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Abstract
We study steady-state pattern-forming instabilities on R

2. A uniform initial
state that is invariant under the Euclidean group E(2) of translations, rotations
and reflections of the plane loses linear stability to perturbations with a non-zero
wavenumber kc. We identify branches of solutions that are periodic on a square
lattice that inherits a reducible action of the symmetry group D4�T 2. Reducible
group actions occur naturally when we consider solutions that are periodic on
real-space lattices that are much more widely spaced than the wavelength of the
pattern-forming instability. They thus apply directly to computations in large
domains where periodic boundary conditions are applied.

The normal form for the bifurcation is calculated, taking the presence of
various ‘hidden’ symmetries into account and making use of previous work by
Crawford [8]. We compute the stability (relative to other branches of solutions
that exist on this lattice) of the solution branches that we can guarantee by
applying the equivariant branching lemma. These computations involve terms
higher than third order in the normal form, and are affected by the hidden
symmetries. The effects of hidden symmetries that we elucidate are relevant
also to bifurcations from fully nonlinear patterns.

In addition, other primary branches of solutions with submaximal
symmetry are found always to exist; their existence cannot be deduced by
applying the equivariant branching lemma. These branches are stable in open
regions of the space of normal form coefficients.

The relevance of these results is illustrated by numerical simulations of a
simple pattern-forming PDE.
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1. Introduction

Steady-state pattern-forming instabilities occur in many branches of physical science;
for example, Rayleigh–Bénard convection, directional solidification and reaction–diffusion
systems [10]. A common approach to their analysis is to restrict attention to patterns
that are spatially periodic, motivated by the observation of spatially periodic patterns in
experiments. This is often done implicitly when comparisons are made with numerical
simulations employing periodic horizontal boundary conditions. This restriction enables the
centre manifold theorem to be applied, and hence a finite-dimensional bifurcation problem can
be rigorously derived.

In modelling these physical situations the original uniform state of the system is taken
to be of infinite extent and so is invariant under the group E(2) of Euclidean symmetries
(reflections, rotations and translations) of the plane R

2. The restriction imposed in considering
only patterns with a prescribed spatial periodicity reduces the symmetries of the problem and
may also lead to subtle effects in the restricted problem. These effects stem from the original
Euclidean symmetry and have been termed ‘hidden’ symmetries [8, 17].

How these subtle effects affect the resulting bifurcation problem depends on the way in
which the spatial periodicity is imposed. Generally, the spatial periodicity is described by a
lattice L ⊂ R

2 such that all the variables u in the underlying pattern-forming PDEs satisfy
u(x) = u(x + �) where � ∈ L is a spatial translation. If L is a square lattice then the restricted
problem inherits the symmetry group � = D4 � T 2 from the original E(2) symmetric one.
The group D4 is the eight-element symmetry group of a square, and the two-torus of spatial
translations modulo the lattice L is denoted T 2. The group � is the semi-direct product of
these two groups, and is equal to N(L)/L. Here, N(L) is the normalizer of the lattice group
L: N(L) = {σ ∈ E(2) : σ−1Lσ = L} = D4 � R

2, where R
2 is the group of translations

in the plane. Hidden symmetries are elements of E(2) − N(L) and can affect the bifurcation
problem in various ways.

Many previous studies of these pattern-forming instabilities (e.g. [13, 14]) choose lattices
such that the restricted problem (for L-periodic functions) is equivariant under an irreducible
action of �. In these cases the hidden symmetries enlarge the symmetry groups of branches of
solutions that are guaranteed by the equivariant branching lemma [19]; they do not, however,
affect the existence of these branches.

In this paper we study bifurcations on square lattices L where the associated representation
of � is reducible and we greatly extend the work of Crawford [8]. Crawford [8] showed that
hidden rotation and reflection symmetries, which are in E(2) but not in D4 � R

2, lead to
additional constraints on the normal form. The hidden symmetries are much more significant
than in the irreducible case and several features of the analysis are unexpected. For example,
we demonstrate the existence (for all combinations of normal form coefficients) of a branch of
solutions whose existence cannot be deduced from the equivariant branching lemma. We rely
heavily on the results of Crawford; his results show exactly how hidden symmetries affect,
for example, the computation of the normal form. A general treatment of the effect of hidden
symmetries is beyond the scope of this paper. However, we hope that the analysis of this
example will clarify some of the issues that a general theory would have to include.

Much of our notation follows that of Crawford for ease of reference. The structure of the
paper is as follows. Section 2 introduces the bifurcation problem and the group action. In
section 3 we apply the equivariant branching lemma and deduce the existence of various (axial)
branches of solutions. Section 4 contains a derivation of the normal form for the bifurcation in
the simplest case. This is then used to compute the stability of the axial branches in section 5.
The existence and stability of various non-axial branches is considered in section 6. Section 7
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illustrates the theory with a discussion of numerical solutions of a particular pattern-forming
PDE. We conclude with a discussion in section 8.

2. Geometry of the lattice and action of D4 � T2

Consider a planar Euclidean-equivariant nonlinear PDE

∂u

∂t
= F(u, µ), (1)

where u(x, t) ∈ R
n, x = (x, y) ∈ R

2, F is a smooth nonlinear operator acting on a suitable
function space and µ is a real (bifurcation) parameter. We assume that for all µ there is a
trivial solution u = 0 to (1), and that this solution loses stability in a steady-state bifurcation
to perturbations with a non-zero wavenumber kc when µ = 0. Melbourne [24] has proved that
it is possible to reduce a planar Euclidean-equivariant PDE (1) to a single PDE (i.e. the case
n = 1). The resulting single PDE transforms under either the scalar or pseudoscalar action of
E(2). In this paper we consider only the scalar action; this action is appropriate (for example)
to reaction–diffusion equations and (after the reduction has been performed) to the Boussinesq
equations for thermal convection. In the scalar case the action of E(2) on the single range
variable u is trivial. E(2)-equivariant bifurcations in the pseudoscalar case are discussed in
[2]. In the light of this discussion we set n = 1 to simplify the notation in what follows.

Euclidean equivariance implies that the trivial solution loses stability at µ = 0 to plane
waves eik·x as long as |k| = kc: all horizontal directions are equivalent. This uncountable
multiplicity presents a serious difficulty, which we resolve in the familiar way: to obtain
rigorous results on the existence of solutions we consider only the subset of solutions that
are periodic with respect to a square lattice. It is now possible to apply the centre manifold
theorem [4] and hence obtain a finite-dimensional bifurcation problem whose branches of
solutions correspond to solutions of the original PDEs. In addition, the symmetry group of the
problem is now D4 � T 2. We define the square lattice L and the corresponding dual lattice L∗

to be

L =
{
n�1 + m�2 : (n, m) ∈ Z

2, �1 =
(

2πs

kc

, 0

)
, �2 =

(
0,

2πs

kc

)}
, (2)

L∗ =
{
nq1 + mq2 : (n, m) ∈ Z

2, q1 =
(

kc

s
, 0

)
, q2 =

(
0,

kc

s

)}
. (3)

which ensures that �i · qj = 2πδij . The real parameter s selects the spacing of the
lattice relative to the critical wavelength of the instability. Having defined L, we let
� ≡ R

2/L = [0, (2πs/kc)]2 be the fundamental domain (with periodic boundary conditions)
on which these L-periodic functions are defined. We can now distinguish between the
infinite-dimensional space E

c(R2), which is the linear centre eigenspace of DF(0, 0) (see (1))
and the finite-dimensional space E

c(�), which is the centre eigenspace of the space of
L-periodic functions. The centre eigenspace E

c(�) contains only those functions that are
linear combinations of the finite number of plane waves eik·x satisfying |k| = kc and k ∈ L∗.

Different choices of s lead to different numbers of intersections between the critical circle
|k| = kc and the dual lattice L∗, and hence to different representations of the symmetry group
D4 � T 2 acting on the set of mode amplitudes. A representation of a compact group � on R

n

is a homomorphism � �→ GL(n), which respects the group structure, i.e. Rγ1◦γ2 = Rγ1Rγ2 ,
and which associates an n × n matrix with each element γ ∈ �: γ �→ Rγ . The representation
is defined to be irreducible if there are no nontrivial proper �-invariant subspaces of R

n; it is
said to be absolutely irreducible if any matrix commuting with all matrices Rγ is forced to
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be a real multiple of the identity matrix. It is easy to check that any absolutely irreducible
representation is irreducible [19].

Setting s = 1 leads to only four intersection points between the critical circle and the dual
lattice L∗ in Fourier space. This leads to the ‘fundamental’ representation of D4 � T 2 on the
two mode amplitudes {z1, z2}; perturbations to the original solution u = 0 for (1) are in the
form u = Re[z1eikcx + z2eikcy]. The resulting representation of D4 � T 2 on C

2 ∼= {(z1, z2)} is
irreducible. In this case there are two axial branches of solutions, of the form (z1, z2) = (z, 0)

(usually called rolls) and (z1, z2) = (z, z) (usually called squares). If both of these bifurcate
supercritically, exactly one is stable for a generic set of normal form coefficients. The dynamics
of the bifurcation are equivalent to those of the Hopf bifurcation with O(2) symmetry, and
have been extensively studied [9, 18].

By fixing a dual lattice L∗ which intersects |k| = kc in exactly eight points (for example
s = √

5) we obtain the higher-dimensional irreducible representations of D4 � T 2 studied by
Dionne and others [13, 14]. With these choices of lattice Dionne et al have proved the existence
of a countable infinity of superlattice patterns, named super-squares and anti-squares, and have
tested the stability of the simplest roll and square patterns to a wider class of perturbations. All
these patterns bifurcate simultaneously from the trivial state u = 0 as µ passes through zero.

It is clear, though, that there are further choices for s, which may lead to the existence
of more patterns. In this paper we analyse reducible representations of D4 � T 2 on E

c(�)

by considering dual lattices that intersect the critical circle |k| = kc at twelve points. The
easiest way to organize this is to introduce Pythagorean triples of integers P, Q, R such that
0 < P, Q < R, P 2 + Q2 = R2 and P , Q and R have no common factor. It is well known
(see, e.g., [1]) that every such triple is generated by a pair of coprime integers a > b > 0 that
are not both odd, by setting

P = a2 − b2, Q = 2ab, R = a2 + b2. (4)

In the remainder of the paper we concentrate on the case s = R, and in addition, for
convenience, we rescale lengths in the PDE (1) so that kc = R. The relation P 2 + Q2 = R2

implies the existence of 12 intersection points: a set of four at ±k1,2 where k1 = (kc, 0) and
k2 = (0, kc) and a set of eight at ±k3,4,5,6 where k3 = (Q, P ), k4 = (Q, −P), k5 = (P, Q)

and k6 = (P, −Q). The planform for perturbations to the uniform state u = 0 now takes
the form

u = Re
[
z1eiRx + z2eiRy + w1ei(Qx+Py) + w2ei(Qx−Py) + w3ei(Px+Qy) + w4ei(Px−Qy)

]
(5)

and this is illustrated in figure 1 for the natural first case a = 2, b = 1 (and hence P = 3, Q = 4
and R = 5). The space of such L-periodic perturbations is (isomorphic to) the centre manifold
E

c(�) = {(z1, z2, w1, w2, w3, w4)} ∼= C
6 on which the action of D4 � T 2 is generated by

mx : (x, y) → (x, −y),

(z, w) → (z1, z̄2, w2, w1, w4, w3), (6)

md : (x, y) → (y, x),

(z, w) → (z2, z1, w3, w̄4, w1, w̄2), (7)

[ξ, η] : (x, y) → (x + ξ, y + η),

(z, w) → (
z1eiRξ , z2eiRη, w1ei(Qξ+Pη), w2ei(Qξ−Pη), w3ei(P ξ+Qη), w4ei(P ξ−Qη)

)
, (8)

where the reflections mx and md generate the group of symmetries of a square D4, the
translations [ξ, η] generate the group T 2 and (z, w) ≡ (z1, z2, w1, w2, w3, w4). Since we
are working with this specific family of representations, identified by P, Q, R, we will
drop the distinction between the group elements γ and the matrices Rγ that form the group
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Figure 1. Sketch of the dual lattice for the case a = 2, b = 1 (hence P = 3, Q = 4 and
s = R = 5). The resulting representation of D4 � T 2 on E

c(�) is reducible. The angle between
the wave-vectors k1 and k3 for the z1 and w1 modes is φ = tan−1(P/Q) = tan−1(3/4).

representation. We denote the other reflection elements of D4 by my = md◦mx◦md : (x, y) →
(−x, y) and md ′ = mx ◦ md ◦ mx : (x, y) → (−y, −x). A rotation of 90˚ anticlockwise is
denoted by ρ = md ◦ mx (as is conventional, we use left-composition of group elements).

This action of D4 � T 2 on the centre manifold is reducible: the group action decomposes
E

c(�) into a direct sum of vector spaces V1 ⊕ V2 where V1 = {(z1, z2, 0, 0, 0, 0)} ∼= C
2 and

V2 = {(0, 0, w1, w2, w3, w4)} ∼= C
4 and D4 � T 2 acts separately on V1 and V2. However,

the original action of the Euclidean group E(2) on the centre manifold E
c(R2) is irreducible,

and this leads to the existence of ‘hidden’ rotation symmetries that link the dynamics on V1

and V2. Hidden symmetries were first discussed in [17], in a slightly different context. In the
specific setting relevant to this paper they were discussed in detail by Crawford [8] and we rely
on Crawford’s results in what follows. Hidden symmetries arise here by requiring the normal
form f for the dynamics on E

c(�) to be the restriction to E
c(�) of an E(2)-equivariant vector

field F defined on E
c(R2). The rotation Rφ anticlockwise through an angle φ = tan−1 P/Q

is an example of a hidden symmetry. The hidden symmetries are crucial to the derivation of
sensible amplitude equations, even at the linear level.

We remark that in the terminology of Crawford [8] this is an example of a ‘binary mode
interaction’, and was named the ‘[4, 8] mode interaction’ by Crawford [8]. In that paper
Crawford analyses the effect of hidden symmetries on the normal form in the three possible
cases where the action of E(2) on E

c(R2) is irreducible but E
c(�) is a direct sum of exactly

two subspaces V1 and V2 upon each of which there is an action of D4 �T 2. In the ‘[4, 8]’ case
the subspaces Vj are isomorphic to C

2 and C
4, respectively, and the action of D4 � T 2 on the

larger subspace is translation-free. An action of D4 � T 2 is said to be translation-free if the
only element of T 2 that acts as the identity is the identity element itself.

3. Axial branches

As in bifurcation problems with irreducible representations of D4 �T 2, we expect to be able to
apply the equivariant branching lemma to deduce the existence of solution branches in the form
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of rolls, squares, rhombs, and possibly various superlattice patterns. We distinguish between
branches that bifurcate from the origin at µ = 0, called primary branches, and the subset of
these, which we call axial branches, whose existence can be deduced by a direct application
of the equivariant branching lemma. In fact we will distinguish in what follows between two
kinds of primary but non-axial branches: those that are forced to exist for all combinations of
normal form coefficients, and those that exist only in certain open regions of coefficient space.
Similar distinctions have been made by many authors, for example, see definition 3.5.3 in the
paper by Field and Richardson [16].

In this section we discuss axial branches, and defer further comments on non-axial primary
branches to section 6. We use the notation zj = xj + iyj and wj = uj + ivj to write the
complex mode amplitudes in real and imaginary parts and recall the following two definitions.
The isotropy subgroup �z ⊂ � of a point z ∈ C

n is defined to be

�z = {σ ∈ � : σ z = z}. (9)

We use the notation 〈g1, . . . , gn〉 to denote the group generated by the elements g1, . . . , gn.
The fixed point subspace of a subgroup � ⊂ � is denoted Fix(�):

Fix(�) = {z ∈ C
n : σ z = z ∀ σ ∈ �}. (10)

This is always a linear subspace of C
n.

As noted in section 2, hidden symmetries play an important role in the analysis that follows.
Of particular importance are the largest subspaces on which the hidden rotations Rφ (defined
to be an anticlockwise rotation through an angle tan−1 P/Q) and R−1

φ act; we denote these by
U1 and U2:

U1 = E
c(�) ∩ [RφE

c(�)]

= {(z1, z2, w1, 0, 0, w4)} = Fix

([
2πQ

R
,

2πP

R

])
, (11)

U2 = E
c(�) ∩ [R−1

φ E
c(�)]

= {(z1, z2, 0, w2, w3, 0)} = Fix

([
2πP

R
,

2πQ

R

])
. (12)

It is worth noting that the notation RφE
c(�) is a slight abuse since the action of Rφ is not defined

on every mode amplitude zj or wj but rather refers to rotating the corresponding wave-vector
kj through an angle φ. Likewise, the expression E

c(�) ∩ [RφE
c(�)] refers to coincidence

of points in the dual lattice L∗ and points in the rotated version of L∗, restricted to the centre
subspace E

c(R2) in both cases.
Given this interpretation, clearly Rφ : U2 → U1. From the action of the translations (8)

we see that these are fixed-point subspaces of these translation elements for all choices of the
Pythagorean triple (P, Q, R) as long as

hcf(Q2 − P 2, R) = hcf(2PQ, R) = 1. (13)

We use the notation hcf(p, q) to denote the highest common factor (greatest common divisor)
of the integers p and q. Conditions (13) ensure that the translation [(2πQ/R), (2πP/R)] does
not fix either w2 or w3 and that the translation [(2πP/R), (2πQ/R)] does not fix either w1

or w4. That the conditions (13) hold for all Pythagorean triples (P, Q, R) is not immediately
obvious, so for completeness we include the proof below.

Proof. We have that P = a2 − b2, Q = 2ab and R = a2 + b2. In fact, as remarked above, any
pair (a, b) that are coprime (i.e. hcf(a, b) = 1) and not both odd will generate a Pythagorean
triple where hcf(P, Q) = 1, P is odd and Q is even. So we can use the pair (Q, P ) themselves
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to generate a triple, thinking of them as a new pair (a, b). The pair (Q, P ) generates the triple
Q2 − P 2, 2QP , Q2 + P 2: these must therefore be (pairwise) coprime since (Q, P ) are
coprime and not both odd. Hence hcf(Q2 − P 2, Q2 + P 2) = 1 = hcf(Q2 − P 2, R2), and so
hcf(Q2 − P 2, R) = 1 since R and R2 have identical factors. �

Since U1 and U2 are fixed-point subspaces they are flow-invariant. The hidden symmetries
mx ◦ R−1

φ and md ◦ Rφ act on U1 and U2, respectively:

mx ◦ R−1
φ : (z1, z2, w1, 0, 0, w4) → (w1, w4, z1, 0, 0, z2),

md ◦ Rφ : (z1, z2, 0, w2, w3, 0) → (w3, w2, 0, z2, z1, 0).

Before we list the axial branches in turn, we state the key result in determining the existence of
bifurcating branches in steady-state bifurcations: the equivariant branching lemma of [31, 6].

Theorem (The equivariant branching lemma). Let � be a compact Lie group acting on R
n

with Fix(�) = {0} and let ẋ = f(x, µ) be a �-equivariant smooth bifurcation problem with
f(0, 0) = 0 and Df |(0,0) = 0. Then, for every isotropy subgroup � satisfying dim Fix(�) = 1
there is a unique solution branch (x(µ), µ) as long as Dfµ|(0,0)(v0) �= 0 for non-zero
v0 ∈ Fix(�).

We have denoted ∂f/∂µ by fµ, so the condition Dfµ|(0,0)(v0) �= 0 is the usual non-degeneracy
condition, requiring that the eigenvalue corresponding to the eigenvector v0 passes through
the origin with non-zero speed as µ is varied. As stated, the theorem does not require the
representation of � to be absolutely irreducible (as is often done), or even irreducible. Since
we are dealing in this paper with reducible representations, it is in the above form that we need
the theorem. The ‘usual’ form of the theorem follows easily from this one. The relationship
between the two is discussed in [19, pp 80–4], and a proof of the above, stronger, version is also
given there. The usefulness of the theorem comes from the way it turns the analytic problem
of the existence of solutions into a (usually easier) group-theoretic one (the calculation of
isotropy subgroups of � and their fixed point subspaces).

3.1. Construction of finer lattices

The computations of axial branches that we present later in this section show that the isotropy
subgroups of many of these branches contain nontrivial translations. This implies that these
solutions are periodic on finer real-space lattices than L. In this section we define the finer
lattice L1 that is of particular interest as it corresponds to the subspace U1. The construction
of a finer lattice corresponding to U2 is very similar and is omitted.

We recall that the dual lattice L∗ is generated by the wave-vectors q1 = (kc/s, 0) and
q2 = (0, kc/s), and that s = R = a2 + b2. Consider the wave-vectors

e1 =
(

akc

R
, −bkc

R

)
and e2 =

(
bkc

R
,
akc

R

)
,

which generate the (dual) lattice we denote by L∗
1 = {ne1 + me2 : (n, m) ∈ Z

2}. The
corresponding new real-space lattice is

L1 =
{
nv1 + mv2 : (n, m) ∈ Z

2, v1 =
(

2πa

kc

, −2πb

kc

)
, v2 =

(
2πb

kc

,
2πa

kc

)}
. (14)

It is easy to check that av1 + bv2 = �1 and av2 − bv1 = �2 and so any L1-periodic function is
also L-periodic: L1-periodicity requires u(x + nv1 + mv2) = u(x) for all (n, m) ∈ Z

2, and the
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e2

e1

q2

q1

w1

w1w2

w3

z2

z1

w4

w4

w2

z1

w3

z2

Figure 2. The original dual lattice L∗ generated by the wave-vectors q1 and q2 (- - - -) and the
new lattice L∗

1 (——) generated by e1 and e2, which generates patterns that are periodic on a finer
real-space lattice.

choices (n, m) = (a, b) and (n, m) = (−b, a) imply u(x + �1) = u(x) and u(x + �2) = u(x)

and hence u(x) is L-periodic.
Figure 2 shows the dual lattice L∗

1 and its relation with the original dual lattice L∗. The
bifurcation problem on the lattice L1 is well defined, and inherits an irreducible action of
N(L1)/L1 = D̂4 � T̂ 2 from the original E(2) symmetries of the problem; this action differs
from the action, defined by (6)–(8), of D4 � T 2 on Fix(L) = E

c(�). However, the action
of D̂4 � T̂ 2 on Fix(L1) = U1 is isomorphic to that generated by the rotation ρ, the reflection
mx ◦ R−1

φ (which is a ‘proper’ symmetry acting on U1) and the translations [ξ, η] defined
by (8) when restricted to U1 and taken modulo [2πQ/R, 2πP/R], as this latter translation
acts trivially on U1.

Within U1 the original bifurcation problem reduces to that studied by Dionne et al [14]. In
particular, the axial branches within U1 must be exactly those determined in [14]. Dionne et al
determined the existence of (group-orbits of) six axial branches: rolls, simple squares (here
referred to simply as squares), super-squares, anti-squares and two kinds of rhombs. From
table 1 these correspond to the branches labelled R1, S1, SS, AS2, Rh3 and Rh4. Within U1 the
two roll branches R1 and R2 and the two square branches S1 and S2 lie on the same group-orbit
and hence have conjugate isotropy subgroups. We distinguish them in the complete bifurcation
problem on E

c(�) because the conditions for their stability differ.
In summary, each axial branch has an associated isotropy subgroup� ⊂ D4�T 2 computed

using the action (6)–(8) on E
c(�). When, in addition, a branch has a hidden symmetry we

define a second group, denoted by S. S is the isotropy subgroup of the branch with respect to
the action of D̂4 � T̂ 2 on U1. We call S the ‘hidden symmetry group’ of the branch since it
contains symmetries that do not act on E

c(�). Although the actions of D4 � T 2 and D̂4 � T̂ 2

are distinct, S and � may have elements that act in an identical fashion on U1.
Dionne et al also came across hidden symmetries in their analysis; these affect the isotropy

subgroups of rolls and squares within U1 (see [14, section 3.2]). They found that hidden
symmetries for these branches did not affect their stability calculations, and so were not forced
to examine those hidden symmetries in more detail. We remark briefly that the construction
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given above can be extended to derive the ultra-fine lattice on which these roll and square
branches exist; we denote the subspace of U1 corresponding to this lattice by UR2:

UR2 = U1 ∩ RφU1 = E
c(�) ∩ RφE

c(�) ∩ R2
φE

c(�) = {(0, 0, w1, 0, 0, w4)}
In this way we are led to consider hidden symmetry subgroups S on U1 and S̃ on UR2 for the
R2 roll branch and the S2 square branch. Further details are given in the relevant subsections
below.

In section 5 we will discuss the relevance of the pair of groups (�, S) to stability
calculations. The remainder of this section is devoted to a detailed discussion of each axial
branch in turn; these calculations are summarized in table 1 and figure 3.

3.2. Rolls

The simplest solutions that exist are roll solutions of the form (x, 0, 0, 0, 0, 0) and
(0, 0, u, 0, 0, 0). These have the following isotropy subgroups and fixed-point subspaces

�R1 =
〈
[0, η] ,

[
2π

R
, 0

]
, mx, my

〉
∼= O(2) × DR,

Fix(�R1) = (x, 0, 0, 0, 0, 0)

(15)

and

�R2 =
〈[

ξ, −Q

P
ξ

]
,

[
2πQ

R2
,

2πP

R2

]
, ρ2

〉
∼= Z2[ρ2] �

(
SO(2) × ZR2

)
,

Fix(�R2) = (0, 0, u, 0, 0, 0).

(16)

Each of these solutions, in common with all the branches we will consider later, is associated
with a complete group-orbit of solutions related by symmetry to the particular representative
given. We will consider two solutions to be equivalent if they lie on the same D4 � T 2

orbit, that is, if they can be transformed into each other by elements of D4 � T 2. However,
this means we must consider R1 and R2 as distinct solutions since they cannot be so related
and are part of different D4 � T 2 group-orbits. Indeed, solutions on the same group-orbit
must have conjugate isotropy subgroups and clearly R1 and R2 have non-isomorphic isotropy
subgroups. At first sight this looks very odd; for example, �R2 contains no reflections. We
would expect that these discrepancies could be resolved by computing the hidden symmetry
subgroup within U1. Following the analysis of Dionne et al [14, table 3 and section 3.2] we
are led also to consider the subspace UR2 = {(0, 0, w1, 0, 0, w4)}, as defined above. In fact,
the hidden reflection symmetry R2

φ ◦ mx of R2 does not act on U1, but only on UR2, and UR2

is the largest subspace on which R2
φ ◦ mx acts. For this solution branch we can form distinct

hidden symmetry subgroups SR2 acting on U1 and S̃R2 acting on UR2:

SR2 =
〈
ρ2,

[
ξ, −Q

P
ξ

]
,

[
2πQ

R2
,

2πP

R2

]〉
∼= Z2[ρ2] �

(
SO(2) × ZR

)
,

S̃R2 =
〈
ρ2,

[
ξ, −Q

P
ξ

]
, R2

φ ◦ mx

〉
∼= O(2) × Z2[ρ2 ◦ R2

φ ◦ mx].

These subgroups agree with those computed by Dionne et al. These authors found that
consideration of S̃R2 in addition to SR2 did not affect their normal form or stability calculations.
The translation [2πQ/R2, 2πP/R2] has order R when restricted to acting on the subspace
U1. On UR2 it acts trivially and the hidden symmetry R2

φ ◦ mx combines with the translation
[ξ, −(Q/P )ξ ] to form the group O(2). The hidden symmetry group S̃R2 is the group we
expect, and would have derived, for rolls if we had imposed a lattice with the spatial period
equal to the wavelength of the instability, corresponding to the choice s = 1.
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3.3. Squares

From the analysis of simpler problems we also expect branches of simple square solutions of
the form (x, x, 0, 0, 0, 0) and (0, 0, u, 0, 0, u) to exist. The corresponding isotropy subgroups
are given in table 1. Exactly as for the R2 branch, we find that for complete accuracy we need
to define a pair of hidden symmetry subgroups S and S̃ for S2 as well. As for R2, the hidden
symmetry subgroup S̃S2 does not affect our later computations, or those of Dionne et al. The
S2 branch has a hidden symmetry R2

φ ◦ mx that acts on the subspace UR2. S2 has the hidden
symmetry group SS2 on U1 and S̃S2 on UR2:

SS2 =
〈
ρ,

[
2πQ

R2
,

2πP

R2

]〉
∼= Z4 � ZR,

S̃S2 = 〈
ρ, R2

φ ◦ mx

〉 ∼= D4,

since the translation [(2πQ/R2), (2πP/R2)] has order R when restricted to U1 and acts
trivially on UR2.

3.4. Rhombs

There are four distinct branches of rhombic patterns in all. The first two of these have isotropy
subgroups � ⊂ D4 � T 2 that have one-dimensional fixed-point subspaces and hence the
equivariant branching lemma may be directly applied in order to deduce the existence of the
axial branches. The other two branches exist within subspaces on which hidden symmetries
act and the presence of the hidden symmetries is crucial to the existence of the solution branch.
The first two solution branches Rh1 and Rh2 have no hidden symmetries and are of the form
(0, 0, u, u, 0, 0) and (0, 0, u, 0, u, 0). We would naturally expect two further branches of
rhombs to exist, of the form (x, 0, x, 0, 0, 0) and (x, 0, 0, 0, x, 0). But it is not possible to
construct isotropy subgroups of D4 � T 2 that have these fixed point subspaces. However,
these axial branches do exist due to the action of hidden symmetries. For example, consider
the subspace

Fix

(〈[
2π

R
, −2πQ

PR

]
, ρ2

〉)
= (x, 0, u, 0, 0, 0) ≡ U3 ⊂ U1,

on which the hidden symmetry mx ◦ R−1
φ acts. In fact, mx ◦ R−1

φ fixes the one-dimensional
subspace (x, 0, x, 0, 0, 0) within U3 and hence an axial branch of solutions of this form exists,
denoted rhombs 3 (Rh3). For Rh3,

�Rh3 =
〈[

2π

R
, −2πQ

PR

]
, ρ2

〉
∼= Z2 � ZPR,

SRh3 ∼= D2 � ZP ,

(17)

where D2 is generated by ρ2 and the hidden symmetry mx ◦R−1
φ , and the group of translations

acting on U1 is reduced to ZP from ZPR . The group SRh3 gives the symmetries of Rh3
considered within the subspace U1, and �Rh3 gives the symmetries of Rh3 strictly outside U1.

Similarly, an axial branch of solutions of the form (x, 0, 0, 0, x, 0) exists within U2; this
branch is denoted Rh4. It has an isotropy subgroup

�Rh4 =
〈[

2π

R
, −2πP

QR

]
, ρ2

〉
∼= Z2 � ZQR, (18)

which has a two-dimensional fixed point subspace Fix(�Rh4) = (x, 0, 0, 0, u, 0). But since
this is a subspace of U2, the hidden symmetry md ◦ Rφ must be taken into account, and so we
define SRh4 ∼= D2 � ZQ where the group D2 is generated by the half-turn rotation ρ2 and the
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hidden symmetry md ◦ Rφ . Within the subspace U2 the translation group ZQR is restricted to
a cyclic group ZQ.

Rh3 and Rh4 correspond to the branches Rhs1,α,β and Rhs2,α,β in [14]; their hidden
symmetry subgroups SRh3 and SRh4 are isomorphic to the groups Dd

2 � S1,3 and Dx
2 � S1,4

defined in table 3 of [14]. We note that the orders of the translation elements agree since the
pair of integers α, β in the notation of Dionne et al [14] is our pair a, b and P = a2 − b2 and
Q = 2ab. This implies that each of the translation subgroups S1,3 and S1,4 in [14] is in fact
generated by either of the two elements listed in the footnotes to [14, table 3]; in both cases,
the second element listed is a power of the first.

We remark that these four branches of rhombs can be distinguished by the four different
angles between wave-vectors that they contain: 2 tan−1 P/Q, π/2−2 tan−1 P/Q, tan−1 P/Q

and tan−1 Q/P , respectively.

3.5. Superlattice patterns

Previous related work [13, 14] suggests that axial branches of superlattice patterns might exist.
The most likely candidates for axial branches of superlattice patterns have four non-zero mode
amplitudes, and the possibilities fall into two cases: branches involving only the four wj modes,
and those involving the two zj modes and two of the wj . We discuss these particular cases
first, and later in this subsection discuss why other possibilities cannot lead to axial branches.

For solution branches involving the wj modes only, we might expect branches in the form
(0, 0, u, u, u, u) (super-squares) or (0, 0, u, −u, −u, u) (anti-squares). This is because the
argument of [13, section 3] can be applied to the irreducible action of D4 �T 2 on the subspace
(0, 0, w1, w2, w3, w4); to locate branches involving all four modes we are only interested in
translation-free branches, and the result of [13, section 3(c)] applies here. This result is that the
only possibilities are the super-square and anti-square branches given above. For this problem
there is one further consideration; we must check that the isotropy subgroups of these solutions
do not fix any part of the (z1, z2, 0, 0, 0, 0) subspace.

A proposed super-square solution of the form (0, 0, u, u, u, u) would have isotropy
subgroup D4, but Fix(D4) = (x, x, u, u, u, u), which is two-dimensional, and hence no axial
solution branch can be guaranteed by the equivariant branching lemma. The dynamics within
Fix(D4) is explored in more detail in section 6.1, where we discover that solutions closely
related to this branch are in fact guaranteed to exist. In contrast, the supposed anti-squares
solution branch, labelled AS1 in table 1, turns out to be an axial branch as �AS1 fixes no
non-zero part of (z1, z2, 0, 0, 0, 0).

For solutions involving both zj modes and exactly two wj modes (one of which is
taken to be w1 without loss of generality) there are three sub-cases: (z1, z2, w1, w2, 0, 0),
(z1, z2, w1, 0, w3, 0) and (z1, z2, w1, 0, 0, w4). In all of these cases we have to include the
action of hidden symmetries in order to have a transitive group action on the mode amplitudes.
However, only in the last case is there a fixed point subspace of the bifurcation problem that is
strictly smaller than C

6 (and hence it is possible to have hidden symmetries acting) and that
contains the four modes. This subspace is exactly the subspace U1. The hidden symmetry
mx ◦ R−1

φ acts on U1 as

mx ◦ R−1
φ : (z1, z2, w1, 0, 0, w4) → (w1, w4, z1, 0, 0, z2).

The action on this subspace of the group D̂4 generated by ρ and mx ◦ R−1
φ is irreducible,

and the results of [13] apply, enabling us to deduce the existence of two branches of the
form (x, x, x, 0, 0, x) and (x, x, −x, 0, 0, −x), which we denote SS (super-squares) and
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AS2 (anti-squares 2). These branches have hidden symmetry subgroups

SSS = 〈
ρ, mx ◦ R−1

φ

〉 ∼= D4, (19)

SAS2 = 〈
ρ, [π, π ] ◦ mx ◦ R−1

φ

〉 ∼= D4, (20)

which act on U1. Their isotropy subgroups are identical and include the translations that fix
U1 but omit the hidden symmetries:

�SS = �AS2 =
〈
ρ,

[
2πQ

R
,

2πP

R

]〉
∼= Z4 � ZR. (21)

Axial branches containing five or six amplitudes non-zero and of equal magnitude are
not possible due to the reducibility of the group action; the reflections and rotations in D4 do
not permute all the amplitudes transitively, which would force them to be equal in magnitude.
Hidden symmetries cannot come to the rescue since they do not act on subspaces where five
or more amplitudes are non-zero. For the same reason, fixed-point subspaces of symmetries
that are compositions of translations and elements of D4 would also not be one-dimensional.
Possibilities involving exactly one zj mode and three wj modes are similarly ruled out; again,
no hidden symmetry can help since none act on as many as three of the wj modes.

By the same argument we note that there can be no axial solution branches with exactly
three mode amplitudes non-zero. This completes our investigation of axial branches; the details
are summarized in table 1 and figure 3. We remark that it is better not to think of the two
branches of rolls R1 and R2 as exactly equivalent for this bifurcation problem, even though
within the subspace U1 they are related by the hidden symmetry mx ◦ R−1

φ . Similarly, the two
branches of squares are distinct, but can be related within U1 by the same hidden symmetry.
The differences will become more apparent when we compute stability in section 5.

4. The normal form

To calculate the normal form we follow the approach used by (among many others)
[14, section 4.1] and [11]. First we compute T 2-invariant polynomials. From these we deduce
terms that transform in the same way as z1 does under the action of T 2. Then we can construct
the first component ż1 = f1(µ, z, w). Equivariance with respect to the D4-action is guaranteed
by then requiring ż2 = ρż1 = f1(µ, ρ(z, w)) ≡ f2(µ, z, w). In a similar way we construct
the equation ẇ1 = f3(µ, z, w) and require

ẇ2 = f4(µ, z, w) = f3(µ, mx(z, w)),

ẇ3 = f5(µ, z, w) = f3(µ, md(z, w)),

ẇ4 = f6(µ, z, w) = f3(µ, ρ3(z, w)).

The resulting amplitude equations (ż, ẇ) = f(µ, z, w) are D4 � T 2-equivariant. Finally, we
consider the action of the hidden symmetry Rφ on the subspace U1 and derive extra constraints
relating the form of f1(µ, z, w) to that of f3(µ, z, w). We know from Crawford [8] that
considering other hidden symmetries leads to no further constraints.

In this first subsection we discuss the computation of T 2-invariants in the general case
and subsequently concentrate on analysing the particular case a = 2 and b = 1. This is the
natural first case and provides a concrete illustration of several finer points.

4.1. Computation of T 2-invariants

We define the order O(I) of an invariant polynomial

I = z
m0
1 z̄

m1
1 z

n0
2 z̄

n1
2 w

p0
1 w̄

p1
1 w

q0
2 w̄

q1
2 w

r0
3 w̄

r1
3 w

s0
4 w̄

s1
4
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Table 1. Axial branches, their isotropy subgroups and (where appropriate) hidden symmetry
subgroups, for the reducible representation of � = D4 �T 2 defined by (6)–(8). We distinguish the
two types of roll and square solutions since the conditions for their stability given by this bifurcation
problem are different (see table 2). For convenience we define τ̂ ≡ [(2πQ/R2), (2πP/R2)] and
h ≡ R2

φ ◦ mx . The translation τ ′
1 is the restriction of τ1 to the subspace U1 and τ ′

2 is similarly the
restriction of τ2 to U2. For R2 and S2 we give the hidden symmetry subgroups S̃ that act on UR2.

Solution Fixed-point Isotropy Hidden symmetry
branch subspace subgroup � subgroup S

Rolls 1
(R1)

(x, 0, 0, 0, 0, 0)

〈
[0, η] , mx, my,

[
2π

R
, 0

]〉

∼= O(2) × DR

Rolls 2
(R2)

(0, 0, u, 0, 0, 0)

〈
ρ2,

[
ξ, −Q

P
ξ

]
, τ̂

〉

∼= Z2[ρ2] � (SO(2) × ZR2 )

S̃R2 =
〈
ρ2,

[
ξ, −Q

P
ξ

]
, h

〉

∼= O(2) × Z2[ρ2 ◦ h]

Squares 1
(S1)

(x, x, 0, 0, 0, 0)

〈
mx, md,

[
2π

R
, 0

]
,

[
0,

2π

R

]〉

∼= D4 � (ZR × ZR)

Squares 2
(S2)

(0, 0, u, 0, 0, u)
〈
ρ, τ̂

〉
∼= Z4 � ZR2

S̃S2 = 〈ρ, h〉
∼= D4

Rhombs 1
(Rh1)

(0, 0, u, u, 0, 0)

〈
mx, my,

[
π

Q
,

π

P

]〉

∼= D2 � Z2QP

Rhombs 2
(Rh2)

(0, 0, u, 0, u, 0)

〈
md, md ′ ,

[
2πP

P 2 − Q2
,

2πQ

Q2 − P 2

]〉

∼= D2 � Z|P 2−Q2 |

Rhombs 3
(Rh3)

(x, 0, x, 0, 0, 0)

〈
ρ2, τ1 ≡

[
2π

R
, − 2πQ

PR

]〉

∼= Z2 � ZPR

〈
ρ2, mx ◦ R−1

φ , τ ′
1

〉
∼= D2 � ZP

Rhombs 4
(Rh4)

(x, 0, 0, 0, x, 0)

〈
ρ2, τ2 ≡

[
2π

R
, − 2πP

QR

]〉

∼= Z2 � ZQR

〈
ρ2, md ◦ Rφ, τ ′

2

〉
∼= D2 � ZQ

Super-squares
(SS)

(x, x, x, 0, 0, x)

〈
ρ,

[
2πQ

R
,

2πP

R

]〉

∼= Z4 � ZR

〈
ρ, mx ◦ R−1

φ

〉
∼= D4

Anti-squares 1
(AS1)

(0, 0, u, −u, −u, u) 〈[π, π ] ◦ mx, ρ〉
∼= D4

Anti-squares 2
(AS2)

(x, x, −x, 0, 0, −x)

〈
ρ,

[
2πQ

R
,

2πP

R

]〉

∼= Z4 � ZR

〈
ρ, [π, π ] ◦ mx ◦ R−1

φ

〉
∼= D4

to be the sum of the (non-negative) powers of the various amplitudes in it: O(I) =
m0 + m1 + · · · + s0 + s1. As is always the case in problems of this type, the order 2 polynomials
|z1|2, . . . , |w4|2 are T 2-invariant; we refer to them as trivial invariants. To remove them from
the search for nontrivial invariants (these will introduce dynamics that depend on the relative
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Figure 3. Greyscale images of the eleven axial planforms in the case a = 2, b = 1. From left to
right, top to bottom: rolls 1, rolls 2, squares 1, squares 2, rhombs 1, rhombs 2, rhombs 3, rhombs 4,
super-squares, anti-squares 1, anti-squares 2.

phases of the amplitudes) we search for invariants in the form I = zm
1 zn

2w
p

1 w
q

2 wr
3w

s
4, where

m, n, p, q, r, s are integers but are not constrained to be non-negative. Negative powers are
interpreted as powers of the complex conjugate of the amplitude; for example, if m < 0 then
zm

1 should be interpreted to mean z̄−m
1 .
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Given the action (8) of T 2 on the six mode amplitudes, a polynomial zm
1 zn

2w
p

1 w
q

2 wr
3w

s
4 is

T 2-invariant when

Q(p + q) + P(r + s) + Rm = 0, (22)

P(p − q) + Q(r − s) + Rn = 0. (23)

The task of finding all solutions in integers to (22) and (23) is daunting. A complete description
of solutions may be possible using the methods of [29], but the problem analysed in that paper
involves far fewer wave-vectors than we have here.

The algebraic analogue of the geometric insight of the finer lattice constructed in section 3.1
is to re-express (22) and (23) using the relations (4). This yields

2ab(p + q) + (a2 − b2)(r + s) + (a2 + b2)m = 0, (24)

(a2 − b2)(p − q) + 2ab(r − s) + (a2 + b2)n = 0. (25)

By multiplying these equations by a and b, respectively, and subtracting, and also after
multiplying by b and a, respectively, and adding, we obtain

a(m + s) + b(p − n) +
a(a2 − 3b2)r + b(3a2 − b2)q

a2 + b2
= 0, (26)

b(m − s) + a(p + n) +
b(3a2 − b2)r + a(3b2 − a2)q

a2 + b2
= 0. (27)

Solutions to (26) and (27) correspond exactly to solutions of (24) and (25). If q = r = 0
then (26) and (27) are exactly those equations analysed in appendix A.1 of Dionne et al [14].
Applying their results we deduce the existence of the T 2-invariants z̄a

1z
b
2w

b
1w

a
4 and zb

1z
a
2w̄

a
1wb

4 ,
which are clearly of order 2(a + b). It is also straightforward to apply the results of this
appendix of [14] to the case where m = n = 0. This produces T 2-invariants that involve only
the wj modes: w̄P

1 w̄P
2 w

Q
3 w

Q
4 and w̄

Q
1 w

Q
2 wP

3 w̄P
4 and are of order 2(P +Q) = 2(a2 −b2 +2ab).

With more effort we can deduce the following theorem, the proof of which is deferred to the
appendix.

Theorem. All nontrivial invariants are of order at least 2(a + b).

In particular, the lack of nontrivial invariants of order 4 (because a > b � 1 ⇒ a +b � 3,
hence 2(a + b) � 6) results in amplitude equations that can never contain nontrivial cubic
order terms. In fact, the invariants of order 2(a + b) are exactly those found by Dionne et al
[14]. This is also proved in the appendix, as a corollary to the proof of the theorem.

By way of illustration, in the case a = 2, b = 1 there are nontrivial T 2-invariants of order
2(a + b) = 6; for example, z2

1z̄2w̄1w̄
2
4. Applying the D4 symmetries to an invariant yields a

‘group-orbit’ of T 2-invariants. There are a further four distinct types (unrelated by D4 symme-
tries) of order 8 invariant: z1z̄

3
2w1w̄

3
4, z1w̄

3
1w2w

2
3w̄4, z1z̄2w

2
1w̄2w̄

2
3w̄4 and z2

1w̄
2
1w̄

2
2w3w4. In the

next subsection we use these results to derive the normal form in the specific case a = 2, b = 1.

4.2. The normal form for the case a = 2, b = 1

Having calculated the invariant polynomials up to a given order, it is straightforward to derive
the truncation of the normal form up to and including terms of one order fewer. We have
determined the number of nontrivial equivariant terms in the ż1 equation up to fifteenth order:
there are 2 nontrivial equivariant terms at fifth order and a further 19 terms at seventh order
that are not products of fifth order equivariants and trivial invariants. Similarly there are 26
new nontrivial terms at ninth order, 57 at eleventh order, 116 at thirteenth order and another
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116 at fifteenth order. Most of the stability calculations of the axial branches involve cubic
terms. Eigenvalues calculated from the cubic truncation appear with multiplicities that are
due both to symmetry and, sometimes, to degeneracies that stem from the omission of terms
higher than third order. It is important to determine which of these multiplicities are broken
when higher-order terms are included, and it is for this reason that we have computed these
higher-order terms in the normal form.

It is clear that none of the cubic terms involve the relative phases of the modes
and so the cubic truncation can never be sufficient completely to determine the stability
of the axial branches. The inclusion of fifth-order terms is necessary but not sufficient
because the fifth-order truncation still has non-generic features. For example, the subspace
(0, 0, w1, w2, w3, w4) is flow-invariant for the fifth-order truncation, but it is not when seventh-
order terms are included. We find that there are several more degeneracies, broken as we include
successive sets of higher-order terms. For higher values of a and b we expect the picture to
be similar: for example, terms of order 2(a + b) − 1 are always involved in determining the
relative stability of SS and AS2.

Using the invariant polynomials and D4 � T 2-equivariance we are able to compute the
amplitude equations for z1 and w1. For illustration, we include terms up to seventh order
derived from the nontrivial T 2-invariants, and involve products of trivial invariants:

ż1 = z1
[
µ + a1|z1|2 + a2|z2|2 + a3(|w1|2 + |w2|2) + a4(|w3|2 + |w4|2)

]
+ b1

[
z̄1z2w1w

2
4 + z̄1z̄2w2w

2
3

]
+ b2

[
z2

2w
2
2w̄3 + z̄2

2w
2
1w̄4

]
+ c1z̄1w

2
1w

2
2w̄3w̄4 + c2w3w4[z2w̄

2
1w2w3 + z̄2w1w̄

2
2w4]

+ c3
[
w̄1w

3
2w3w̄

2
4 + w3

1w̄2w̄
2
3w4

]
+ c8

[
z3

2w̄1w
3
4 + z̄3

2w̄2w
3
3

]
+ c9z

3
1

[
z̄2w̄1w̄

2
4 + z2w̄2w̄

2
3

]
+ c10z̄

2
1

[
z2w

3
2w3 + z̄2w

3
1w4

]
+ c11z

2
1

[
z2

2w4w̄
2
1 + z̄2

2w̄
2
2w3

]
+ O(9), (28)

ẇ1 = w1[µ̃ + α1|w1|2 + α2|w2|2 + α3|w3|2 + α4|w4|2 + α5|z1|2 + α6|z2|2]

+ β1w̄1z1z
2
2w4 + β2z

2
1z̄2w̄

2
4 + γ1z̄1z

3
2w

3
4 + γ2w̄

2
1w̄4z

3
1z2

+ γ3w̄
2
1z1w2w

2
3w̄4 + γ4z2w̄

2
2w3w

3
4 + γ5w̄1w̄2w

3
3w4z̄2 + γ6z̄1w

3
2w3w̄

2
4

+ γ7w̄1z̄1z2w2w
2
3w4 + γ8z1z2w

2
2w̄3w̄

2
4 + γ9w̄1z

2
1w̄

2
2w3w4 + γ10z̄

2
2w2w

2
3w̄

2
4

+ γ11z̄1z̄
2
2w1w

2
2w̄3 + γ12z1z̄

2
2w1w̄

2
2w3 + γ13z

2
1z2w1w̄2w̄

2
3 + γ14z̄

2
1z̄2w1w2w

2
3

+ γ15z̄1z̄
2
2w

3
1w̄4 + γ16z̄

2
1z2w

2
1w

2
4 + O(9). (29)

To derive sensible amplitude equations Crawford [8] proved that it is necessary and sufficient
to make use of the hidden symmetry Rφ : U2 → U1 defined by equations (11) and (12). Hence,
following Crawford [8], if

ż1 = f (z1, z2, w1, w2, w3, w4),

ẇ1 = h(z1, z2, w1, w2, w3, w4),

then, restricting to U2:

Rφ

d

dt
z1 = Rφf (z1, z2, 0, w2, w3, 0) = f (w1, w̄4, 0, z1, z2, 0),

but Rφ(dz1/dt) = (dw1/dt) = h(z1, z2, w1, 0, 0, w4) also, hence hidden symmetry implies

f (w1, w̄4, 0, z1, z2, 0) = h(z1, z2, w1, 0, 0, w4).



Reducible actions of D4 � T2 17

Requiring this relation between (28) and (29) implies the equality of the bifurcation parameters
µ = µ̃ and in addition

a1 = α1, a2 = α4, a3 = α5, a4 = α6,

b1 = β1, b2 = β2, c8 = γ1, c10 = γ2,

c9 = γ15, c11 = γ16.

So the ẇ1 equation becomes

ẇ1 = w1
[
µ + a1|w1|2 + a5|w2|2 + a6|w3|2 + a2|w4|2 + a3|z1|2 + a4|z2|2

]
+ b1w̄1z1z

2
2w4 + b2z

2
1z̄2w̄

2
4 + c4w̄

2
1z1w2w

2
3w̄4 + c5z2w̄

2
2w3w

3
4

+ c6w̄1w̄2w
3
3w4z̄2 + c7z̄1w

3
2w3w̄

2
4 + c8z̄1z

3
2w

3
4 + c9z̄1z̄

2
2w

3
1w̄4

+ c10w̄
2
1w̄4z

3
1z2 + c11z̄

2
1z2w

2
1w

2
4 + c12w̄1z̄1z2w2w

2
3w4 + c13z1z2w

2
2w̄3w̄

2
4

+ c14w̄1z
2
1w̄

2
2w3w4 + c15z̄

2
2w2w

2
3w̄

2
4 + c16z̄1z̄

2
2w1w

2
2w̄3 + c17z1z̄

2
2w1w̄

2
2w3

+ c18z
2
1z2w1w̄2w̄

2
3 + c19z̄

2
1z̄2w1w2w

2
3 + O(9), (30)

where we have re-labelled α2, α3 and γ7, . . . , γ14 as (respectively) a5, a6 and c12, . . . , c19

for consistency: the coefficients of the third-, fifth- and seventh-order terms are now labelled
a1, . . . , a6, b1 and b2 and c1, . . . , c19 respectively. Equivariance with respect to the half-turn
rotation symmetry ρ2 ensures that all coefficients are real. Consistent with our discussion
of axial branches in section 3, the term c3[w̄1w

3
2w3w̄

2
4 + w3

1w̄2w̄
2
3w4] in (28) prohibits the

existence of an axial branch of super-squares of the form (z, w) = (0, 0, u, u, u, u), but is
identically zero when (z, w) = (0, 0, u, −u, −u, u), in agreement with the existence of the
axial branch AS1.

We remark in passing that the cubic truncation of these amplitude equations has a gradient
structure that is broken by higher-order terms. The computations below show that there are open
regions of the normal form coefficient space where all axial branches bifurcate supercritically
yet none is stable; branches of stable non-axial equilibria exist. Moreover, complex dynamics
may also be possible, although we do not explore this issue further here.

5. Stability

In this section we discuss the stability of the eleven axial branches listed in table 1, relative to
each other, by computing the eigenvalues of the Jacobian matrix found from the normal form
truncated to some order.

The usual way of proceeding with the stability calculation of an equilibrium point with
isotropy subgroup � is to decompose the 12×12 Jacobian matrix into its isotypic components.
If V is the 12-dimensional space spanned by the eigenvectors of the Jacobian matrix, then,
according to [19, chapter XII, theorem 2.5], V can be decomposed into a finite number of
components W1, . . . , WK :

V = W1 ⊕ · · · ⊕ WK,

where the Wk (1 � k � K) are called isotypic components of V . Within each isotypic
component, the isotropy subgroup acts as one or more isomorphic copies of the same irreducible
representation (irrep) of �, and each different isotypic component is associated with a different
irrep. Correspondingly, the Jacobian matrix can be block diagonalized, with the kth block
having the same dimension as Wk . In the case that � acts absolutely irreducibly on Wk ,
the corresponding block of the Jacobian matrix will be diagonal, and the eigenvalue will have
multiplicity equal to the dimension of the irrep in question. If there were no hidden symmetries,
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then this decomposition would be sufficient to compute all the eigenvalues of the Jacobian,
and hence to determine the stability of the equilibrium in question.

However, this procedure is made more complicated here by the existence of hidden
symmetries, which provide extra constraints on the form of the Jacobian matrix. For example,
super-squares (SS), in the case a = 2, b = 1, have �SS

∼= Z4 � Z5, which has five irreps, four
of dimension 1 and one of dimension 4. However, the Jacobian matrix of SS has eigenvalues
(amongst others) of multiplicity 2, which does not correspond to the dimensions of any of the
irreps of �SS . It is clear then, that consideration of the decomposition with respect to � alone
is not sufficient. We show below how we have computed the stability of the 11 branches of
equilibria, within the context of perturbations that lie on the original lattice (that is with the
original imposed spatial periodicity).

Consider an equilibrium point with isotropy subgroup � and hidden symmetry group S,
which acts on a subspace U (with U the largest such subspace). Since U is a flow-invariant
fixed-point subspace, eigenvectors of the Jacobian matrix must lie either within U or outside U ,
and the number of eigenvectors within U will be equal to the dimension of U . Since S acts on U ,
the isotypic decomposition of the subspace spanned by eigenvectors within U will correspond
to irreducible actions of S. The remaining eigenvectors, which lie strictly outside U , span a
space that is isotypically decomposed according to irreducible actions of �. However, only
those irreps of � in which group elements of � that fix U act nontrivially will appear.

As an example, consider super-squares (x, x, x, 0, 0, x), in the case a = 2, b = 1, which
have �SS

∼= Z4 � Z5 and SSS
∼= D4, acting on U = U1 = Fix(〈[(2πQ/R), (2πP/R)]〉) =

{(z1, z2, w1, 0, 0, w4)}. There is a decomposition of the 12-dimensional space V = E
c(�):

V = W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5 ⊕ W6,

W1 = R {(1, 1, 1, 0, 0, 1)} ,

W2 = R {(1, 1, −1, 0, 0, −1)} ,

W3 = R {(1, −1, 1, 0, 0, −1)} ,

W4 = R {(1, −1, −1, 0, 0, 1)} ,

W5 = R{(iR, 0, iQ, 0, 0, iP), (0, iR, iP, 0, 0, −iQ),

(−iQ, −iP, iR, 0, 0, 0), (−iP, iQ, 0, 0, 0, iR)},
W6 = C {(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0)} ,

where W1, W2, W3 and W4 correspond to the four different one-dimensional irreps of S ∼= D4,
W5 is four-dimensional and corresponds to two copies of the two-dimensional irrep of S, and
W6 is four-dimensional and corresponds to the four-dimensional irrep of � ∼= Z4�Z5, in which
the element [(2πQ/R), (2πP/R)] acts nontrivially. Note that each subspace apart from W5

corresponds to absolutely irreducible representations of S or �, and so the corresponding
blocks of the Jacobian matrix are diagonal. The eigenvalues corresponding to W5 have
multiplicity two, and one pair of these is the pair of zero eigenvalues arising from the neutral
stability of the pattern to translations. The other pair of eigenvalues is (at leading order)
proportional to −(b2 + 2b1).

We have computed the eigenvalues of the 11 axial branches by constructing
decompositions as described above. The results are presented in tables 2 and 3, which show,
for each axial branch, the equation that determines the amplitude of the solution branch and the
combinations of coefficients that determine the eigenvalues, together with the multiplicity of
each eigenvalue. Note that the roll solutions have one zero eigenvalue and all other planforms
have two zero eigenvalues, due to the translational symmetry. All eigenvalues are real. The
stability of the roll and square solutions is fully determined at cubic order; for these branches
the results in table 2 are valid for all values of a > b > 0.
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Table 2. Stability criteria for axial branches: part 1. Numbers in square brackets give the
multiplicities of the eigenvalues. Roll solutions have one zero eigenvalue and all other solutions
have two. Multiplicity [2 + 2] indicates that this eigenvalue is split by higher-order terms, as
discussed in the text.

Axial branch and Stability criteria
branching equation (stable near µ = 0 if all quantities given are negative)

Rolls 1 a1
[1], a2 − a1

[2],
0 = µ + a1x

2 + · · · a3 − a1
[4], a4 − a1

[4]

Rolls 2 a1
[1], a2 − a1

[2], a5 − a1
[2],

0 = µ + a1x
2 + · · · a3 − a1

[2], a4 − a1
[2], a6 − a1

[2]

Squares 1 a1 + a2
[1],

0 = µ + (a1 + a2)x
2 + · · · a1 − a2

[1], −a1 − a2 + a3 + a4
[8]

Squares 2 a1 + a2
[1], −a1 − a2 + a3 + a4

[4],
0 = µ + (a1 + a2)x

2 + · · · a1 − a2
[1], −a1 − a2 + a5 + a6

[4]

Rhombs 1 a1 + a5
[1], −a1 − a5 + 2a3

[2],
0 = µ + (a1 + a5)x

2 + · · · a1 − a5
[1], −a1 − a5 + 2a4

[2],
−a1 − a5 + a2 + a6

[4]

Rhombs 2 a1 + a6
[1], −a1 − a6 + a2 + a5

[2+2],
0 = µ + (a1 + a6)x

2 + · · · a1 − a6
[1], −a1 − a6 + a3 + a4

[2+2]

Rhombs 3 a1 + a3
[1], a1 − a3

[1], −a1 − a3 + a4 + a6
[2],

0 = µ + (a1 + a3)x
2 + · · · a5 − a1

[2], −a1 − a3 + a2 + a4
[2+2]

Rhombs 4 a1 + a4
[1], a1 − a4

[1], −a1 − a4 + a3 + a6
[2],

0 = µ + (a1 + a4)x
2 + · · · a5 − a1

[2], −a1 − a4 + a2 + a3
[2+2]

Table 3. Stability criteria for axial branches: part 2. Numbers in square brackets give the
multiplicities of the eigenvalues. These three branches all have two zero eigenvalues each.
Multiplicity [2 + 1 + 1] indicates that this eigenvalue is split by higher-order terms, as discussed
in the text. Underlined stability criteria depend on coefficients of terms of fifth and higher orders.
Ĉ = a1 + a2 − 2a3 − 2a4 + a5 + a6.

Axial branch and Stability criteria
branching equation (stable near µ = 0 if all quantities given are negative)

SS a1 + a2 + a3 + a4
[1], a1 − a2 + a3 − a4

[1],
0 = µ + (a1 + a2 + a3 + a4)x

2 a1 + a2 − a3 − a4
[1], a1 − a2 − a3 + a4

[1],
+(b1 + b2)x

4 + · · · −a1 − a2 + a5 + a6
[4],

−(b2 + 2b1)
[2]

AS1 a1 + a2 + a5 + a6
[1], a1 − a2 + a5 − a6

[1],
0 = µ + (a1 + a2 + a5 + a6)x

2 a1 + a2 − a5 − a6
[1], a1 − a2 − a5 + a6

[1],

+ · · · −Ĉ [2+1+1],

c3(4c4 + 3c5 + 3c6 + 4c7)/Ĉ
[2]

AS2 a1 + a2 + a3 + a4
[1], a1 − a2 + a3 − a4

[1],
0 = µ + (a1 + a2 + a3 + a4)x

2 a1 + a2 − a3 − a4
[1], a1 − a2 − a3 + a4

[1],
−(b1 + b2)x

4 + · · · −a1 − a2 + a5 + a6
[4],

(b2 + 2b1)
[2]
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A recurring difficulty with these calculations involves deciding whether or not the level of
truncation of the normal form has led to erroneous stability conclusions, and if so, determining
a sufficiently high level of truncation to resolve the situation. In most cases, each isotypic
component corresponds to an irreducible action either of S or of � (as appropriate), and
the resulting eigenvalue is distinct from all other eigenvalues associated with other isotypic
components. In these cases, the cubic truncation is sufficient. However, two different problems
arise. First, eigenvalues corresponding to different isotypic components could be equal in value
at the cubic level of truncation. Since the eigenvalues are associated with different components,
this degeneracy is spurious and is removed by the addition of higher-order terms. We refer
to this as eigenvalues being ‘split’ by higher-order terms. Second, the action of S or of �

in a component might correspond to two (or more) copies of an irreducible action, leading
to several different eigenvalues that will depend on diagonal and off-diagonal entries in that
Jacobian block. If any of these entries is zero, there is a possibility that going to higher order
in the normal form might lead to a non-zero entry, casting doubt on the original estimate of
the eigenvalues.

The first problem arises in rhombs 2, rhombs 3, rhombs 4 and anti-squares 1. In each
case, there are eigenvalues that are four-fold degenerate at the cubic level of truncation, but that
correspond to two different two-dimensional isotypic components (rhombs) or three different
isotypic components of dimensions 1, 1 and 2 (anti-squares 1). Since there are no off-diagonal
entries linking blocks in different isotypic components, increasing the degree of the truncation
sufficiently resolves this spurious degeneracy without any additional complications—though
for rhombs 2 it proves necessary to go to fifteenth order to break the degeneracy (for the case
a = 2, b = 1). The affected eigenvalues are indicated by [2 + 2] and [1 + 1 + 2] in tables 2
and 3.

The second problem arises in the cases of super-squares and anti-squares 1 and 2. In
the cases of super-squares and anti-squares 2, the affected eigenvalues are associated with
four-dimensional isotypic components, in which two copies of the two-dimensional irrep of
D4 are acting (as in the subspace W5 described above). In these two cases (as noted by Dionne
et al [14]), one pair of eigenvalues is zero, corresponding to translations along the group-orbit,
and the other pair is determined unambiguously at fifth order. Indeed, a considerable number
of the entries in table 3 can be obtained from table 8 of Dionne et al [14]. For example,
for the super-square and anti-squares 2 solutions, the stability problem within the invariant
subspace U1 reduces to that studied in [14]. The case of anti-squares 1 is more complicated:
three isotypic components are reducible. Two of these are two-dimensional, with two copies
each of one-dimensional irreducible actions of � = D4; the other one is six-dimensional, with
three copies of the two-dimensional irreducible action of � = D4, and the neutral eigenvalues
are associated with this component. In the two two-dimensional cases, the diagonal entries of
the blocks are proportional to µ (the bifurcation parameter), while the off-diagonal entries are
proportional to µ3, so the signs of the eigenvalues will be unaffected by retaining higher-order
terms in the normal form. The six-dimensional component factorizes into two copies of a
three-dimensional matrix, and one eigenvalue of each of these is zero. Since the eigenvectors
of the zero eigenvalues are known, a two-dimensional matrix for the other eigenvalues can be
extracted. After coordinate transformations, this matrix has diagonal entries proportional to µ

and µ6, and off-diagonal entries proportional to µ3. We therefore expect eigenvalues of order
µ and µ5; expressions giving the signs of these are in table 3.

Note that, while we have given explicit stability criteria depending on coefficients of
quintic and higher terms in the normal form (underlined in table 3), these were computed
without including terms that are products of lower-order invariant and equivariant terms. The
implication is that the stability criteria that are underlined are correct for the normal form as
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given in equations (28) and (30), but are not correct in general because of the missing fifth and
higher-order terms.

The stability results lead to a number of conclusions. If rolls bifurcate subcritically then
all solutions are unstable. However, it is possible for any other solution branch to be subcritical
while other branches are stable; for example, Rh1 can be stable when SS is subcritical. There
are several combinations of solutions that can be simultaneously stable. For example, S1 can
be simultaneously stable with any of S2, Rh1, Rh2, Rh3, Rh4 or AS1. All three of R1, Rh1
and Rh2 can be stable. The maximum number of simultaneously stable solutions seems to be
four: S1, S2, Rh2 and either Rh3 or Rh4.

An interesting result is that it is possible for all axial branches to be supercritical while
none of them is stable. This is not possible for the square superlattice problem considered
by Dionne et al [14, section 4], but it is the case in other problems: notably it occurs for the
corresponding bifurcation on a hexagonal superlattice in the degenerate situation when the
quadratic terms vanish. That bifurcation problem was analysed in section 5.1 of [14] and their
note (3) remarks that it is possible for all axial branches to bifurcate supercritically yet none
to be stable if the normal form coefficients satisfy a certain inequality. It turns out that for
those coefficient values a primary but non-axial branch (identified by Silber and Proctor [27])
exists and is stable. This branch has submaximal symmetry and exists for all combinations of
normal form coefficients.

In the case

a1 < a2 = a3 = a4 = a5 = a6 < 0, (31)

all axial branches bifurcate supercritically, but they are unstable (at least near µ = 0) because
each solution branch has at least one stability criterion that is equal to a2 − a1 + O(|z, w|2). In
section 7 we show that stable non-axial branches of solutions occur for a PDE for which the
condition (31) holds.

6. Non-axial branches

In this section we comment briefly on two subspaces that contain non-axial branches. The
subspace Fix(D4) is of interest since within this subspace we can guarantee the existence of a
primary (but non-axial) branch, an unusual feature of this bifurcation problem. The second sub-
space we discuss is of interest since, in addition to several axial branches, it contains branches
that resemble hexagonal solutions, despite this analysis being carried out on a square lattice.

6.1. The dynamics within the subspace Fix(D4)

Fix(D4) is the two-dimensional subspace (x, x, u, u, u, u); within this subspace the amplitude
equations (28) and (30) reduce to

ẋ = x[µ + Ax2 + 2Bu2] + xh1(x, u) + Cu7 + O(9), (32)

u̇ = u[µ + Du2 + Bx2] + uh2(x, u), (33)

where A = a1 + a2, B = a3 + a4, C = 2c3, D = A + a5 + a6 and the smooth functions h1 and
h2 are O(|x, u|4). These equations have a symmetry (x, u) → (−x, −u) and in addition the
line u = 0 is invariant.

The cubic truncation of (32) and (33) has three distinct types of equilibria:

• a squares solution x2
s = −µ/A, u = 0 (which corresponds to the axial branch S1);

• a ‘super-squares’ solution xss = 0, u2
ss = −µ/D;

• mixed-mode solutions x2
mm = µ(D −2B)/(2B2 −AD), u2

mm = µ(A−B)/(2B2 −AD).
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The first and second of these exist for all combinations of coefficients. Squares are stable within
Fix(D4) when B < A < 0, and super-squares are likewise stable when 2B < D < 0. Note
that the non-axial (0, uss) solution is entirely distinct from the axial branch of super-squares
solutions discussed in section 3. The mixed-mode solutions correspond to two different real-
space patterns, given by x > 0, u > 0 and x > 0, u < 0. They exist when (D−2B)(A−B) > 0
and are stable when Ax2

mm +Du2
mm < 0 and 2B2 −AD < 0. In the cubic truncation of the full

problem, these ‘solution branches’ would have six zero eigenvalues in their Jacobians, and we
would not be able to guarantee that they persisted to give solution branches for the complete
normal form. However, as long as we remain within Fix(D4), these branches of equilibria are
hyperbolic (for generic choices of the coefficients). So we may apply the implicit function
theorem and assert that any branch of equilibria (x̂(µ), û(µ)) that exists and is hyperbolic in
the cubic truncation within Fix(D4) (for a given set of coefficients A, . . . , D) must persist as
a branch of solutions to the full amplitude equations for sufficiently small |µ|.

Figure 4(a) illustrates the dynamics of the cubic truncation of (32) and (33) in the case that
all three branches of equilibria bifurcate supercritically and the mixed-mode branch (xmm, umm)

is stable. Figure 4(b) illustrates the full dynamics of (32) and (33), indicating the persistence of
the branches of equilibria. Note that the super-squares branch (xss, uss) has been perturbed off
the axis, and the four mixed-mode solutions, which were all related by symmetry in the cubic
truncation, have split into two distinct pairs under the influence of the higher-order terms.

There is a clear contrast between this analysis and the results of section 3 within this
subspace; from table 1 the existence of only the axial squares branch S1 can be deduced.
The ‘super-squares’ branch (0, uss) for the cubic truncation generically persists (when it is
hyperbolic) to yield a branch of solutions where all six modes are non-zero; the corresponding
branch of solutions to (32) and (33) has xss ≈ Cu5

ss/(D − 2B) to leading order, due to the
term Cu7 in (32). It is an example of a primary but non-axial branch of solutions.

Moreover, for particular choices of the coefficients of the cubic terms in the normal
form we find that the mixed-mode solution (xmm, umm), where both x and u are O(µ1/2), is
stable, at least within this subspace. The existence and stability of the mixed-mode solution

u

(xs,0)

x

(0,uss)

(xmm,umm)

u

(xs,0)

x

(xss,uss)

(xmm,umm)

(a) (b)

Figure 4. The dynamics within Fix(D4) for µ > 0, in the case that all solution branches bifurcate
supercritically and the mixed-mode solution exists and is stable. (a) A sketch of the phase portrait
of the cubic truncation (32) and (33) showing the squares (xs , 0), the super-squares (0, uss ) and the
mixed-mode (xmm, umm). (b) The dynamics of the non-truncated ODEs (32) and (33) illustrating
the persistence of the equilibria and the existence of the primary but non-axial branch (xss , uss ).
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is independent of the nature of the higher-order terms, and so is independent of the choice
of a and b. Furthermore, we would expect the values of the cubic coefficients to vary only
relatively little if a and b were to vary in a way that keeps the ratio a/b nearly constant, since
the coefficients depend only on the angles between modes, which depend only on the ratio
a/b. In section 7 we discuss numerical solutions of a model PDE that appear to be in the form
of this stable mixed-mode solution.

6.2. ‘Nearly hexagonal’ solution branches

Among the many fixed-point subspaces of the problem, the subspace Fix([0, 2π/Q]) =
(z1, 0, 0, 0, w3, w4) is of particular interest since exactly three modes have non-zero amplitudes
within this subspace. Furthermore, the angle between the wave-vectors corresponding to the
modes z1, w3 and w4 can be made arbitrarily close to 60˚ by choosing a and b so that a2/b2 is
sufficiently close to 3. The dynamics within this subspace gives rise to solutions that, despite
being periodic on a square lattice, resemble hexagons modulated on a much longer length-
scale. A quick calculation of T 2-invariant polynomial terms which involve only z1, w3 and
w4 reveals that the lowest-order nontrivial invariant is I1 = z2P

1 w̄R
3 w̄R

4 . The dynamics within
this subspace are governed at leading order by the cubic truncation of (28) and the equations
for ẇ3 and ẇ4 obtained by applying symmetries to (30). The cubic truncation contains no
information on the relative phases of the modes, and so we add the higher-order terms that
result from the nontrivial invariant I1. In fact, the calculation of invariant terms involving only
z1, w3 and w4 shows that all higher-order nontrivial terms are composed of products of trivial
invariants and powers of I1, so it is enough to keep only the lowest-order nontrivial terms.
After writing z1 = Aeiθ1 , w3 = Beiθ2 and w4 = Ceiθ3 and substituting we obtain

Ȧ = A[µ + a1A
2 + a4(B

2 + C2)] + b3A
2P−1BRCR cos φ, (34)

Ḃ = B[µ + a1B
2 + a4A

2 + a5C
2)] + b4A

2P BR−1CR cos φ, (35)

Ċ = C[µ + a1C
2 + a4A

2 + a5B
2)] + b4A

2P BRCR−1 cos φ, (36)

φ̇ = − sin φ[2Pb3A
2 + Rb4(B

2 + C2)]A2P−2(BC)R−2, (37)

where φ = 2Pθ1 − R(θ2 + θ3) and b3 and b4 are coefficients of the terms at O(2(P + R) − 1).
Note that (34)–(36) contain only terms of odd order, and that they contain three subspaces
where exactly one of the variables is zero and the other two are non-zero; within each of these
subspaces a rhomb solution (conjugate to either Rh1 or Rh4) exists. The structure of these
equations is, therefore, very different to the normal form for a steady-state bifurcation on a
hexagonal lattice, as discussed in [3], for example.

In the case a = 2, b = 1 these equations were investigated for various combinations
of coefficient values. We will summarize results for one combination in the remainder of
this section. The coefficient values chosen are a1 = −2, a4 = −1, a5 = −1.1, b3 = 105,
b4 = 1.1×105. From (37) we see that all stable solutions have φ = 0. The values of a4 and a5

are expected to be close together, but not equal since they depend entirely on the angle between
the relevant pair of wave-vectors: the angle between the wave-vectors corresponding to z1 and
w3 is close to, but not equal to, that between w3 and w4. Similarly, the coefficients b3 and
b4 are expected to be close. We have chosen coefficients several orders of magnitude greater
for b3 and b4 simply to bring any additional bifurcation structure due to the higher-order term
closer to the initial bifurcation at µ = 0, which makes numerical investigations easier. By
rescaling the amplitudes A, B and C we could have set both b3 and b4 to be ±1. We take
a1 < a4 to ensure that roll solutions are unstable to solutions involving several modes. For
simplicity we have omitted the large number of terms due to the trivial invariants that are also
present in the complete amplitude equations.
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Figure 5. (a) Bifurcation structure within the subspace (z1, 0, 0, 0, w3, w4), shown in the
(µ, ‖z‖+‖w‖) plane: stable and unstable branches are shown as solid and dashed lines, respectively.
(b) Greyscale image of a ‘nearly hexagonal’ solution with φ = 0 and A ≈ B = C.

Figure 5 shows the bifurcation structure in the (µ, ‖z‖ + ‖w‖) plane, computed using the
bifurcation and continuation package AUTO [15]. The unstable branch existing only in µ > 0
corresponds to rolls. The other branch, which exists stably in 0 < µ < 0.6, contains solutions
that look ‘nearly hexagonal’, i.e. A ≈ B = C. After the saddle-node bifurcation at µ ≈ 0.6,
the branch continues into µ < 0 and is unstable there. The point we wish to emphasise is the
existence of coefficient values at which the stable dynamics within this subspace is reminiscent
of hexagonal solutions. Moreover, there are open regions of the coefficient space in which all
the axial branches are unstable and the nearly hexagonal branch is attracting both within and
transverse to this subspace. This occurs, for example, when a1 = a2 = −2.0, a3 = a6 = −1.8
and a4 = a5 = −1.0; these conditions ensure that for each axial branch at least one of the
stability conditions that is determined at cubic order is not satisfied, and so even without
computing higher-order terms we have ensured that all the axial branches are unstable.

Clearly this is an area where much more can be done, and we leave a more detailed analysis
to be the subject of future work. In particular, it would be interesting to pursue the relationship
between these solutions and the analysis of nearly-hexagonal solutions in square boxes carried
out by Matthews [22].

7. Application to a model PDE

In this section we compute the coefficients in the cubic truncation of the amplitude
equations (28) and (30) and describe some numerical solutions, for the PDE

∂u

∂t
= −∇2(ru − (1 + ∇2)2u − pu∇2u − q|∇u|2 − su2 − u3). (38)

Equations of this type can be used to model pattern-forming systems with a conserved quantity,
such as convection with fixed-flux boundaries [23]. Equation (38) has a number of interesting
properties and is discussed in detail elsewhere [7]. Note that (38) is similar to the Swift–
Hohenberg equation, but with an additional ∇2 acting on the right-hand side. This modification
allows (38) to have more exotic stable solutions than the Swift–Hohenberg equation; we return
to this point in the concluding discussion.
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7.1. Computation of coefficients

The linear growth rate σ for a Fourier mode of wavenumber k in (38) is σ = k2(r − (1−k2)2).
The state u = 0 is unstable for r > 0, to a band of wavenumbers centred at k = 1.

To determine the coefficients in the cubic truncation of the amplitude equations (28)
and (30) it is sufficient to restrict attention to a rhombic lattice. We set r = ε2 � 1 and
consider the expansion

u = ε
(
z1eix + z2ei(x cos θ+y sin θ)

)
+ O(ε2), (39)

consisting of two Fourier modes on a rhombic lattice with lattice angle θ .
At second order, four modes are driven by products of z1 and z2, and we can solve for

these modes provided that cos θ �= ± 1
2 . At third order, the amplitude equations for z1 and z2

are obtained in the form

ż1 = z1 + a1|z1|2z1 + aθ |z2|2z1, (40)

ż2 = z2 + a1|z2|2z2 + aθ |z1|2z2, (41)

where the dot denotes differentiation with respect to the slow time ε2t . In general, aθ is a
complicated function of the parameters and the angle θ . However, if we choose the coefficients
in (38) such that q = 2(p−s), then, the angular dependence vanishes and a1 and aθ are given by

a1 = −3 − ν, aθ = −6 − 4ν, where ν = (2s − p)(s − p). (42)

Since there is no dependence on θ , the coefficients a2 · · · a6 in (28) and (30) are all equal to
aθ . Applying the results of tables 2 and 3, it follows that rolls are stable if ν > −1, but the
axial solutions are all supercritical and unstable if − 21

13 < ν < −1. For these values of the
coefficients, as discussed in section 6.1, the cubic truncation of (28) and (30) permits a solution
(the ‘mixed-mode’ branch) in which all six mode amplitudes are non-zero and of the same
order in µ. Furthermore, this solution is stable if − 11

7 < ν < −1. We therefore expect that
(38) exhibits a stable pattern involving all six modes in this parameter regime; however, the
cubic truncation does not determine the relative phases of the modes.

7.2. Numerical simulations

To investigate the solution involving all six modes, (38) was solved numerically using a Fourier
spectral method on a 48 × 48 grid. The size of the periodic domain was fixed at 10π so that
the first modes to become unstable as r increases through zero are the (5, 0) and (4, 3) modes.
Each computation was started from a small-amplitude random initial condition, and continued
until a steady state was reached. This requires a very long integration time because the relative
phases of the modes, and hence the character of the pattern, is not determined at cubic order.

Figure 6(a) shows the stationary solution obtained when r = 0.005, s = 2.2, p = 3.0,
q = 1.6. For these parameter values, ν = −1.12, so all axial branches are unstable and the
six-mode solution is stable according to the cubic truncation. The solution found exhibits D4

symmetry (since the boundaries are periodic we can simply shift the pattern until it is centred
at the centre of the computational domain), and is therefore on the same group-orbit as the
mixed-mode branch located within Fix(D4). The amplitudes of the (5, 0) and (0, 5) modes are
0.0484 and the amplitudes of the (4, 3) and (3, 4) modes are 0.0429. The relative difference
between the mode amplitudes decreases as r decreases. A pattern very similar to that shown in
figure 6(a) was sketched by Gomes et al [20]; however, this is the first time that such a pattern
has been obtained analytically or numerically in a PDE.

The pattern changes in character as r is increased. This is because in a relatively large
domain, there are other modes near the marginal circle. For example, the (5, 1) mode has a
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(a) (b)

Figure 6. Greyscale plot of numerically obtained stable stationary solutions of (38), with s = 2.2,
p = 3.0, q = 1.6. (a) r = 0.005; (b) r = 0.02.

positive growth rate for r > 0.0016. Figure 6(b) shows the stationary solution for r = 0.02.
In this case the leading Fourier mode is in fact the (5, 1) mode, but the pattern retains D4

symmetry (as before, shifting the centre of symmetry of the pattern to lie at the centre of the
computational domain). As r is increased further, this pattern becomes unstable, with loss
of the D4 symmetry. The D4-symmetric state is stable for r � 0.03 but by r = 0.04 it has
undergone a pitchfork bifurcation to a solution with D2 symmetry (generated by the diagonal
reflections md and md ′ ).

8. Discussion and directions for future work

We have analysed steady-state pattern-forming instabilities in systems with planar Euclidean
symmetry, in large domains on which periodic boundary conditions are applied in both
directions. The dynamics of the problem are restricted by the periodic boundary conditions;
this is equivalent to restricting our class of solutions to those that are periodic with respect to
a square lattice. Previous studies of the dynamics of such instabilities have focused on the
cases where the resulting compact symmetry group � = D4 � T 2 acts irreducibly. In this
paper we concentrate on cases where � acts reducibly. This leads to several subtleties in the
bifurcation-theoretic machinery we employ. For example, we use a form of the equivariant
branching lemma appropriate to the reducible action of �, and we are forced to account for
the existence and influence of so-called ‘hidden’ symmetries [8], which turn up in a natural
way. The hidden symmetries are in some sense the natural result of attempting to solve a
Euclidean-symmetric PDE in a domain that allows only the much smaller symmetry group �.

The importance of hidden symmetries has been noted in previous related work (for example
[13, 14, 17]). In the steady-state bifurcation on a square superlattice analysed by Dionne et al
[14] there are axial solution branches that have isotropy subgroups of D4 � T 2 with one-
dimensional fixed-point subspaces. Dionne et al then note that these solutions have more
symmetries than those in the isotropy subgroups—hidden symmetries. For that problem,
the hidden symmetries do not play a role in determining the axial branches initially, they
just enlarge the symmetry group of the branch that has already been shown to exist by the
equivariant branching lemma.
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However, in the analysis in [14] of the corresponding hexagonal superlattice bifurcation,
Dionne et al note that the existence of a hidden symmetry is crucial to asserting the existence of
an axial branch of rhombs, labelled Rhh0 (see [14, table 5]). In exactly the same way, having
fixed our lattice, hidden symmetries are fundamental to asserting the existence of the axial
branches Rh3, Rh4, SS and AS2 here. However, the existence of these solution branches,
when instead the finest lattice that supports them is chosen, follows directly from the results of
Dionne and Golubitsky [13]. We expect similar effects to be present when even larger domains
are considered; this bifurcation problem highlights difficulties that are not encountered when
irreducible representations are considered, but that are probably typical of any, more complex,
superlattice bifurcation problem.

The axial branches we have found comprise all the roll, square and rhomb branches that
one might expect, along with various superlattice patterns. We also note the existence, for
all combinations of normal form coefficients, of a primary (but non-axial) branch of slightly
perturbed super-squares, of the form (x, x, u, u, u, u) with |x| � |u|. The corresponding anti-
squares (AS1) branch (0, 0, u, −u, −u, u) appears, however, as an axial branch. In addition,
there exist axial branches of super-squares of the form (x, x, x, 0, 0, x) and anti-squares (AS2)
of the form (x, x, −x, 0, 0, −x). Several other primary but non-axial branches exist for at
least an open region of the normal form coefficient space; of particular interest are solutions
that resemble twelve-mode quasipatterns and others that resemble hexagons modulated on a
longer length-scale. Each of these is stable for choices of the normal form coefficients within
a particular open region of the coefficient space.

We have taken great care to explain how our calculation of the stability of the axial
branches is affected by hidden symmetries. In particular, we have discussed how the presence
of hidden symmetries alters the usual isotypic decomposition of the Jacobian matrix: instead of
an isotypic decomposition based on the irreps of the isotropy subgroup of an equilibrium point,
we found it necessary to consider a decomposition based on two groups: the hidden symmetry
group, for perturbations within a subspace in which the hidden symmetry acts, and the isotropy
subgroup, for perturbations outside that subspace. Of course, this does not amount to a general
treatment of the effect of hidden symmetries, but it suffices for this particular problem, within
the context of perturbations that have the same spatial periodicity as the imposed lattice. The
connection between irreducible representations and the various modes of instability of an axial
branch does not depend on the weakly nonlinear framework used in this paper, and has been
exploited in recent related work [25, 30].

The results of this paper throw up many possible directions for future work, of which
we briefly describe three. First, there are two more ‘binary mode interaction’ problems
investigated by Crawford, the ‘[8, 4]’ and ‘[8, 8]’ mode interactions. Hidden symmetries
play corresponding roles in the dynamics of these problems. Briefly, in the ‘[8, 4]’ case the
subspaces Vj are (as in the ‘[4, 8]’ case) isomorphic to C

4 and C
2, but the action of D4 � T 2

on C
2 is not translation-free; this subspace is spanned by modes that lie along the diagonals of

the square lattice. It turns out that the results for the ‘[8, 4]’ mode interaction are essentially
the same as for the ‘[4, 8]’ problem. In the ‘[8, 8]’ case both subspaces Vj are isomorphic to
C

4; the square lattice intersects the critical circle |k| = kc in two sets of eight points, none of
the points lying along the axes or diagonals of the lattice. We intend to analyse the details of
these bifurcation problems in a future paper. Clearly, by picking ever larger values of s (the
real number that defines the real-space lattice L), we can produce lattices that intersect the
critical circle |k| = kc in arbitrarily many sets of eight intersection points, plus four more lying
along the axes, in cases where s is an integer.

Second, it is possible to set up codimension-two problems that look superficially very
similar to the problems studied in this paper, but in which the hidden symmetries that would
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arise if all the wave-vectors were of equal magnitude are broken, while the D4 �T 2 symmetry
is kept intact. An example of this is given by the interaction of modes with wave-vectors
{(±2, ±1)kc/

√
5} and modes with wave-vectors {(±kc, 0), (0, ±kc)}; this could be referred to

as a 2 :
√

5 mode interaction.
Finally, we remark that in PDEs such as the Swift–Hohenberg equation or the ‘long-

wavelength’ model discussed by Knobloch [21] and Skeldon and Silber [28], it can be shown
that if the coefficient aθ in (40) does not depend on the lattice angle θ , then aθ = 2a1,
in which case only rolls can be stable. Even if aθ does depend on θ , then aθ → 2a1 as
θ → 0. This means that small-angle rhombs are always unstable, as, we speculate, are super-
square and anti-square patterns involving a small angle. We speculate also that the PDE (38)
does not suffer from this restriction because of the ∇2 in front of the linear term. This may
provide at least a partial explanation of why it is possible that stable solutions to this PDE can
involve several modes, with small angles between them. Work on this, and related issues, is in
progress.
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Appendix

In this appendix we give the proof of the theorem concerning T 2-invariant polynomials, stated
in section 4.1, and also prove a corollary that states that the only invariants of order exactly
2(a + b) are those found by Dionne et al [14]. For convenience we first re-state the theorem.

Theorem. All nontrivial invariants are of order at least 2(a + b).

Proof. We distinguish the three cases (i) m = n = 0, (ii) m = 0, n �= 0 (the case m �= 0,
n = 0 is exactly analogous) and (iii) mn �= 0. In each case we prove a bound on the order
O(I) of an invariant I ; the least of these is O(I) = 2(a + b).

(i) m = n = 0. Equations (22) and (23) reduce to

Q(p + q) + P(r + s) = 0,

P (p − q) + Q(r − s) = 0,

where P and Q are coprime and not both odd. The result of [14] alluded to above implies
that the lowest order invariants in this case are of order 2(P + Q) = 2(a2 − b2 + 2ab) =
2(a + b)(a − b) + 4ab � 4(a + b) + 2, using the relation 2ab � a + b + 1, which comes from
re-arranging the inequality a(b − 1) + b(a − 1) � 1 (since a > b � 1).

(ii) m = 0, n �= 0. From (22) we deduce p +q = αP , r + s = αQ, since P and Q are coprime.
Now we distinguish the two sub-cases (a) α = 0 and (b) α �= 0.

In case (a) we have q = −p, r = −s, and so equation (23) implies

2Pp + 2Qr + Rn = 0 (43)
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and hence n = 2ñ �= 0 (say) is even, as R must be odd. Then, substituting P = a2 − b2 and
Q = 2ab, equation (43) becomes

bp + ar ≡ 0 mod R,

but because R = a2+b2, we must have |p|+|r| � a+b. Therefore, I = |p|+|q|+|r|+|s|+|n| �
2(a + b) + 2.

In case (b) we are able to derive the same bound more easily, because I � |p + q| + |r +
s| + |n| � P + Q + 1 = a2 − b2 + 2ab + 1 � (a + b)(a − b) + a + b + 2 � 2(a + b) + 2, since
a > b � 1.

(iii) m �= 0, n �= 0. Taking (24) modulo R we find

a(p + q) − b(r + s) ≡ 0 mod R,

b(p + q) + a(r + s) ≡ 0 mod R

and hence either

p + q ≡ αb mod R, r + s ≡ αa mod R, (44)

or

p + q ≡ βa mod R, r + s ≡ −βb mod R, (45)

for some integers α and β that are not both zero. Similarly, taking (25) modulo R we obtain

b(p − q) − a(r − s) ≡ 0 mod R,

a(p − q) + b(r − s) ≡ 0 mod R,

which leads to either

p − q ≡ γ a mod R, r − s ≡ γ b mod R, (46)

or

p − q ≡ δb mod R, r − s ≡ −δa mod R, (47)

where at least one of the integers γ and δ is also non-zero. We now divide the analysis into
four sub-cases given by the conditions (a) αγ �= 0, (b) αδ �= 0, (c) βγ �= 0 and (d) βδ �= 0.
The analysis of the third and fourth of these is very similar to that of the first two.

In case (a) we substitute (44) into (24) and cancel a factor a2 + b2 to obtain aα + m = 0. It
is not possible to decrease the order of the invariant by adding multiples of R = a2 + b2 to
p + q since these would increase |m|, and hence also the order of the invariant. Similarly we
substitute (46) into (25) and again cancel a factor of a2 + b2 to obtain aγ + y = 0. Hence,

O(I) � |p + q| + |r + s| + |m| + |n| � a + b + 2a � 2(a + b). (48)

In case (b) we proceed exactly as before; the substitution of (44) into (24) produces aα+m = 0.
The substitution of (47) into (25) produces y = bδ, so in this case

O(I) � |p + q| + |r + s| + |m| + |n| � 2(a + b), (49)

and we cannot improve on the bound 2(a + b).
Cases (c) and (d) follow exactly analogously, but in both cases the bound 2(a + b) cannot

be improved on. In case (c) we deduce n + aγ = 0 and m + bβ = 0, substituting (45) and (46)
into (24) and (25). In case (d) we use (45) and (47) and note that we deduce bβ + m = 0 and
n − bβ = 0, which implies |m| + |n| � 2b, a weaker result than in cases (a)–(c). However, the
bound for the order of the invariant remains the same:

O(I) � |p + q| + |r − s| + |m| + |n| � 2(a + b). (50)
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This concludes the analysis of case (iii), and hence we have shown that there are no nontrivial
invariants of order less than 2(a + b). �

Corollary. The only invariants of order exactly 2(a + b) are of the same form as those found
by [14].

Proof. We prove the corollary by considering case (iii) of the proof of the theorem in more
detail. The proof of the theorem above shows that cases (i), (ii) and (iii)(a) produce invariants
that are always of strictly higher order than 2(a + b). Setting |α| = |δ| = 1 in case (iii)(b)
results in the solution p = b, q = r = 0, s = a, m = −a, n = b, which is of the form
discussed in the paragraph after equation (27). If either |α| > 1 or |δ| > 1 then the resulting
invariant must have order

O(I) � max(|α|, |δ|)(a + b) + a|α| + b|δ| > 2(a + b).

Case (iii)(c) gives exactly analogous results, and so cases (iii)(b) and (iii)(c) produce all the
invariants found by Dionne et al [14]. Case (iii)(d) gives slightly different results; because
a ± b is odd, no solutions with |β| = |δ| = 1 exist. Hence |β| + |δ| > 2 and so

O(I) � (|β| + |δ|)(a + b) > 2(a + b). �
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