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Abstract. A subcritical pattern-forming (Turing) instability of a uniform state, in an infinite
domain, produces two branches of spatially localised states that bifurcate from the pattern-forming in-
stability along with a uniform spatially-periodic pattern. In this paper we demonstrate that branches
of localised states persist as strongly amplitude-modulated patterns in large, but finite, domains with
periodic boundary conditions. Our analysis is carried out for a model Swift–Hohenberg equation with
a cubic–quintic nonlinearity. If the domain size exceeds a critical value, modulated states appear
in secondary bifurcations from the primary branch of spatially-periodic solutions. Multiple-scales
analysis indicates that these secondary bifurcations occur close to the primary instability, and close
to the saddle-node bifurcation on the spatially-periodic solution branch.

As the domain size increases, extra ‘turns’ on the snaking curve arise through a repeating sequence
of saddle-node bifurcations and mode interactions between periodic patterns of nearby wavenumbers.
With periodic boundary conditions, the crosslinks in the ‘snakes and ladders’ structure identified by
previous authors in the infinite domain case also persist in finite domains. However, the imposition
of either Dirichlet or Neumann boundary conditions preserves one of the two branches of localised
states that exist in the infinite domain case and causes the other to fragment.
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1. Introduction. Localised states have been observed, both experimentally and
in numerical simulations, in a wide variety of pattern-forming systems. Well-known
examples of experimental systems in which localised states appear include nonlinear
optics [37, 1, 7], the buckling of elastic beams [8, 21], filamentary gas discharge systems
[35] and many fluid mechanical situations [32, 33, 2, 3, 15, 28, 31].

In one spatial dimension, generally speaking, localised states arise as a result
of bistability between a trivial, homogeneous background state and an ‘active’, pat-
terned, state. In mathematical terms, localised states have been proved to arise gener-
ically near subcritical pattern-forming instabilities [22, 38, 14] and their existence can
be investigated through analysis of both a ‘spatial dynamical system’ and through
asymptotic multiple-scales arguments [11, 12]. The latter has been extended sub-
stantially from the usual leading-order calculation to investigate exponentially small
terms that delimit the exact region of existence of the localised states [24, 13].

In an infinite one-dimensional domain, ‘homoclinic snaking’ is the term used to
describe the typical bifurcation diagram that organises the localised states. Stable
localised patches of pattern coexist with a stable trivial state due to ‘pinning’ of
the front between the pattern and the trivial state caused by the influence of the
local phase of the pattern. This pinning effect, which causes the localised state to
persist over an open interval of parameter values, was identified by Pomeau [29]
and many authors since: [5, 27, 34, 14]. At a mathematical level, the subcritical
pattern-forming instability in which these localised states bifurcate corresponds to
a reversible 1 : 1 resonance point (also known as a Hamiltonian–Hopf bifurcation)
for the spatial dynamical system generated by looking for steady states of a fourth-
order PDE [22, 38]. Despite much recent work on aspects of localised states in many
contexts, many unresolved issues remain [23], not least the provision of mathematical
proofs of numerical results. Recent progress on the mathematical side has been made
by [4].
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In two dimensions the situation is more complicated. Snaking diagrams for lo-
calised patches of a hexagonal pattern, for the quadratic-cubic Swift–Hohenberg equa-
tion, were investigated in detail by Lloyd et al [25]. Recent results by Lloyd and
Sandstede [26] for axisymmetric structures indicate that localised rings bifurcate at
small amplitude near a subcritical Turing instability, but that localised spots bifurcate
regardless of whether the Turing instability is subcritical or supercritical.

In this paper, in contrast to much existing work, we consider the effect on the
snaking bifurcation structure of a finite spatial domain. We explore three issues in
particular: (i) the emergence of secondary modulational instabilities of the uniform
pattern, leading eventually to localised states, as the domain size L is increased from
zero, (ii) the evolution and persistence of the bifurcation structure at large L where one
would expect many features of the bifurcation diagrams to converge, in some sense, to
the characteristic snaking bifurcation diagram obtained in the infinite domain case,
and (iii) the effects of different boundary conditions on the bifurcation structure.
In common with previous authors [34, 11] we study the model cubic-quintic Swift–
Hohenberg equation

wt = [r − (1 + ∂2
xx)2]w + sw3 − w5,(1.1)

where ∂2
xx ≡ ∂2/∂x2. The choice of the cubic-quintic nonlinearity reduces the depen-

dence of pattern wavelength on pattern amplitude that is more pronounced when a
‘quadratic–cubic’ nonlinearity is taken. We study (1.1) with periodic boundary condi-
tions (PBC), Dirichlet boundary conditions (DBC) given by w = wxx = 0 at x = 0, L,
or Neumann boundary conditions (NBC) given by wx = wxxx = 0 at x = 0, L. Fig-
ure 1.1 indicates a typical bifurcation diagram for (1.1) in the (r, ||w||L2) plane, using
PBC and a domain of size L = 10π, obtained by numerical continuation. In figure 1.1
and subsequent figures we use the L2-norm defined by

N2 :=

(

1

L

∫ L

0

w(x, t)2 dx

)1/2

,(1.2)

as a measure of the solution amplitude. Figure 1.1 shows the intertwining of the two
curves of symmetric localised states and the existence of cross-links of asymmetric
localised states.

Our main results are, firstly, that with PBC there exists a minimum domain size
Lc ≈ 8π

√
10/(3s) for the appearance of any secondary modulational instability that

would lead to the formation of snaking curves. This result is exact in the limit of
small s but appears to be highly accurate even for order-unity values. We note that
Lc varies inversely with the subcriticality parameter s in (1.1). Secondly, we discuss
the behaviour at the ‘top end’ of the snake where, due to the finite domain size, the
snaking branches connect back to the uniform periodic pattern. Modulated states
near this end of the snake have, naturally, been referred to as ‘localised holes’ [23]. As
the domain size L increases, a mode interaction between periodic patterns of adjacent
discrete wavenumbers explains how new ‘turns’ are added to the snake as L increases.
Thirdly, we comment on the relation between these results, obtained for PBC, and
the bifurcation structure in the cases of DBC and NBC.

The paper is divided into the following sections. In section 2 we apply standard
multiple-scales asymptotics to develop the appropriate amplitude equation near r = 0
in the limit of small subcriticality s. From the resulting Ginzburg–Landau equation we
deduce the modulational instabilities that lead to localised states in a finite domain.
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Fig. 1.1. Bifurcation diagram for (1.1) for s = 2.0, in a finite domain 0 ≤ x ≤ L = 10π
with PBC, obtained using AUTO07p. Thick and thin lines denote stable and unstable branches
respectively. Dots labelled ‘a, b’ and ‘c, d’ label the points at which the solutions are as shown in
figure 1.2. ‘Even’ and ‘odd’ refer to the symmetry of states on the two modulated branches. ‘Uniform’
denotes the spatially 2π-periodic branch.
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Fig. 1.2. Numerical solutions to (1.1) on the odd and even branches of modulated solutions.
(a) r = −0.18, even branch, lower end; (b) r = −0.18, odd branch, lower end; (c) r = −0.83, even
branch, upper end; (d) r = −0.83, odd branch, upper end. Parameters: s = 2.0, L = 10π.
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We show that modulational instabilities occur, for fixed s, only if the domain is large
enough. In section 3 we discuss these instabilities from a symmetric bifurcation theory
viewpoint and indicate why exactly two ‘snaking’ branches appear. In section 4 we
return to (1.1) and examine the development of the modulational instability and the
persistence of the snaking bifurcation behaviour in a finite domain as L increases.
Section 5 discusses the influence of Dirichlet or Neumann boundary conditions, and
section 6 concludes.

2. Ginzburg–Landau theory. In this section we discuss the implications of
the standard multiple-scales analysis of the Swift–Hohenberg equation (1.1) for the
dynamics in a large but finite domain 0 ≤ x ≤ L. The usual analysis begins with the
examination of the linear stability of the solution w(x, t) ≡ 0 to (1.1). Linearising (1.1)
and setting w = eσt+ikx results in the dispersion relation σ = r − (1− k2)2 and hence
an instability occurs when r = (1 − k2

j )2 where kj = 2πj/L, for integers j ≥ 1. In
a finite domain of fixed length L = 2πn � 1 we expect solutions near the linear
instability threshold r = 0 to be of the form

w = εw1 + ε2w2 + · · · = εA(X, T )eix + c.c. + · · · ,(2.1)

since the instability at r = 0 is to a perturbation with wavenumber exactly unity.
We consider the case where the instability is mildly subcritical, i.e. we scale s = ε2ŝ
and r = ε4µ, and introduce the long length- and time-scales X = ε2x and T = ε4t.
These differ from the standard Ginzburg–Landau scalings due to the scaling of s
which enables the cubic and quintic nonlinearities to be balanced to appear at the
same order in the multiple-scales expansion.

Expanding as usual we employ the linear operator L ≡ (1 + ∂2
xx)2 to obtain

a solvability condition at each order. This solvability condition is satisfied by the
solution for w1(x, X, T ) noted in (2.1). At O(ε2), O(ε3) and O(ε4) the solvability
condition is trivially satisfied. At O(ε5) we deduce, from the usual requirement that
no secular terms arise in the solution, an evolution equation for the slowly-varying
amplitude A(X, T ):

AT = µA + 4AXX + 3ŝA|A|2 − 10A|A|4.(2.2)

This equation has nontrivial uniform solutions which satisfy

10A4
0 − 3ŝA2

0 − µ = 0.(2.3)

There is a saddle-node bifurcation at µ ≡ µsn = −9ŝ2/40; the larger-amplitude
solution A+

0 exists for all µ > µsn and is stable. Perturbing the uniform solutions and
looking for a linear instability we write A(X, T ) = A0 +a0e

i`X , where ` = 2πm/(ε2L)
since the finite domain discretises the allowed perturbation wavenumbers. We find
that instability occurs when

3ŝ

2
A2

0 + µ + `2 = 0.(2.4)

Viewing (2.3) and (2.4) in the (µ, A2
0) plane (see figure 2.1) and treating `2 as a

parameter we see that modulational instability first appears as `2 is decreased (i.e.
the domain expands), when m = 1 (i.e. the longest wavelengths are destabilised
first) and when A2

0 = 3ŝ/40. This corresponds to µ = −27ŝ2/160. Interestingly,
this is the same value as the ‘Maxwell point’ µmx obtained by equating the values of
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Fig. 2.1. Sketch bifurcation diagram for the Ginzburg–Landau equation (2.2) indicating the
onset of modulational instability. Line a illustrates the marginal case when the uniform state A = A0

becomes unstable in a domain of size L = Lc ≡ 8π
√

10/(3s). Line b indicates that for L > Lc we
anticipate that there are two bifurcation points m± where modulational instability occurs. Line
b intersects the vertical axis at A2

0
= −2`2/(3ŝ). Line c (which intersects the vertical axis at

A2
0 = 2(5q2 − `2)/(3ŝ)) indicates that the solution A = R0eiqX becomes unstable at mp, sketched

here as lying above the saddle-node point.

the first integral of (2.2), setting ∂T ≡ 0, obtained on the trivial A ≡ 0 and stable
nontrivial A = A+

0 branches. Further algebraic simplification shows that the onset
of modulational instability occurs at `2 = 9ŝ2/160 which implies (at leading order in
s) a minimum domain size Lc = 8π

√
10/(3s). This result is illustrated in figure 2.1

where line a corresponds to the critical case L = Lc and line b to L > Lc.
Long-wavelength modulational instabilities of this kind are reminiscent of the

Eckhaus instability; indeed the modulational instability identified here is exactly that
discussed by Tuckerman & Barkley [36] in a finite domain. The correspondance be-
tween the calculations is described in detail for the quadratic-cubic Swift–Hohenberg
equation by Bergeon et al. [6].

Returning to the Ginzburg–Landau equation (2.2), we examine the existence and
stability of solutions of the form A = R0e

iqX , corresponding to periodic patterns with
wavenumbers different from, but as near as possible to, unity. More precisely, when
L = 2πn � 1, such a solution is L-periodic when ε2q = 1/n � 1. These solutions
therefore exist when 10R4

0 − 3sR2
0 − (µ − 4q2) = 0, corresponding to the right-hand

parabola in figure 2.1. A similar linearised stability calculation to that presented
above shows that these solutions undergo a modulational instability when

3ŝ

2
A2

0 + (µ − 4q2) + `2 − q2 = 0,(2.5)

which corresponds to line c in figure 2.1, i.e. a line shifted to the right by the same
distance as the parabola, but also shifted upwards by q2 and therefore intersecting
the parabola at the point mp, above the saddle-node point sn (for large enough q2).

Figure 2.2 shows the results of numerical investigation of the Ginzburg–Landau
equation (2.2). A direct comparison is possible between figure 2.2 and figure 1.1 since
ε2 = s/ŝ = 1. Thus the domain size and horizontal axes are rescaled equally. A
minor difference is the vertical axis; due to the ansatz 2.1 we have that ||w(x, t)||L2 =√

2||A(X, T )||L2 . Clearly the Ginzburg–Landau equation provides a good asymptotic
guide to figure 1.1. Quantitatively, note that the points µm+ = −0.8980441 and
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Fig. 2.2. Numerically computed bifurcation diagram for the Ginzburg–Landau equation (2.2).
ŝ = 2, domain size ε2L = 10π, i.e. 0 ≤ X ≤ 10π. The vertical axis corresponds to the L2-norm
N2 defined as in (1.2) but by integrating |A|2 rather than w(x, t)2. Thick and thin lines indicate
stable and unstable branches respectively. n and n+1 denote branches of spatially-periodic solutions
A = A0 and A = R0eiqX , respectively, with q = 2π/(ε2L) = 0.2. Branches of modulated states
bifurcate from these branches at m± and mp.

µm− = −0.0819559 in figure 2.2 correspond, respectively, to r = −0.8971424 and
r = −0.0794274 in figure 1.1. Thus the differences are 2.5% or less even when ε = 1.
Similarly the saddle-node bifurcation point on the branch of subcritical spatially-
periodic states in figure 1.1 occurs at r = −0.8990114 which differs by around 0.1%
from the estimated value µsn = −9/10 in figure 2.2.

In large domains where we focus on the case ` � 1, the modulational instabili-
ties m− and m+ occur at distances of O(`2) from µ = 0 and from the saddle-node
bifurcation point µ = µsn, respectively. Numerical investigation shows that a branch
of modulated states connects m+ to m−. These modulated states develop an angular
shape; the L2-norm remains small as µ first decreases from m− (and A(X) has a
peaked, sech-like, profile) until µ ≈ µmx at which point the L2-norm increases rapidly
(and A(X) resembles a pair of tanh-like fronts). As µ is decreased further, towards
m+, the solution resembles a uniform amplitude state with a localised ‘hole’ where
the pattern amplitude is slightly reduced. The modulated branch bifurcating from
mp similarly corresponds to a ‘hole’ in the amplitude of a modulated pattern. The
proximity of these two branches of modulated states indicates the possibility that
these secondary branches arise through mode interactions between spatially-periodic
branches of nearly equal wavenumbers. We return to this point in section 4.

3. Symmetric Bifurcation Theory. In this section we discuss the constraints
placed by symmetry on the bifurcations of (1.1) in a finite domain with PBC. In this
case the relevant symmetry group is O(2) × Z2. At r = 0 we suppose that there is
a linear instability of w(x, t) ≡ 0 to an eigenfunction w(x, t) = z(t)eikx + c.c. and
periodicity implies L = 2πn/k so that n spatial periods fit into the domain. The
symmetry group O(2) × Z2 is generated by translations and reflections:

τδ : x → x + δ; z → zeikδ,

m : x → L − x; z → z̄,

κ :w → −w; z → −z.

Immediately we see that all solutions have symmetry κτπ, i.e. a half-period translation
followed by a change of sign. The equivariant amplitude equation takes the form
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ż = µz + az|z|2 + · · ·, i.e. of the same form as the Ginzburg–Landau equation (2.2)
but omitting the X-derivative terms. Due to translational symmetry the phase of z is
undetermined, and a circle of bifurcating modes exists (often referred to as a ‘pitchfork
of revolution’). Two fixed-point subspaces are of particular interest: Fix(m) and
Fix(mκ). Solutions within Fix(m) obey NBC since if w(x, t) = w(L−x, t) = w(−x, t)
using L-periodicity then, differentiating j times with respect to x and setting x = 0,
we obtain w(j)(0, t) = (−1)jw(j)(L, t) = (−1)jw(j)(0, t) and so odd derivatives of
w(x) vanish at x = 0, L. Similarly, within Fix(mκ) we have w(x, t) = −w(L −
x, t) = −w(−x, t) and so w(j)(0, t) = (−1)j+1w(j)(L, t) = (−1)j+1w(j)(0, t) which
implies that even derivatives of w(x) vanish at x = 0, L and w(x, t) obeys DBC. Since
Fix(mκ) = Fix(mτπ) it is clear that when PBC are used, all these spatially-periodic
states are related by translation symmetries. Therefore, with PBC, they lie on a single
group orbit and have identical stability properties.

Returning to PBC, now let us consider a (fully nonlinear) spatially-periodic state
wp(x) = wp(x + L

n ). Without loss of generality we select a state lying in Fix(m).
Looking for a modulational instability on the scale of the domain we look at the
action of the symmetries in the isotropy subgroup of wp(x) on the amplitude v(t),
where w(x, t) = wp(x) + v(t)eikx/n + v̄e−ikx/n:

κτπ :v→ −veikπ/n, m : v → v̄.(3.1)

Clearly (κτπ)2 = τ2π is an element of order n, so that κτπ has order 2n and does
not commute with m (in fact κτπmκτπ = m) so that together κτπ and m generate
the group D2n, the symmetry group of rotations and reflections of a planar regular
2n-gon.

The general description of bifurcations with D2n symmetry is well known, see for
example [18]. In the discussion below, and for the remainder of the paper, we assume
n ≥ 2 and discuss the 2D irreducible representation of D2n generated by (3.1) (the
case n = 1 is special since D2 ' Z2 × Z2 has only 1D irreducible representations).
For n ≥ 2 there are two distinct axial isotropy subgroups: Z2[κτπm] and Z2[m].
Hence, by the Equivariant Branching Lemma, solution branches with these isotropy
subgroups are guaranteed to exist. In fact it can be shown that, generically, there
are no other bifurcating equilibria. Geometrically the two branches correspond to
the preservation of a single reflection symmetry of the planar 2n-gon; the axis of the
reflection either passes through a pair of opposite corners or through the midpoints of
a pair of opposite sides. The stability properties of these two branches will typically
differ, although for n ≥ 4 consideration of the amplitude equations indicates that the
bifurcations are pitchforks within each fixed-point subspace, and that the branches
generically bifurcate in the same direction. In the situation at hand the Z2[κτπm]-
symmetric branch corresponds to a modulated state that is odd-symmetric about
x = (L − π)/2 and the Z2[m]-symmetric state corresponds to a state that is even-
symmetric about x = L/2.

Restricting the above discussion to NBC, discarding the translational symmetry
τ , we conclude that an initial state wp(x) ∈ Fix(m) undergoes a pitchfork bifurcation
(due, from this viewpoint, to a ‘hidden symmetry’) that preserves the reflection sym-
metry m and so leads to (a single snaking curve of) even-symmetric modulated states.
Similarly, an initially 2π-periodic state wp(x) ∈ Fix(κm) leads to a D2n-symmetric
bifurcation with axial branches with symmetry Z2[mτπ ] and Z2[κm]. Solutions on
the Z2[mτπ ] branch are even-symmetric about the point x = (L − π)/2 and those
on the Z2[κm] branch are odd-symmetric about the midpoint x = L/2. Likewise,
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when DBC are imposed, the Z2[κm] branch persists and leads to a snaking curve of
odd-symmetric states.

4. Snaking behaviour. In this section we examine how the Ginzburg–Landau
theory and the predictions from symmetric bifurcation theory of the previous sections
relate to numerical continuation of solutions to (1.1).

The bifurcation and continuation software AUTO07p [17] was used to solve (1.1)
as a boundary value problem on a finite domain. The primary branches of spatially
periodic solutions were computed by imposing either DBC (w = wxx = 0 at x = 0, L),
or NBC (wx = wxxx = 0 at x = 0, L); both of these remove the continuous transla-
tional symmetry that would otherwise cause numerical difficulty. As we have seen,
each of DBC and NBC undergoes a secondary bifurcation to produce exactly one of
the two spatially-modulated branches we expect to identify during numerical contin-
uation along these branches. Numerical continuation using PBC can be achieved if,
in addition to imposing the periodicity of w and its first and second derivatives, a
constraint to fix the ‘phase’ (i.e. the origin in x) of the solution is used. To do this
we implement the integral phase constraint in the form proposed by Rademacher et
al [30]; this is found to provide excellent numerical stability. Specifically, the integral
condition

∫ 1

0

〈U ′(x), Uold(x) − U(x)〉 = 0(4.1)

is implemented in the AUTO subroutine ICND via the code

FI(1)=0.0

do j=1, NDIM

FI(1) = FI(1) + UPOLD(j) * (UOLD(j) - U(j))

end do

where the fourth-order ODE is rewritten as the first-order system Ux = F (U) for
the vector U = (w, wx, wxx, wxxx), and Uold(x) is the solution to the boundary-value
problem at the previous continuation step.

The discussion of the evolution of the snaking diagram as L increases is divided
between the following two subsections: in section 4.1 we note that the bifurcation
diagram changes rapidly at domain sizes L which are close to those for which there
is a codimension-two linear instability of the trivial branch W (x, t) ≡ 0, and describe
the codimension-two bifurcation involving a pair of fully nonlinear spatially-periodic
states. In section 4.2 we turn our attention to the detailed evolution of the branches
of modulated states.

4.1. Mode interactions and bifurcations to modulated branches. It is
straightforward to describe the mode interaction that occurs in the linear instability of
the trivial solution w(x, t) ≡ 0. The trivial solution is simultaneously linearly unstable
to periodic patterns that fit n and n+1 pattern wavelengths into the domain of size L
when 1 − (2πn/L)2 = (2π(n + 1)/L)2 − 1, i.e. at L = π

√
4n2 + 4n + 2. For the cases

n = 2, 3, 4 this yields the values L = 16.019, 22.214, 28.448 to 3 d.p. respectively;
these values are indicated by the horizontal dashed lines in figure 4.3.

The fully nonlinear spatially-periodic pattern branches also collide at codimension-
two points where the curves in the (r, L) plane on which they undergo saddle-node
bifurcations coincide. Figure 4.2 shows the numerically-determined location of these
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Fig. 4.1. Linear stability curves r = [1 − (2πj/L)2]2 for 1 ≤ j ≤ 5 in the (r, L) plane for (1.1)
using PBC. Dots indicate the codimension-two points at which there are mode interactions in the
linear instability of the trivial state w(x, t) ≡ 0. The corresponding values of L are indicated by the
horizontal lines which are reproduced on figure 4.3.

saddle-node bifurcations for the case n = 4 (i.e. the patterns with period L/4 and
L/5). The codimension-two point is labelled M .

Separately, the bifurcation points m+ and mp move up and down the spatially-
periodic branches. To within the numerical precision used, it appears that they cross
through the saddle-node points at the same value of L; this is due to the very weak
dependence of the pattern wavelength on amplitude.

The behaviour of the bifurcation points m+ and mp can be understood through a
straightforward consideration of the relevant amplitude equations near the codimension-
two point M in the (r, L) parameter plane where the saddle-node bifurcations of the
fully-nonlinear periodic patterns coincide. We combine the requirements that (i) the
periodic fully nonlinear patterns with amplitudes a(t)wn(x) and b(t)wn+1(x) lie in dif-
ferent fixed-point subspaces, and (ii) they undergo nearby saddle-node bifurcations,
generically at slightly different amplitudes. We also take only the leading-order cou-
plings between the modes. These considerations result, after rescaling, in amplitude
equations of the form

ȧ = a
[

λ − (a − 1)2 + αb
]

,(4.2)

ḃ = b
[

µ − (b − γ)2 + βa
]

,(4.3)

where we anticipate that γ ≈ 1. Clearly there are periodic pattern solutions {a± =
1 ±

√
λ, b = 0} and {a = 0, b± = γ ± √

µ} which exist only when λ > 0 and µ > 0
respectively. The equilibria (a±, 0) undergo bifurcations to mixed-mode equilibria (i.e.
ab 6= 0) when µ+β−γ2±β

√
λ = 0, respectively. The curves on which a mixed-mode

bifurcates from (a±, 0) are labelled mn
p , mn

+, respectively, in figure 4.2(b). Similarly,
the equilibria (0, b±) undergo mixed-mode instabilities when λ − 1 + αγ ± α

√
µ = 0.

These instabilities are labelled mn+1
p and mn+1

+ , respectively, in figure 4.2(b). Overall,
the sketch bifurcation diagram in figure 4.2(b) confirms, qualitatively, the numerical
results shown in figure 4.2(a).

We remark also that the values of L that correspond to the codimension-two
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modulational instabilities m4

+
and m5

+
. The curve of saddle-node bifurcations, labelled a and h,

passing through the points c1 and c2 bounds the region within which new stable modulated or localised
states appear. These curves are also shown on figure 4.3. (b) Sketch bifurcation diagram near the
codimension-two point M (when n = 4) for the amplitude equations (4.2) - (4.3).

bifurcations of the fully nonlinear periodic branches, for example M in figure 4.2, are
extremely close to those given by the mode interactions in the linear instability of
w(x, t) ≡ 0. This is, again, due to the very small variation in wavenumber of the
periodic solutions as they evolve to large amplitude.

4.2. Reattachment of the snaking branch. Having discussed the spatially-
periodic branches, and the bifurcation points at which the modulated states appear,
we now turn to the sequence of bifurcations through which the snaking branch is
transferred over from one periodic branch to the next, as L increases. This sequence
of transitions occurs over an extremely small region of parameter space, and away
from both the spatially-periodic branches.

We first observe that a snaking branch develops a pair of additional saddle-node
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bifurcations as L increases; the top end of the snake distorts as this new twist in
the snake grows. The extent of this twist is shown in figure 4.3 which shows the
regions of existence of the localised states on each ‘level’ of the finite snake shown in
figure 1.1. Since the two snaking branches (even-symmetric and odd-symmetric) lie in
different fixed point subspaces the details of the evolution of these branches need not
be identical, and as figure 4.3 shows, the location of the cusp point (e.g. c1) at which
the saddle-nodes appear is different in the two cases. Figure 4.3 shows that localised
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Fig. 4.3. Saddle-node bifurcation curves of (1.1) using PBC. These curves form the boundaries
of the regions of existence, in the (r, L) plane, of localised states with increasing numbers of bumps:
(a) Odd-symmetric states (b) Even-symmetric states. Pairs of saddle-node bifurcations appear at
the cusps as L increases. The points c1 and c2 correspond to those indicated in figure 4.2(a).
The curves of saddle-node bifurcations that extend from c1 are labelled a and h and appear also in
figures 4.7, 4.4 and 4.5. Dashed lines indicate the values of L at which n : n + 1 mode interactions
occur in the linear instability of w = 0, see figure 4.1.

states on the ‘lower levels’ of the snake settle quickly to occupy a region in r either
side of the Maxwell point r = rmx ≈ −0.675, bounded by saddle-node bifurcations
that remain at fixed locations in r as L increases. New ‘twists’ on the snake are born
regularly as L increases by 2π; a pair of saddle-node bifurcations appears near the
top of the snake at r ≈ −0.73 (for odd-symmetric states) or r ≈ −0.68 (for even-
symmetric states). As L increases, one of these saddle-node points moves rapidly into
r > rmx, reaching a maximum value of r at the point c2 which is not, in fact, another
cusp, but a smooth maximum as can be seen from figure 4.7.

We now present a detailed discussion of the bifurcation structure surrounding one
reattachment event, for the odd-symmetric snaking curve at a domain size L ≈ 28. At
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Fig. 4.4. Numerically-determined bifurcation diagrams in the (r, N2) plane for L = 28.0 (i.e.
below the codimension-two point M in figure 4.2). (a) shows the two branches of spatially-periodic
4 and 5-cell states which approach each other, together with the two secondary branches of odd-
symmetric modulated states which interact as L increases further. (b) is an enlargement of (a)
showing that the snaking secondary branch connects to the 4-cell periodic branch and the non-snaking
branch connects to the 5-cell periodic branch. The saddle-node bifurcations a and h are born in the
cusp at c1 in figure 4.3(a).

any value of L, this detailed discussion involves up to eight saddle-node bifurcations
which are labelled a, . . . , h on the figures in this section. Not all saddle-nodes appear
on every figure.

Figure 4.4 corresponds to a bifurcation diagram above the point c1 in figure 4.3(a);
the two saddle-node bifurcations a and h at the top of the snaking curve were cre-
ated in the cusp at c1 as L increased. Figure 4.4(b) shows that for L = 28.0 the
snaking branch still connects to the 4-cell spatially-periodic branch, and that the 5-
cell periodic branch has a secondary bifurcation to a modulated branch which extends
monotonically into r > rmx.

Although figure 4.4 shows solution branches to the Swift–Hohenberg equation, it
is useful to point out the correspondance between the points m+ and mp in figure 2.2
and the bifurcations to secondary branches indicated by the black dots in figure 4.4(b).
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As L increases further, the non-snaking mixed-mode branch that extends to large
positive r is found to acquire a number of additional saddle-node bifurcations, before
the snaking branch reattaches to the 5-cell branch. This is perhaps unexpected, but
corresponds with behaviour found in the quadratic-cubic Swift–Hohenberg case [6],
and indeed, for the cubic-quintic case by other authors [9, 10].
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Fig. 4.5. Numerically-determined bifurcation diagrams in the (r, N2) plane for L = 28.4215 >
Ltc. (a) shows the overall arrangement of the two branches of spatially-periodic 4 and 5-cell states
which approach each other, together with the two secondary branches of odd-symmetric modulated
states which interact as L increases further. Labels b, c, d, e and h indicate saddle-node bifurca-
tions and correspond to the labels in figure 4.7. (b) is an enlargement of (a) showing that the two
secondary branches still connect one to each of the 4-cell ad 5-cell spatially-periodic branches. (c) is
an enlargement showing that the branches now ‘pinch-off’ at r ≈ −0.522 instead of crossing without
bifurcation as was the case at smaller L. Saddle-nodes f and g exist in (a) but are not labelled for
practical reasons since they occur very close together. 2 symbols correspond to solution profiles w(x)
given in figure 4.6.

Figure 4.5 shows how the two secondary branches deform as the additional saddle-
node bifurcations appear. As one moves up the snaking branch, after the saddle-
node h the solutions now encounter two additional saddle-nodes at f and then g
before moving to more negative r along what was previously the ‘non-snaking’ branch
and encountering the saddle-node bifurcations at b, and finally c, before connecting
to the 5-cell periodic branch. In contrast, the non-snaking branch that extends to
large positive r now (as r is decreased from positive values) undergoes saddle-node
bifurcations at d and then e, coming close to the snaking branch, before moving to
more negative r and connecting to the 4-cell spatially-periodic branch. Note that the



14 J.H.P. Dawes

saddle-node at g has switched branches.

The key event, therefore, is the appearance of the saddle-nodes at e and f which
cause the secondary branches to ‘pinch-off’ and reconnect in a new way. This event
is a two-parameter unfolding of a standard transcritical bifurcation; we denote the
value of L at which it occurs by Ltc; this is indicated by a dashed line in figure 4.7(a)
and (b).

The profile of the solution w(x) changes remarkably little along solution curves as
these saddle-node bifurcations appear and disappear. Figure 4.6 shows the solution
form at four points indicated by black dots in figure 4.5. Figure 4.6(a) shows a solution
coming up from the snaking branch, with a periodic pattern almost filling the domain.
In figure 4.6(b), corresponding to point f in figure 4.5(c) this solution develops a
central ‘almost-flat’ region which further evolves, as r decreases, towards the spatially-
periodic 5-cell branch in figure 4.6(c). For comparison, figure 4.6(d) shows a solution
on the non-snaking branch in which the central ‘defect’ in the structure will persist
at large positive r.
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Fig. 4.6. Solution profiles, plotting w(x) against x/L at four points on figure 4.5. Points (a),
(c) and (d) are indicated on figure 4.5(a) by 2 symbols. (a) r = −0.6203 on the snaking branch.
(b) r = −0.5203 at saddle-node point f . (c) r = −0.7513 on the snaking branch before it terminates
on the 5-cell periodic branch. (d) r = −0.5306 on the non-snaking branch.

Overall, as L increases the bifurcation structure evolves as successive curves of
spatially-periodic patterns appear from large positive r, and interact as shown in
figure 4.2 with the curve of periodic patterns bifurcating from w(x, t) ≡ 0 at the lowest
value of r. Over a remarkably small region of L this interaction generates saddle-
node bifurcations on the secondary branches of spatially-modulated states leading,
ultimately, to the reattachment of the snaking curve to the new uniform pattern
branch and an extra ‘turn’ being added to the top of the snaking curve. The spatially-
periodic branches then separate as the one with the smaller number of cells moves
away to large positive r and the process repeats.

In the case of the Swift–Hohenberg equation with a quadratic-cubic nonlinearity
[6] it has been observed that two distinct transitions take place as L increases. These
are referred to as type I and type II. In the cubic-quintic problem discussed here it has
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Fig. 4.7. Numerically-determined location in the (r, L) plane of the additional saddle-node
bifurcations that organise the reattachment of the snaking branch as L increases. The transcritical
bifurcation occurs at L = Ltc, r ≈ −0.521. The dashed horizontal line corresponds to L = Ltc.
Saddle-nodes are indicated by thick red lines if they occur on the snaking branch, and by thin black
lines if they occur on the non-snaking branch. As L increases through Ltc this distinction causes
saddle-nodes b, c and g to shift immediately from one curve to the other; this is indicated by the
change inline style, although the position of each saddle-node point varies smoothly. The point c2
corresponds to that indicated in figure 4.2(a). Note that saddle-node a does not appear in (a) or
(b): it remains at more negative values of r throughout.

been found [9, 10] that the observed transitions are all of the same type, corresponding
to ‘type II’ in the terms used by [6].

5. Dirichlet and Neumann boundary conditions. In this section we exam-
ine the effect of replacing the periodic boundary conditions with Dirichlet or Neumann
ones. First, we discuss solutions in a smaller domain (L = 6π) where the bifurcation
structure is simpler and the differences are more pronounced. The bifurcation dia-
gram for (1.1) with DBC is shown in figure 5.1. As discussed in section 3, only a single
zero eigenvalue now occurs at the modulational instability at m±; the bifurcations are
pitchforks and two new solution branches exist in rm+ < r < rm−. The inset figures
in figure 5.1(a) show that one branch corresponds to states with larger amplitude in
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the centre (‘centre-localised’), and the other to states with larger amplitudes near
the boundaries (‘edge-localised’). Solutions on both branches are symmetric under
κm : w(x) → −w(L − x), but, crucially, solutions on the two branches do not lie on
the same group orbit due to the lack of translational symmetry.
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Fig. 5.1. Bifurcation diagrams for steady states of (1.1) with DBC in a small domain: L = 6π,
s = 2.0. (a) Plot in the (r, max(wx)) plane with inserts showing modulated states on the two halves of
the pitchfork branch, now unrelated by symmetry, at r = −0.520 (lower left) and r = −0.487 (upper
right). Note that each has the symmetry κm. Thick and thin lines denote stable and unstable
solutions, respectively. (b) An enlargement of (a) plotting the L2-norm on the vertical axis, showing
that the branches of modulated states are superimposed.

As a result, the two branches may (and in fact do) undergo different subsequent
bifurcations. Plotting max(wx) on the vertical axis clearly distinguishes the two halves
of the pitchfork, see figure 5.1(a). It should be noted that plotting the usual L2 norm
does not distinguish the branches and this superposition leads to ambiguity in the
interpretation of the bifurcation diagram, see figure 5.1(b).

Along the branches of modulated states between r = rm+ and r = rm−, three
further pairs of pitchfork bifurcations occur, labelled A1–A2 and B1–B2 (on the edge-
localised branch), and C1–C2 (on the centre-localised branch) in figure 5.1. Each of
A1–A2, B1–B2 and C1–C2 produces a closed ‘bubble’ of asymmetric states. Within
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bubbles B1–B2 and C1–C2 each branch undergoes an additional pair of saddle-node
bifurcations and so becomes stable over a small interval, as shown by the thick lines in
figure 5.1. This interval is slightly different on the two branches since it lies both be-
tween the saddle-nodes and between the respective bifurcations to asymmetric states.

We now turn to computations with Neumann boundary conditions; these produce
an analogous bifurcation structure, shown in figure 5.2. With NBC, the space-periodic
uniform pattern that bifurcates from r = 0 is phase-shifted spatially by π/2 so that
it has turning points at x = 0, L and the symmetry m. Pitchfork bifurcations (due to
‘hidden symmetry’) to modulated states occur at exactly the same parameter values
as for DBC, and lead to the solution branches shown in figure 5.2 As for DBC, three
pairs of pitchfork bifurcations occur subsequently, on the two branches of modulated
states which are, again, not on the same group orbit. These pitchfork bifurcations are
labelled D1–D2, E1–E2 and F1–F2 in figure 5.2. There is a small interval in r over
which the symmetric modulated states are stable. In contrast to the DBC case, in
the NBC case the centre-localised state undergoes two pairs of pitchfork bifurcations
(E1–E2 and F1–F2) rather than one, and the second of these occurs very close to
the lower end of the branch. Both NBC branches also undergo a pair of saddle-node
bifurcations, resulting in intervals in r within with the modulated states are stable.
These are indicated by thick lines in figure 5.2.

Since the invariant subspaces Fix(κm) and Fix(m) contain the two primary curves
of localised states, superimposing the bifurcation diagrams for DBC and NBC pro-
duces intertwined curves that very closely resemble those obtained with PBC. How-
ever, the cross-link branches do not appear in such a superposition. The specifi-
cation of either DBC or NBC constrains the ‘asymmetric’ states that bifurcate in
the ‘bubbles’ referred to above so that it is not possible to continuously deform an
odd-symmetric state (satisfying DBC) into an even-symmetric one (satisfying NBC).
Instead of a cross-link, we find that two neighbouring ‘bubbles’ approach each other
and then separate again, returning to the same curve that they bifurcated from, see
figure 5.3 for which the domain size is increased to L = 10π.

Figure 5.3 shows that the even–symmetric state at a (corresponding to the blue
localised state in the inset in figure 5.3b) undergoes a pitchfork bifurcation to pro-
duce an asymmetric branch bifurcating to the right. This asymmetric branch then
turns around at a saddle-node bifurcation at b (corresponding to the black curve in
figure 5.3b) and it then returns to the vicinity of the original even-symmetric solution
branch (with another saddle-node point at c (red curve in figure 5.3b)). At c the
solution is nearly reflection-symmetric, but with the reflection symmetry not through
the midpoint of the domain. The asymmetric branch extends below c, remaining very
close to the symmetric branch, and terminating at another pitchfork bifurcation on
the symmetric branch at larger r; this final bifurcation point is not shown, but the
overall behaviour is qualitatively as shown in figure 5.2 for the F1–F2 bubble. Be-
tween H1–H2 there is a similar branch of asymmetric states which bifurcates from
the odd-symmetric snaking curve. It, too, is frustrated by the (in this case Dirichlet)
boundary condition and approaches half-way towards the even-symmetric curve be-
fore returning to the odd-symmetric branch. This behaviour is similar to the C1–C2

bubble shown in figure 5.1, and is consistent with the mathematical analysis of Beck
et al. [4].

6. Summary. In this paper we have investigated the bifurcation behaviour of
a model PDE (the Swift–Hohenberg equation with cubic and quintic nonlinearities)
that undergoes a subcritical Turing-type pattern-forming instability constrained in a
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Fig. 5.2. Bifurcation diagrams for steady states of (1.1) with NBC in a small domain: L = 6π,
s = 2.0. (a) Plot in the (r, max(w) plane with inserts showing modulated states on the two halves
of the pitchfork branch, now unrelated by symmetry, at r = −0.26 (lower left) and r = −0.25
(upper right). Note that each has the symmetry m. Thick and thin lines denote stable and unstable
solutions, respectively. (b) An enlargement of (a), plotting the L2-norm on the vertical axis, showing
that the even-symmetric branches are superimposed.

finite domain. Understanding the effects of a finite domain is clearly of interest when
comparing experimental and numerical results with theoretical predictions. The fi-
nite domain (and the use of Dirichlet or Neumann boundary conditions) modifies
the existence of localised states that have been investigated in detail for the ‘per-
fect’ infinite domain case [11, 24]. The multiple-scales analysis in section 2 indicates
that there is a minimum domain size necessary for the formation of localised states,
and, in small domains, these states are only moderately ‘localised’; they more closely
resemble amplitude-modulated versions of the periodic patterns that they bifurcate
from. They are stabilised after further pitchfork and saddle-node bifurcations along
the ‘snaking’ branches, and are stable, in small domains, over a much smaller inter-
val in the bifurcation parameter r than predicted by the width of the snake in the
formally infinite-domain case.

As the domain size L increases, successive mode interactions occur which explain
how more ‘turns’ appear on the snaking curves, and how the localised states remain
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Fig. 5.3. Two ‘bubbles’ of asymmetric states produce a broken ‘cross-link’, superposing the
DBC and NBC bifurcation diagrams for L = 10π, s = 2.0. (a) Even-symmetric branch produces
a pitchfork bifurcation at G1; this bubble closes at larger r (not shown); Odd-symmetric branch
produces a bubble of asymmetric states between H1–H2. (b) Enlargement of (a) with an inset plot
of the localised states at points a, b and c. Point a in (b) is the same as point G1 in (a).

near the Maxwell point despite the branches of uniform patterns shifting substantially
in r as L increases.

Our results are closely related to the investigations of Hiraoki & Ogawa [19] who
investigated the mode interaction at small subcriticality, and proved through rigorous
numerics the existence of the even-symmetric branch of localised states. The results
presented in this paper shed light on those aspects of homoclinic snaking that should
be expected to persist in a finite domain, and provide a different perspective on the
formation and structure of localised states, as arising from mode interactions between
periodic patterns; this is complementary to their usual interpretation as homoclinic
orbits arising in a heteroclinic tangle for the spatial dynamical system obtained by
considering steady solutions of fourth-order reversible PDEs such as (1.1).

Investigations along similar lines for the Swift–Hohenberg equation with a ‘quadratic-
cubic’ nonlinearity by Bergeon et al. [6] and reveal more intricate connections and
reconnections of the snaking curves due to variations in the localised pattern wave-
length along the snake. For example this leads in some cases to the top and bottom



20 J.H.P. Dawes

ends of the snake connecting to different periodic pattern branches; this arises also in
the ‘slanted snaking’ problem analysed in [16] and can be observed in figures 6 and
8 of that paper. Further features of the quadratic-cubic case on a finite domain with
Robin boundary conditions wxxx = 0 and wx = ±βw at x = 0, L are discussed by
Houghton & Knobloch [20].
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