/∂z1 ∂φ̄1/∂z̄1

)
. . . H =

(
∂φ1/∂w4 ∂φ1/∂w̄4

∂φ̄1/∂w4 ∂φ̄1/∂w̄4

)
. (35)

By conjugatingDφSSS with a change-of-basis matrix it can be put into a block-upper-triangular
form, with 2 × 2 or 4 × 4 blocks on the diagonal. The eigenvalues of DφSSS are then the
eigenvalues of these submatrices: the four 2 × 2 matrices are

A + B + C + D + E + F + G + H

A + B + C + D − E − F − G − H

A − B + C − D + E − F + G − H

A − B + C − D − E + F − G + H

of which the first contains a zero eigenvalue corresponding to translations in the direction
tangential to the periodic orbit. For stability we require the traces of these 2 × 2 matrices to be
negative and their determinants to be positive. These conditions yield the following stability
criteria when evaluated on the third-order truncation of the normal form:

λr1 + λr2 + 2λr3 + λr4 + λr5 + λr6 + λr7 + αr
1 + αr

2 + αr
3 < 0 (36)

Br
2 + Br

3 − Br
1 + αr

1 − 3(αr
2 + αr

3) < 0 (37)

|α2 + α3|2 − Re[(B2 + B3 − B1 + α1)(ᾱ2 + ᾱ3)] > 0 (38)

Br
1 + Br

3 − Br
2 + αr

2 − 3(αr
1 + αr

3) < 0 (39)

|α1 + α3|2 − Re[(B1 + B3 − B2 + α2)(ᾱ1 + ᾱ3)] > 0 (40)

Br
1 + Br

2 − Br
3 + αr

3 − 3(αr
1 + αr

2) < 0 (41)

|α1 + α2|2 − Re[(B1 + B2 − B3 + α3)(ᾱ1 + ᾱ2)] > 0 (42)

where a superscript r denotes the real part of a coefficient, and

B1 = λ1 + λ2 − 2λ3 (43)

B2 = λ1 + λ2 − λ4 − λ6 (44)

B3 = λ1 + λ2 − λ5 − λ7. (45)

The stability criteria (36)–(42) can also be deduced from the dynamics within subspaces 37,
38 and 39.
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The other half of the Jacobian matrix in the new basis contains two 4 × 4 blocks:


A − C + H − F E − G − B + D 02 02

E − G + B − D A − C + F − H 02 02

02 02 A − C + E − G B − D + H − F

02 02 D − B + H − F A − C − E + G




≡
(

M1 04

04 M2

)
(46)

where 0n represents an n × n block of zeros. Each of the 4 × 4 blocks M1, M2 must contain
one zero eigenvalue since the standing super-squares solution has three in total: they can be
thought of as the neutral stability of the solution to shifts in the horizontal directions and in
time. Evaluating the eigenvalues of M1 and M2 using the third-order truncation 9(w, µ, τ )

yields the same four eigenvalues for each matrix:

0, 0, λr1 − λr2 − αr
1 − αr

2 − αr
3 ± [

(λr4 − λr6)
2 + (λr5 − λr7)

2
]1/2

. (47)

One of these zero eigenvalues was expected, due to the directions of neutral stability. The
other is a degeneracy caused by ignoring terms higher than third order: when terms of order
2(α + β) − 1 are included this second zero eigenvalue will no longer be zero, and will select
exactly one of standing super-squares and standing anti-squares to be stable. Thinking of the
O(2(α + β)− 1) terms as a small perturbation to the third-order truncation (as is the case near
the bifurcation point µ = 0) we use the characteristic polynomial P(m) of M1 to derive a
condition guaranteeing that the second zero eigenvalue creates a negative root of P(m) when
the higher-order terms are introduced.

The matrices M1 and M2 are of the form


P Q R S

Q̄ P̄ S̄ R̄

T U V W

Ū T̄ W̄ V̄


 (48)

where P, . . . ,W are complex entries. Nevertheless, the characteristic polynomial P(m) is
entirely real, hence it is guaranteed to have four real roots. From figure 2 a necessary and
sufficient condition for the perturbed eigenvalue to be negative is

1

2

dP(m)

dm

∣∣∣∣
m=0

≡ −Pr(|V |2 − |W |2) − Vr(|P |2 − |Q|2) + Re[S(ŪV − T W̄ + P̄ Ū − Q̄T̄ )

+R(P̄ T − Q̄U + T V̄ − ŪW)] > 0. (49)

This results in the following criterion for the stability of standing super-squares:

4(Y r
1 Y

r
2 − δ2

r )[α(b
r
1 + br2) + β(br3 + br4)] + (bi1 + bi2)[K1(Y

r
2 − Y r

1 ) + K2(Y
r
1 + Y r

2 + 2δr)]

+(bi3 + bi4)[K2(Y
r
2 − Y r

1 ) + K1(Y
r
1 + Y r

2 − 2δr)] > 0 (50)

where δ = λ4 − λ6 and

Y1 = λ1 − λ2 − λ5 + λ7 − α1 − α2 − α3 (51)

Y2 = λ1 − λ2 + λ5 − λ7 − α1 − α2 − α3 (52)

K1 = (α + β)Y i
1 − (α − β)Y i

2 + 2βδi (53)

K2 = (α + β)Y i
1 + (α − β)Y i

2 − 2αδi (54)
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Figure 2. Sketch of the characteristic polynomial P(m) of the matrix M1. The full curve
corresponds to evaluation of M1 using the third-order truncation only. The broken curve includes
terms of order 2(α +β)− 1, breaking the degeneracy between standing super-squares and standing
anti-squares.

and superscripts r and i denote real and imaginary parts, respectively. In the special case
bi1 = bi2 = bi3 = bi4 = 0, using the degenerate condition at third order given by (47), the
condition (50) reduces to requiring

α(br1 + br2) + β(br3 + br4) > 0 (55)

which is the analogous condition for stability to that derived for the steady-state bifurcation
problem on a square superlattice, studied in [1, section 4.2, table 8]. The other 4 × 4 block M2

yields the same stability criteria asM1, so this completes the stability analysis of standing super-
squares. The criteria for the stability of standing anti-squares given by the cubic truncation are
exactly the same, namely (36)–(42) and (47), but the opposite criterion to (50) applies due to
the parameter symmetry (b1, b2, b3, b4) → −(b1, b2, b3, b4) between standing super-squares
and standing anti-squares.

5.3. Alternating super-squares and alternating anti-squares

A very similar analysis goes through for alternating super-squares and alternating anti-squares.
These two solution branches are also related by the parameter symmetry which changes the
sign of b1, . . . , b4; as in the case of standing super-squares and standing anti-squares, they are
not distinguished by the third-order truncation of the normal form, and hence terms at order
2(α + β) − 1 must be brought in to distinguish between them.

The Jacobian matrix for the alternating super-squares solution takes the form

DφASS =




A B C D E F G H
D− −A− B− −C− H− −E− F− −G−
C D A B G H E F
B− −C− D− −A− F− −G− H− −E−

E H G F A D C B
F− −E− H− −G− B− −A− D− −C−
G F E H C B A D
H− −G− F− −E− D− −C− B− −A−




(56)
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due to requiring equivariance with respect to the action of the group DASS
4 , where again, each

entry is a 2 × 2 matrix and the matrices A and A− are related as follows; if

A =
(

a a′

ā′ ā

)
then A− =

(
−a a′

ā′ −ā

)
. (57)

By applying a change of basis transformation to DφASS it can be rendered block-upper-
triangular, but this time with four 4 × 4 blocks on the diagonal. These matrices are

N1 =




a + c + g + e b′ + d ′ + f ′ + h′ −b − d − f − h a′ + c′ + e′ + g′

b̄′ + d̄ ′ + f̄ ′ + h̄′ ā + c̄ + ē + ḡ ā′ + c̄′ + ē′ + ḡ′ −b̄ − d̄ − f̄ − h̄

b + f + d + h a′ + c′ + e′ + g′ a + c + e + g −b′ − d ′ − f ′ − h′

ā′ + c̄′ + ē′ + ḡ′ b̄ + d̄ + f̄ + h̄ −b̄′ − d̄ ′ − f̄ ′ − h̄′ ā + c̄ + ē + ḡ



(58)

N2 =




a + c − e − g b′ + d ′ − f ′ − h′ −b − d + f + h a′ + c′ − e′ − g′

b̄′ + d̄ ′ − f̄ ′ − h̄′ ā + c̄ − ē − ḡ ā′ + c̄′ − ē′ − ḡ′ −b̄ − d̄ + f̄ + h̄

b − f + d − h a′ + c′ − e′ − g′ a + c − e − g −b′ − d ′ + f ′ + h′

ā′ + c̄′ − ē′ − ḡ′ b̄ + d̄ − f̄ − h̄ −b̄′ − d̄ ′ + f̄ ′ + h̄′ ā + c̄ − ē − ḡ



(59)

N3 =




a − c + e − g a′ − c′ + e′ − g′ d − b + f − h d ′ − b′ + f ′ − h′

ā′ − c̄′ + ē′ − ḡ′ ā − c̄ + ē − ḡ d̄ ′ − b̄′ + f̄ ′ − h̄′ −b̄ + d̄ + f̄ − h̄

d − b + h − f −d ′ + b′ + f ′ − h′ a − c − e + g c′ − a′ − g′ + e′

b̄′ − d̄ ′ + f̄ ′ − h̄′ d̄ − b̄ − f̄ + h̄ c̄′ − ā′ − ḡ′ + ē′ ā − c̄ − ē + ḡ




(60)

N4 =




a − c − e + g a′ − c′ − e′ + g′ d − b − f + h d ′ − b′ − f ′ + h′

ā′ − c̄′ − ē′ + ḡ′ ā − c̄ − ē + ḡ d̄ ′ − b̄′ − f̄ ′ + h̄′ −b̄ + d̄ − f̄ + h̄

d − b − h + f −d ′ + b′ − f ′ + h′ a − c + e − g c′ − a′ + g′ − e′

b̄′ − d̄ ′ − f̄ ′ + h̄′ d̄ − b̄ + f̄ − h̄ c̄′ − ā′ + ḡ′ − ē′ ā − c̄ + ē − ḡ




(61)

and will be examined in turn. When evaluated using the third-order truncation,N1 contains one
zero eigenvalue and three real eigenvalues corresponding to requiring the branch of solutions
to bifurcate supercritically, and the stability criteria within subspace 38, hence for stability we
require

λr1 + λr2 + 2λr3 + λr4 + λr5 + λr6 + λr7 − αr
1 + αr

2 − αr
3 < 0 (62)

Br
1 + Br

3 − Br
2 + αr

2 + 3(αr
1 + αr

3) < 0 (63)

|α1 + α3|2 + Re[(B1 + B3 − B2 + α2)(ᾱ1 + ᾱ3)] > 0. (64)

Matrix N2 contains no zero eigenvalues. Using the third-order truncation, necessary and
sufficient conditions for the four real eigenvalues of N2 to be negative are

Xr
1 + 2Ŷ r

1 < 0 (65)

Xr
2 + 2Ŷ r

2 < 0 (66)
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Re[X1
¯̂
Y 1] > 0 (67)

Re[X2
¯̂
Y 2] > 0 (68)

where

X1 = B1 + B2 − B3 + α1 − α2 − α3 (69)

X2 = B2 + B3 − B1 − α1 − α2 + α3 (70)

Ŷ1 = α1 − α2 (71)

Ŷ2 = α3 − α2. (72)

The third block and fourth blocks have eigenvalues analogous to those of M1 and M2 in the
previous section, but with the signs ofα1 andα3 changed. This is due to the parameter symmetry
between standing super-squares and alternating super-squares (and similarly between standing
anti-squares and alternating anti-squares). The eigenvalues of N3 and N4 are equal, and when
they are evaluated using the third-order truncation 9 we obtain

0, 0, λr1 − λr2 + αr
1 − αr

2 + αr
3 ± [

(λr4 − λr6)
2 + (λr5 − λr7)

2
]1/2

. (73)

As for standing super-squares, the second zero eigenvalue is a degeneracy caused by omitting
higher-order terms. We calculate the movement of this eigenvalue when these higher-order
terms are introduced in exactly the same way. This leads to the condition

4(Y r
1 Y

r
2 − δ2

r )[α(b
r
1 + br2) + β(br3 + br4)] + (bi1 + bi2)[K1(Y

r
2 − Y r

1 ) + K2(Y
r
1 + Y r

2 + 2δr)]

+(bi3 + bi4)[K2(Y
r
2 − Y r

1 ) + K1(Y
r
1 + Y r

2 − 2δr)] > 0 (74)

for the stability of alternating super-squares, where δ = λ4 − λ6 and

Y1 = λ1 − λ2 − λ5 + λ7 + α1 − α2 + α3 (75)

Y2 = λ1 − λ2 + λ5 − λ7 + α1 − α2 + α3 (76)

K1 = (α + β)Y i
1 − (α − β)Y i

2 + 2βδi (77)

K2 = (α + β)Y i
1 + (α − β)Y i

2 − 2αδi. (78)

If the inequality (74) is reversed then alternating anti-squares are stable instead. As we
expect, the stability condition (74) is related to (50) by the parameter symmetry (α1, α3) →
(−α1,−α3).

This completes the stability calculations for the four ‘superlattice’ patterns.

6. Complex dynamics

The normal form for the D4-symmetric Hopf bifurcation on C
2 was studied by Swift [8]. In

this much simpler problem it is well known that, in addition to the C-axial solutions, branches
of quasiperiodic solutions may bifurcate from the origin as µ passes through zero.

For the Hopf bifurcation problem corresponding to the representation of D4 � T 2 on C
4

studied by Knobloch and Silber [5], Swift’s analysis was used to understand the dynamics in
a fixed-point subspace (corresponding to subspace 22 here) where the resulting flow is D4-
symmetric. The dynamics in this subspace could be transformed onto the surface of a sphere,
denoted the associated spherical system. Since the dynamics is then two-dimensional, they
can be completely understood, and chaotic dynamics is not possible as long as the normal form
symmetry is imposed. Swift’s numerical results indicated that chaotic dynamics was indeed
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possible when the normal form symmetry was not imposed. More recent work [13] on the
D4 � T 2-symmetric Hopf bifurcation on C

4 has highlighted the existence of other doubly and
triply periodic solution branches that may be created in the bifurcation, and which live outside
the D4-symmetric subspace. However, neither asymptotically stable heteroclinic cycles nor
chaotic dynamics have been found.

As table 7 indicates, there are huge numbers of possibilities for heteroclinic orbits in
the problem studied here. A complete investigation would be very time consuming, and
has not been performed. A few calculations have indicated that it appears unlikely that the
number of conditions required to ensure both existence and asymptotic stability are all satisfied
simultaneously for one collection of normal form coefficients.

Of more interest is the existence of stable chaotic dynamics in these amplitude equations
without needing to consider breaking the normal form symmetry. These dynamics are located
within the subspace S4 = Fix(ρ2) = {(z1, z2, z1, z2, w1, w2, w1, w2)} ∼= C

4 and we discuss
this briefly in the remainder of this section. Numerical integrations indicate two things: firstly
the existence of chaotic dynamics in the third-order truncation of the normal form when several
normal form coefficients are set to zero, and secondly the persistence of the dynamics when
these coefficients are small but non-zero, and when the O(2(α + β) − 1) terms are included.
The effect of breaking the normal form symmetry has not been investigated.

6.1. Reduction to a six-dimensional set of ODEs in S4

The third-order truncation of the amplitude equation (30) and its symmetrically related
counterparts, restricted to S4, take the form

ż1 = z1[µ + iω + (λ1 + λ2)|z1|2 + 2λ3|z2|2 + λ4|w1|2] + α1z̄1z
2
2 (79)

ż2 = z2[µ + iω + (λ1 + λ2)|z2|2 + 2λ3|z1|2 + λ4|w2|2] + α1z̄2z
2
1 (80)

ẇ1 = w1[µ + iω + (λ1 + λ2)|w1|2 + 2λ3|w2|2 + λ4|z1|2] + α1w̄1w
2
2 (81)

ẇ2 = w2[µ + iω + (λ1 + λ2)|w2|2 + 2λ3|w1|2 + λ4|z2|2] + α1w̄2w
2
1 (82)

where we have in addition set λ5 = λ6 = λ7 = α2 = α3 = 0. Now we transform into modulus
and argument variables

z1 = r1eiθz1 , w1 = r3eiθw1 (83)

z2 = r2eiθz2 , w2 = r4eiθw2 . (84)

After substituting these into the amplitude equations we note that the phase variables θj only
occur in the combinations φ1 = 2(θz2 − θz1) and φ2 = 2(θw2 − θw1). The resulting system of
six real ODEs is

ṙ1 = r1[µ + (λr1 + λr2)r
2
1 + (2λr3 + αr

1 cosφ1 − αi
1 sin φ1)r

2
2 + λr4r

2
3 ] (85)

ṙ2 = r2[µ + (λr1 + λr2)r
2
2 + (2λr3 + αr

1 cosφ1 + αi
1 sin φ1)r

2
1 + λr4r

2
4 ] (86)

φ̇1 = 2(2λi3 − λi1 − λi2 + 2αi
1 cosφ1)(r

2
1 − r2

2 ) − 2λi4(r
2
3 − r2

4 ) − 2(r2
1 + r2

2 )α
r
1 sin φ1 (87)

ṙ3 = r3[µ + (λr1 + λr2)r
2
3 + (2λr3 + αr

1 cosφ2 − αi
1 sin φ2)r

2
4 + λr4r

2
1 ] (88)

ṙ4 = r4[µ + (λr1 + λr2)r
2
4 + (2λr3 + αr

1 cosφ2 + αi
1 sin φ2)r

2
3 + λr4r

2
2 ] (89)

φ̇2 = 2(2λi3 − λi1 − λi2 + 2αi
1 cosφ2)(r

2
3 − r2

4 ) − 2λi4(r
2
1 − r2

2 ) − 2(r2
3 + r2

4 )α
r
1 sin φ2 (90)

where superscripts r and i, respectively, denote the real and imaginary parts of a coefficient.
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Figure 3. Chaotic dynamics near the diagonal subspace within S4. The normal form coefficients
are λ1 = −11.70 − 1.54i, λ2 = −0.16 + 1.82i, λ3 = −1.23 − 31.60i, α1 = −8.99 − 38.29i,
λ4 = 1.0.

6.2. Chaotic dynamics near a global bifurcation

When λ4 = 0, equations (85)–(90) decouple into two three-dimensional sets of ODEs.
Each of these could be further reduced to a two-dimensional system using the associated
spherical system transformation introduced by Swift [8]. Hence the dynamics cannot be
chaotic, but, for suitable choices of the coefficients, a periodic orbit can become homoclinic
to an equilibrium. As λr4 is increased from zero, the (r1, r2, φ1) and (r3, r4, φ2) systems are
coupled together. For many sets of parameter values the diagonal subspace r1 = r3, r2 = r4,
φ1 = φ2 is transversely attracting, and the dynamics near this global bifurcation again only
involves the creation or destruction of periodic orbits (quasiperiodic solutions to (79)–(82))
since it is again equivalent to that of a two-dimensional system. For other parameter values
we see dynamics, outside the diagonal subspace, which appears chaotic, as illustrated in
figure 3.

Unfortunately, Swift’s associated spherical system transformation confers no advantage
when applied here to (79)–(82) since the ‘radial’ directions cannot be eliminated by a time
rescaling when λ4 is non-zero, so the equations within S4 cannot be reduced from six
dimensional to four dimensional.

6.3. A period-doubling cascade

A second unexpected feature of the dynamics of (85)–(90) is the existence of a period-doubling
cascade of periodic orbits. This is illustrated in figure 4. When we now fix λr4 = −4.0 and
vary λi4 in the range 0.1 � λi4 � 1.0 we find that the diagonal subspace is no longer attracting,
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Figure 4. Periodic orbits viewed in the (r1, r2)-plane within S4, in a period-doubling cascade
as λi4 decreases. (a) Period 1 orbit at λi4 = 0.7, (b) period 2 orbit at λi4 = 0.5, (c) period 4 orbit
at λi4 = 0.17, (d) period 8 orbit at λi4 = 0.157, (e) period 16 orbit at λi4 = 0.155, (f ) chaotic
attractor at λi4 = 0.14. The other normal form coefficients are fixed at λ1 = −8.63 − 5.45i,
λ2 = −5.13 − 11.00i, λ3 = −4.37 − 34.07i, α1 = −13.04 − 42.08i, λr4 = −4.0.

and solutions are attracted to a succession of periodic orbits which undergo period-doubling
bifurcations accumulating in the formation of a chaotic attractor.

Further numerical simulations have indicated that both examples of chaotic dynamics are
found in the full third-order truncation (i.e. the subspace S4 is transversely attracting for these
combinations of normal form coefficients), and, moreover, that the chaotic dynamics persist
when the coefficients λ5, λ6, λ7, α2 and α3 are small but non-zero. In addition the chaotic
dynamics persist when the higher-order terms (31) for the case α = 2, β = 1 are added in. We
conclude that chaotic dynamics are a robust feature of this Hopf bifurcation problem, whereas
they have not been observed in the simpler problem studied in [5].
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