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1 Introduction

This chapter aims to introduce and explain a number of general methods and ideas from network science,
illustrating their use on two specific interlinkage matrices for the Sustainable Development Goals (SDGs).
Formally a network comprises (i) a set of nodes (or vertices) and (ii) a set of edges between them. For the
SDGs, the set of nodes could be chosen to be either the 17 goals, or the 169 separate targets, or subsets
of these, as is commonly done when discussing a ‘nexus’ such as water–energy–food (Weitz, Nilsson &
Davis, 2014; Yillia, 2016; Fader et al, 2018; van Noordwijk et al, 2018; Putra, Pradhan & Kropp, 2020). Edges
describe interactions at the relevant level and carry varying kinds of information. Generally speaking, networks
have (at least) three independent properties associated with each edge: (i) edges have direction: there is a
direction of influence along each edge in the network; (ii) edges have weights: different interactions have
different strengths; and (iii) edges have signs: edges can be negatively weighted (corresponding to trade-offs)
or positively weighted (corresponding to co-benefits).

Depending on the data source and construction methodology, an SDG network may not exhibit all three
features. Most obviously, networks based on correlations between data sources alone result in undirected
networks since correlation does not in itself confer a direction of influence or causation. The fact that the
construction and interpretation of a network may indeed rule out one of these properties is entirely natural;
for example in disease transmission networks if the edges are associated with probabilities of transmission,
these will all be non-negative quantities and so such edges do not have property (iii) above – they do not have
signs.

From the text of the original resolution adopted by the UN General Assembly onwards, the Sustainable
Development Goals (SDGs) have been framed as one “integrated and indivisible” agenda; see paragraphs
18 and 55 in particular of the resolution text (UN General Assembly, 2015). Yet the SDG agenda comprises
169 separate, and highly diverse, targets combined into 17 overarching goals. This tension between the unity
of the whole and the diversity of the component parts has, from the launch of the SDGs onwards, made a
description in terms of a network particularly appealing as a mode of thinking about Agenda 2030 (Le Blanc,
2015). A particular benefit is that it allows the application of quantitative methods of analysis of the SDGs,
with the conceptual clarity that quantitative analysis offers.

With its focus on network science, this chapter naturally avoids discussing a number of important societal
and political aspects of the SDGs. Two of these, for example, are (i) which sets of policy actors (govern-
ment, business, third sector organisations, individual citizens) are enabled to carry out, or are responsible for,
SDG implementation, and (ii) the relation between SDG interlinkages and policy coherence for sustainable
development. The debate on the extent to which policy actions can be measured to have additional positive
or negative additional influences (often referred to as ‘co-benefits’ and ‘trade-offs’, respectively, in the SDG
literature) is clearly extremely important in understanding SDG interactions, but is omitted here.

1.1 Networks

Network-type problems arise in many fields of social and natural science and engineering, for example bioin-
formatics, behavioural ecology, national infrastructure, and telecommunications (Newman, 2018). Methods
appropriate to each of these have been particularly well-studied over the last two decades; of course in many
cases, notably in social sciences, the roots of these methodologies lie much deeper (Bonacich, 1972; Wasser-
man & Faust, 1994). More recent developments in network science, which we do not comment on further here
but which clearly offer exciting directions for future research, include the analysis of multiplex (or multilayer)
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networks (Bianconi, 2018), in which the same collection of nodes may be connected by edges of different
kinds (for example one layer corresponding to social interactions and a second layer corresponding to travel
times between locations), and the analysis of networks in which interactions involve not just pairs of nodes,
but ‘higher-order’ effects such as being reinforced in interactions between triples of nodes (Arrigo, Higham &
Tudisco, 2020).

The richness and variety of network science tools means that there are challenges in selecting appropri-
ate tools, with transparent methodologies, so that the results can be interpreted in the specific field. With this
caveat, it is notable that systems thinking in general provides a flexible bridge between quantitative and quali-
tative insights into complex phenomena. Moreover, complex systems ideas of emergence and of phenomena
that reach across scales indicate that it is necessary to apply this kind of thinking in order to to show how
system level outcomes result from smaller-scale interactions.

Figure 1: An example network for a subset of nine of the SDGs, with interlinkages indicated by the arrows.
An arrow j → i indicates the positive influence of (progress on) SDG j on SDG i. A line with a round end
indicates a negative influence of SDG j on SDG i. Adapted under CC-BY-4.0 from figure 2 in Dawes (2020).

Figure 1 shows an illustrative example of a network defined by a collection of nodes (here, a subset of
nine SDGs), together with directed edges (arrows) indicating directions of influence between pairs of nodes.
Arrowheads indicate positive influences, while round dots indicate negative influences. Each edge has a
positive or negative weight associated with it; different edges have different weights. For convenience we
assume that (by rescaling) the weights will all lie between +1 and −1. Several points of interest can be clearly
seen from figure 1, such as the mutually reinforcing interlinkages between SDGs 6, 7 and 13 on the left-hand
side of the figure, the negative influences of SDGs 2 and 11 on SDG 14, and more subtly, the fact that while
SDGs 5 and 16 reinforce each other, neither receives any additional positive influence from the remainder
of the network. But the overall net effect of the interlinkages is harder to quantify from figure 1; our need to
understand the overall system-level response motivates the tools that we discuss in this chapter.

As a first step we encode the weighted directed influences into an adjacency matrix A which is simply
a square array of the edge weights, with the array entry Aij being the weight of the edge from node j to
node i. Although this might seem to be slightly ‘backwards’ as a definition, it helps later on to ease the
mathematical notation. The entry Aij corresponds to the ith row and the jth column. Hence the adjacency
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matrix A corresponding to figure 1 is



2 0 0.7 0 0 0 0.7 0.5 0 0
5 0 0 0 0 0 0 0 0 0.3
6 0 0 0 0 0 0.4 0 0 0
7 0 0 0.5 0 0 0 0 0 0
11 0 0.4 0 0 0 0 0 0 0
13 0 0 0 0.8 0 0 0.5 0.3 0
14 −0.4 0 0 0 −0.4 0 0 0 0
15 0 0 0 0 0 0.4 0 0 0
16 0 0.6 0 0 0 0 0 0 0

2 5 6 7 11 13 14 15 16

, (1)

where we have included row and column labels to indicate precisely how the network nodes correspond to
the rows and columns of the matrix. Note, for example the two negatively-weighted edges in the seventh row,
corresponding to SDG 14, due to the negative influences on SDG 14 from SDGs 2 and 11. The adjacency ma-
trix corresponds exactly to the ‘node and edge’ pictorial version of the network and one can be reconstructed
immediately from the other. For larger networks with more edges we will not write out the numerical values
but present a grey-scale ‘heatmap’ of the adjacency matrix, as in figure 2. This is an easier way to present
a greater amount of information when the network diagrams become more complicated and the adjacency
matrix has more non-zero entries. When we turn to consideration of adjacency matrices for 16 or all 17 SDGs,
the adjacency matrix expands in size to become 16× 16 or 17× 17 respectively, but this is the only change in
its interpretation.

1.2 Network data and quantitative approaches

Although not the main focus of this chapter, a note on the possible underlying sources of information for the
construction of networks is appropriate here. SDG interlinkage networks are typically constructed from one of
(broadly speaking) five possible sources of data: expert analysis; linguistic approaches (for example the iden-
tification of shared keywords across the literature); literature reviews and meta-analysis; statistical analyses,
such as the analysis of correlations in time series for SDG indicators (see for example Pradhan et al, 2017);
and the output of computational models, most obviously Integrated Assessment Models (van Soest et al,
2019) or bespoke models such as the iSDG framework (Pedercini et al, 2019). This five-fold classification and
the need to integrate systemic features such as a gender perspective into this variety of analytical approaches
are discussed further by Pollitzer (2022a,b). A slightly more detailed but essentially similar typology of data
sources is given by Bennich, Weitz & Carlsen (2020) who propose seven types of data source and nine groups
of analytical approaches, based on a sample of 70 papers from the academic literature. It is also of interest to
note that some SDG interlinkage studies combine aspects of multiple approaches, for example the interlinkage
matrices constructed by IGES (Zhou & Moinuddin, 2017, 2019; Dawes, Zhou & Moinuddin, 2022) that combine
expert analysis which determines which interlinkages exist a priori, with data-driven correlation analysis at a
country-specific level which then determines the strength of those interlinkages. A similar combination of data
and expert opinion was used by Anderson et al (2021). Such interlinkage matrices can capture asymmetric
interactions (via the expert opinion) while using correlation measures that are in themselves symmetric.

While data-driven approaches might appear to be the most preferable, given the concerns that will always
exist around information gleaned through more sociological sources such as expert analysis, it needs to be
borne in mind that data-driven methods have their own limitations and that these are often serious. The level
of complexity that over 200 indicator time series bring, in their attempt to capture progress target-by-target is
compounded by at least three significant effects. Firstly, the SDG indicator measure may only be a proxy for
progress on a particular target, because the data required to monitor direct progress is not sufficiently widely
available or sufficiently reliable. Secondly, the SDG target in question is often not framed sufficiently precisely
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that the relevant statistical indicator can be unambiguously defined and so may vary in its interpretation by
different national statistical agencies. Thirdly, the data required may simply not be available and so the indica-
tor time series cannot be constructed for the time frame or national coverage required. This is a particularly
important issue in respect of SDG 5 where gender-disaggregated statistics are in embarrassingly short supply
worldwide.

In addition to these three effects, there is a more subtle issue, which perhaps is a specific instance of
the more general observation that all data sources have their limitations: data-driven approaches tend to be
historical, and describe how progress arose in the past, but with shifts in policy or politics, these may well
not be any guide to the future. In such a case, expert analysis for example may provide a more appropriate
framework, and describe one of a range of possible futures, but help to decide priorities and actions that enable
it. The interpretation of SDG interlinkage matrices naturally will depend on the data used in their construction.

Our focus here on quantitative, mathematical, methods demands that the connections between nodes
must be numerically quantified. How one moves from qualitative to quantitative is often open to criticism
and so must always be explicitly defined. Ideally the sensitivity of the results to changes in that part of the
process should also be fully explored. One explicit relation between qualitative and quantitative views of
SDG interlinkages that has gained popularity is the seven-point scale proposed by Nilsson, Griggs & Visbeck
(2016) and presented in table 1. As discussed above, behind this scale sits, implicitly or explicitly, a sense of
the scope of likely, or perhaps merely possible, policy actions and the effects that a policy action aimed at one
SDG might have on others, either for better (a ‘co-benefit’) or worse (a ‘trade-off’).

Score Name Explanation
+3 Indivisible Inextricably linked to the achievement of another goal
+2 Reinforcing Aids the achievement of another goal
+1 Enabling Creates conditions that further another goal

0 Consistent No significant positive or negative interactions
-1 Constraining Limits options on another goal
-2 Counteracting Clashes with another goal
-3 Cancelling Makes it impossible to reach another goal

Table 1: The seven-point scale proposed by Nilsson, Griggs & Visbeck (2016) for scoring the influence of one
specific SDG or target on another.

It is of interest to note that this scale, while numerical, may not actually be amenable to numerical manip-
ulation: for example if there are two separate effects that would lead to a linkage being scored as either +2 or
-1, a net score of 0.5 (the arithmetic mean) or perhaps +1 as a compromise, might not be appropriate if the
two underlying effects operated over different timescales or had different probabilities of arising.

1.3 Complete SDG interlinkage networks

Having used the relatively simple example network presented in figure 1 as an initial example, we illustrate the
concepts developed in this chapter with two complete goal-level interlinkage matrices for the SDGs. The first
of these was generated in Dawes (2020) from an expert analysis (ICSU-ISSC, 2015) and is the network from
which the example presented in figure 1 was abstracted; in what follows we therefore use the complete version
rather than this simplified verson of the network. The expert analysis was conducted by the International
Science Council in 2015 when it was known as the International Council for Science (ICSU), in partnership with
the International Social Science Council (ISSC); we therefore refer to this as the ICSU Report. Although based
on a qualitative analysis of policy interlinkages rather than historic data, this is one of the few reports to treat
all the SDGs identically (but not quite – it omits SDG 17). Dawes (2020) describes in detail the methodology
through which the expert opinions were turned into a quantitative cross-impact matrix. Essentially this involved
interpretation of the direction of interlinkages from the report’s text, combined with an indication of the strength
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of an interlinkage given by the number of targets in the SDG that was being influenced that were mentioned
as being impacted by progress on the influencing SDG. The initial example presented in figure 1 is in fact the
subset of the ICSU network consisting of high-weight edges that form closed loops in the network; this can be
seen by comparing the non-zero entries in the adjacency matrix (1) with the very light grey and very dark grey
cells in figure 2(a).

The second interlinkage matrix we use is based on the Global Sustainable Development Report (GSDR)
2019 (GSDR, 2019; Pham-Truffert, Rueff and Messerli, 2019; Pham-Truffert et al, 2020). This report carried
out a literature survey of 177 global scientific assessments, UN flagship report and scientific articles on SDG
interlinkages, wherever possible looking at the level of targets; here we consider their results aggregated to
goal-level. A hand-coding of statements in these articles resulted in a set of 4,976 separate positive and 782
negative interactions. Although there is considerable value in preserving the distinction between the positive
and negative interactions separately, as discussed in more detail elsewhere (Dawes, 2022), for reasons of
brevity we will discuss in this chapter only the ‘net interlinkage’ matrix obtained by summing positive and
negative interlinkages.
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Figure 2: Heatmaps showing the distribution of positive and negative interlinkages in the SDG interaction
matrices used as examples here. (a) The 16× 16 ICSU matrix (SDG 17 was omitted from their analysis); (b)
The 17× 17 GSDR 2019 interlinkage matrix. Each cell corresponds to an interlinkage: the SDG labelling the
column (j) influences the SDG labelling the row (i). White space indicates that the interlinkage is close to
zero; color bars to the right give the scaled strength of interlinkages in each case. Adapted under CC-BY-4.0
from figure 1 in Dawes (2022).

Figure 2 shows the interlinkage matrices derived from the ICSU and GSDR reports. Interlinkages were
scaled to lie in the range [-1, 1] and those close to zero are replaced by white space to improve the readability
of the figures. Diagonal entries were removed from the GSDR matrix to make this more directly comparable
with the ICSU matrix; removing these entries turns out to have only a very minor effect on the overall results
(Dawes, 2022). In both cases we observe that almost every SDG influences SDGs 1 – 3, as shown by the
densely populated top three rows of each plot. But there are fewer influences from SDGs 1 to 3 on the
remaining goals, as is shown by the relatively sparsely coloured first three columns on the left hand side of
each plot. This highlights what appears to be a fundamental asymmetry in Agenda 2030: the first three SDGs
are those on which most attention is focused, with SDGs 4 to 17 in some sense playing a subordinate role,
supporting the fundamental development agenda, and continuation from the Millennium Development Goals,
that SDGs 1 – 3 represent.

The interlinkage matrices in figure 2 clearly differ from each other, and this highlights the obvious fact that
interlinkage matrices constructed from different data sources vary, and often vary considerably. The point is
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not to find a single interlinkage matrix that is somehow the most appropriate, or optimal, one, but to be able
to link aspects of the detailed construction of any one interlinkage matrix with the system-level implications of
those goal-by-goal, or indeed target-by-target influences. Indeed, even being forced to address issues such
as the directionality of interlinkages, often helps to clarify what a particular interlinkage matrix is attempting to
capture.

1.4 Chapter organisation

The remainder of this chapter is organised as follows. In section 2 we explain and apply the key idea of
centrality, that is, the relative importance of different nodes in a network. Of the many different ideas of
centrality we focus on the idea known as ‘eigencentrality’ (Bonacich, 1972, 2007; Newman, 2018; Bali Swain
& Ranganathan, 2021) which in a strict sense does not apply to complex networks with both positive and
negative interlinkages, but has an alternative and extremely useful interpretation making it an important and
applicable system level statistic (Dawes, 2020).

Already above we have noted that the robustness of any network-based measures is an important aspect
of these quantitative approaches. In section 3 we discuss two possible measures of the sensitivity of the
eigencentrality measure to perturbations to the network (that is, the addition or removal of new interlinkages).
This also leads naturally to methods to answer the question of where best to introduce new interlinkages in
order to improve the self-reinforcements already present in a network.

Section 4 discusses the third idea: the notion of hierarchy among an interlinkage network for the SDGs.
Measures of overall hierarchy and directionality in complex networks have their roots in the computation and
analysis of ecosystems, for example food webs, but lend themselves also to the systemic analysis and quan-
tification of prioritisation between the SDGs. Prioritisation of SDGs that lie further ‘upstream’ of others should
enable those goals to be met while at the same time allowing benefits to flow through the network and so allow
the whole system to benefit. In contrast, prioritisation of SDGs that lie far ‘downstream‘, and hence have much
lower levels of influence on other goals, would not allow all SDGs to be met. We develop and discuss mea-
sures of hierarchy that help to identify points of leverage and maximum ‘downstream benefit’ to other SDGs in
the network. We conclude in Section 5 and offer perspectives and directions for further research.

2 Centrality measures

A common observation in network science is that some nodes appear to be more important, or more ‘central’
to the network than others. The most fundamental notion of centrality is simply to count the edge weights
of the edges by which other nodes are connected to the node under consideration. This gives rise to the
centrality measures

kini =
n∑

j=1

Aij and kouti =
n∑

j=1

Aji (2)

which are the (weighted) in-degree kini and out-degree kouti of node i, respectively. We note that in situations
where edges weights may be negative as well as positive, it might be more appropriate to take the absolute
value of the edge weights Aij in order to avoid cancellation between positive and negative contributions.
Compact expressions for the vectors of in-degrees and out-degrees can be written making use of the vector 1
which denotes the vector (1, 1, . . . , 1) in which every element is one. Then kin := A1 and kout := AT

1 where
AT denotes the transpose of the matrix A, that is, the matrix in which the (i, j)th element is the entry Aji.

Pham-Truffert et al (2020) refer to nodes that have a large in-degree as ‘buffers’ since in some sense they
serve to combine the effects of many different nodes together, and they refer to nodes that have a large out-
degree as ‘multipliers’ as they may propagate the influence of a node to many other parts of the network. The
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total degree ki = kini + kouti of node i is a natural measure of the relative importance of node i in the network;
this is commonly referred to as the degree centrality of the node.

Other popular and long-studied measures of centrality, which we will not consider further here, include
‘betweenness centrality’ (Freeman, 1977) and ‘closeness centrality’ (Bavelas, 1950). To compute between-
ness centrality we first compute the set of shortest paths between every pair of nodes in the network. The
betweenness centrality of a node is then proportional to the number of shortest paths that pass through that
node. Closeness centrality is the average length of the shortest path between the given node and all other
nodes in the network. Both definitions are most straightforward to apply to unweighted, undirected and con-
nected networks; various generalisations and improvements account for cases in which the network is either
weighted, directed, or disconnected (a network is disconnected if its set of nodes divides into two subsets for
which there are no edges linking any pair of nodes chosen so that one node lies in each subset).

2.1 Eigencentrality

While simple, the concept of degree centrality has an inherent drawback – it is a purely local calculation.
By ‘local’ we mean that degree centrality counts the numbers of direct neighbours of a node but does not
make any allowance for how connected those nodes themselves might be. A node with a large number of
‘unimportant’ neighbours is perhaps less important itself than a node with a smaller number of ‘very important’
neighbours. A more robust measure of importance could therefore be obtained differently, through a slightly
self-referential definition: the importance of a node is given by the weighted sum of the importance of the
nodes to which it is connected. Mathematically we can define the importance vi of node i to be given by the
weighted sum

vi =
1

λ

n∑
j=1

Aijvj (3)

where λ is a ‘normalisation’ or rescaling parameter. This definition appears to be unfortunately circular since
it demands knowing the importances vj of the nodes j to which node i is connected. One can imagine some
kind of iterative scheme, starting with estimated values for the vi and then re-calculating them according to
the formula (3) until they converge. Such an approach indeed works (for almost all initial choices of the vi)
although it involves estimating the value of λ as well. In more mathematical language, λ is the largest, or
‘leading’ eigenvalue of the matrix A and v = (v1, . . . , vn) is the leading eigenvector. The calculation of λ and
v is numerically straightforward in many software packages. Further mathematical remarks are given in Box 1.
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Box 1. Eigenvalues and eigenvectors. In the generic case, an n × n matrix A has n distinct eigen-
values λ1, . . . , λn each with a corresponding eigenvector v(1), . . . ,v(n). Each eigenvector is a column
vector with n elements. We order the eigenvalues so that Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λn) where Re
denotes the real part of the eigenvalue λi which is possibly a complex number even when the matrix A
is real.

The eigenvalues and eigenvectors are defined by the equation Avi = λiv
(i). In practice we usually

find eigenvalues first, by solving the equation P (λ) := det(A − λI) = 0, where det denotes the
determinant of the matrix, and I denotes the n× n identity matrix. P (λ) is a polynomial of degree n in
λ and so (generically) has n distinct roots which are the eigenvalues λ1, . . . , λn. For each eigenvalue
one can then find the column vector v that satisfies (A−λiI)v

(i) = 0. Eigenvectors are typically scaled
(‘normalised’) so that the sum of the squares of their entries is one; if this is carried out then each entry
lies in the range from −1 to +1.

For a typical matrix A that has no negative entries the Perron–Frobenius Theorem (Meyer, 2000, Chap-
ter 8) guarantees that the largest eigenvalue λ1 is real and positive and it has a corresponding eigen-
vector v(1) that has no negative entries. In this case, for typical positive initial guesses, iterations of
equation (3) when λ is set to the value λ1 converge to v(1).

The elements of the leading eigenvector v(1) define a centrality measure describing the relative impor-
tance of each of the nodes; this is known as eigenvector centrality, abbreviated sometimes to eigencentrality.
Eigencentrality is a remarkably old concept, dating back at least as far as the article by Landau (1895) on
scoring in chess tournaments; further historic references include Leontief (1941) and Seeley (1949). If the
matrix A has no negative entries then the eigencentrality scores for each node lie in the range zero to one,
assuming the normalisation described in Box 1 is carried out.

2.2 Interpretation

Eigencentrality as an importance measure is related to the in-degrees of the nodes rather than their out-
degrees in the sense that, for a directed network (as we consider in this chapter) a large eigencentrality score
relates to a high accumulation of co-benefits provided by other nodes. Therefore, in the context of SDG
interlinkage networks, eigencentrality according to the definition (3) measures the extent to which a node
receives co-benefits (or trade-offs) from other nodes, rather than the extent to which it generates these co-
benefits and confers them onto other nodes. Therefore, the elements of v(1) provide a measure of the extent
to which nodes are ‘sinks’, rather than ‘sources’.

While the Perron–Frobenius Theorem referred to in the last paragraph within Box 1 is mathematically well-
defined only for non-negative matrices, it is often the case that a network with only a relatively small number
of negative links will also have a leading eigenvector that has all entries non-negative; in such a case it is
tempting to continue to interpret the leading eigenvector as a centrality measure. But there is an additional
context for interpreting the leading eigenvector – it is the dominant ‘response’ of the network when we consider
the interlinkage network as dynamically generating reinforcements, or trade-offs between progress on different
nodes over time. For example, taking the simplest possible case, consider the evolution equation

dxi
dt

=

n∑
j=1

Aijxj , (4)

which states that the rate of change in time t of a state variable xi related to node i depends linearly on each
of the state variables xj at the nodes j that have influence on, and feed into, node i, mediated in each case
by the strength and sign of the interaction between the two nodes as captured by the interlinkage Aij . The
solution x(t) to the differential equation (4) is dominated, apart perhaps over a short initial transient phase, by
the form of the leading eigenvector because the leading eigenvector describes the mode of maximum growth
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rate – the eigenvalues λ1, . . . , λn are the growth rates of these different modes of response, but v1 dominates
since (by definition) λ1 is larger than all the others. For completeness, we note that in special cases there
might be other eigenvalues equal to λ1 but this is not a generic behaviour and so in the interests of simplicity,
and because it does not arise in practical examples of SDG interlinkage networks, we gloss over this point in
our exposition here. Indeed, the examples below we will see that the leading eigenvalue is substantially larger
than the remaining n− 1 eigenvalues and so provides a good guide to the overall system dynamics.

To summarise, the leading eigenvector can be interpreted as the intrinsic mode of self-reinforcing growth
of the state variables x(t) = (x1(t), . . . , xn(t)) caused solely by their interactions. In the context of this
work, and conscious of many caveats around the simplistic nature of equation (4) and the coarse-grained
representation this implies, we can view x1(t), . . . , xn(t) as the relative levels of progress made on each of
the SDGs, interpreting the interlinkages as reinforcing, or constraining effects due to policy actions.

2.3 A measure of influence

We now briefly contrast the interpretation of eigencentrality above (in which it reveals which nodes benefit
the most from positive interlinkages in the network) with a closely-related but distinct question: which nodes
have the greatest influence on others, across the network? That is, instead of asking which nodes receive the
greatest number of co-benefits (as ‘sinks’), we ask which nodes provide the most co-benefits, as ‘sources’.
Let yi denote the influence across the network of node i. As in the earlier discussion, we can frame an answer
to deducing the relative levels of influence through a similar but subtly different self-referential definition: the
influence of node i is given by the weighted sum of the influences of the nodes that node i is itself able to
influence it. Mathematically we can define the influence yi of node i to be given by

yi =
1

λ

n∑
j=1

yjAji . (5)

The key difference between (5) and (3) is the directionality of the interlinkages: note the term Aji in (5) rather
than Aij . A node i that has no outgoing edges (i.e. where kouti = 0) will have zero influence on the network:
this agrees with (5) since kouti = 0 =⇒ yi = 0. However, a node with no outgoing edges may still have
a positive in-degree kini > 0 and hence vi > 0. The distinction between the levels of ‘influence’ and ‘benefits
received’ for each node is crucial for directed networks of the kind that we consider here.

Mathematically, (5) implies that y satisfies the equation yTA = λyT . The row vector yT is the left eigen-
vector corresponding to the eigenvalue λ, in contrast to v which is the (usual) right eigenvector. Equivalently,
yT is the right eigenvector of the transpose matrix AT defined by swapping the elements of A so that (AT )ij
is the element Aji.

2.4 Katz centrality

Finally, we briefly mention a centrality measure that ‘interpolates’ between eigencentrality and degree centrality
(Katz, 1953). Consider the importance xi of node i to be given by the weighted sum of the importances of its
neighbours as in (3), with a weighting parameter α, but also including a constant term so that every node has
importance at least one:

xi =
1

α

n∑
j=1

Aijxj + 1 . (6)

Written in matrix-vector terms this is equivalent to writing x = αAx + 1 where 1 is the column vector having
a one in every element. Re-arranging we obtain

x = (I − αA)−1
1 = (I + αA+ α2A2 + α3A3 + · · · )1 , (7)
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where I denotes the n×n identity matrix having ones on the main diagonal and zeros in all other entries, and
the power series expansion indicated by the ellipsis is valid for 0 ≤ α < 1/λ1. The parameter α measures the
‘discount rate’ at which the contribution to the importance of node i from ever more distant nodes drops off as
the distance through the network increases. For very small α only the immediate neighbours of node i really
count, and so the centrality measure xi ≈ 1+αkini and we recover (apart from the constant 1 and the scaling
by α which do not affect the relative values of the centralities) the in-degree centrality. In the opposite limit, as
α → 1/λ1 we recover the eigencentrality measure vi.

Similarly, if we replace A by its transpose in (6) and (7) we obtain measures of the influence ui of node i,
with successive terms in the sum on the right-hand side of (7) corresponding to contributions from nodes at
successive distances from node i. This is precisely what the analysis by Weitz et al (2018) aimed to capture
in the analysis of a cross-impact matrix for a set of 34 SDG targets in a country-level analysis for the case of
Sweden. Their overarching aim was to understand how to answer the question (as they posed it) “ If progress
is made on target x, how does this influence progress on target y? ”. Weitz et al proposed the idea that the
total influence of a node should be a combination of the direct (‘first order’ in their terminology) and indirect
(‘second order’) influences. This combination of direct and indirect influences led Weitz et al to propose the
measure of total influence Itotal

i of a node i as a weighted sum of its out-degree kouti and the out-degrees of
its neighbours, multiplied by the interlinkage strength Aij (noting that they used the convention that Aij is the
strength of the edge i → j and so their A is our AT ):

Itotal
i = kouti +

1

2

n∑
j=1

Aijk
out
j . (8)

In light of the discussion above we can see this as a truncation of the series expansion in (7), ignoring the α2A3

and higher-order terms, and with A replaced by AT in order to compute influences rather than importances.
In our notation, letting Itotal

i = (ui−1)/α, and setting α = 1/2, their definition in equation (8) above becomes

(u− 1)/α = AT
1+

1

2
(AT )21 =

[
AT + α(AT )2

]
1 ,

=⇒ u =
(
I + αAT + α2(AT )2

)
1 ,

(using the fact that I1 = 1) which is precisely the truncation of (7) ignoring the A3 term and all higher powers.
Again, in the limit as α → 1/λ1 (and including the higher-order terms in α) the influence measure u converges
to the eigenvector-based influence measure y discussed previously.

2.5 Illustrations of centrality

It is numerically straightforward to compute the eigenvalues and eigenvectors for the interlinkage matrices
shown in Figure 2; the results are given in Figure 3. Figure 3(a) plots the eigenvalues. In both cases there
is a leading eigenvalue that appears far to the right of the remaining ones, leaving a significant gap between
the leading eigenvalue and the next-largest, for both the ICSU eigenvalues (squares) and GSDR eigenvalues
(round dots). This indicates that the behaviour of the networks is dominated by the form of their leading
eigenvectors and that this fact is robust to perturbations of individual interlinkages. The form of the leading
eigenvectors themselves is shown in Figure 3(b), again with the GSDR eigenvector in black and the ICSU one
in red. The lines joining the dots are added just as a guide to the eye; the data points show the components
of the eigenvectors for each of the SDGs. The ICSU eigenvector has only 16 components since the ICSU
analysis omitted SDG 17.

The asymmetry noticed above is reflected in the high values of the eigenvector components for SDGs 1
– 3: these three SDGs are positively supported by many of the others which therefore act to promote greater
progress on goals 1 - 3, in the dynamical sense, and for them to be identified as among the most important
in a centrality sense. The GSDR matrix has a particularly high component also for SDG 8 (Decent work and
economic growth) which is perhaps expected due to the relatively full row of interactions supporting SDG 8 in
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Figure 3: Eigenvalues and (right) eigenvectors for the ICSU and GSDR interlinkage matrices. (a) Eigenvalues
of the adjacency matrices A in the two cases, shown in the complex plane (i.e. the horizontal axis corresponds
to the real part of the eigenvalue and the vertical axis to the imaginary part). The leading eigenvalues are real
and are located at approximately λ1 = 1.47 for the ICSU matrix and λ1 = 1.10 for the GSDR matrix (both to
2 decimal places). In both cases there are significant horizontal gaps between this leading eigenvalue and
those that are next-largest. (b) The leading eigenvectors v(1) for the ICSU and GSDR adjacency matrices,
with the components for each SDG plotted against the SDG number on the horizontal axis. The vertical scale
is arbitrary since eigenvectors are defined only up to a scale factor and are normalised here as described in
Box 1 (so that the sums of the squares of the components add up to one). Adapted under CC-BY-4.0 from
figure 2 in Dawes (2022).
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Figure 4: The components of the left eigenvectors y(1) corresponding to the leading eigenvalue λ1 for the
ICSU and GSDR adjacency matrices, with the components corresponding to each SDG plotted against the
SDG number on the horizontal axis. The vertical scale is arbitrary since eigenvectors are defined only up to
a scale factor. Here, as is customary and convenient, we normalize so that the sum of the squares of the
components adds up to one.
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the interaction matrix in Figure 2(b). The corresponding row for the ICSU matrix in Figure 2(a) also strongly
supports SDG 8 but in this case the support is stronger for other SDGs and so SDG 8 does not emerge as
relatively better off. Most concerning is the negative component of the leading eigenvector for SDG 14 (Life
below water) for the ICSU matrix. This suggests that the internal dynamics of the ICSU network would result
in negative progress on SDG 14 when positive progress is made elsewhere. In terms of the interlinkage matrix
there are two strongly negative links, from SDG 2, and from SDG 11, to SDG 14 – these are coloured dark
blue in Figure 2(a) and point to significant trade-offs between the goals on zero hunger and sustainable cities,
and progress on life below water.

Figure 4 reveals that the most influential sources of co-benefits are SDGs 12, 9, 5 and 4 (in that order)
for the ICSU interlinkage network (and these in effect generate the co-benefits that result in greatest progress
on SDGs 1-3 as revealed by figure 3b). For the GSDR network SDGs 12, 6 and 7 are the most influential
in generating co-benefits for other SDGs (and from figure 3(b) we see that these benefits accrue most to
SDGs 1-3 and 8 for the GSDR network). We see also that for the ICSU matrix SDGs 2 and 3 are a source of
trade-offs within the network, while SDG 1 is the only SDG that is a source of (net) trade-offs for the GSDR
interlinkage matrix.

3 Sensitivity to individual linkages

Given the importance of eigenvalues and eigenvectors in summarising the overall dynamics of an interlinkage
network, it is important and useful to be able to relate them directly to variations in the microscopic individual
links in the network. This enables us to explore, for example, whether and how we might be able to influence
the overall dynamics through changes to one or a small number of linkages. This discussion of the sensitivity of
centrality results to the addition of new network linkages is linked to long-standing and well-known perturbation
results in applied mathematics and yields useful analytical results. It also yields readily to interpretations,
building on the results of the previous section and the concepts of right and left eigenvectors introduced there.
The discussion in this section is based on Dawes (2022).

First, we distinguish between two possible senses in which we might want to improve the co-benefits that
the interlinkage matrix results in. Our first measure, which we term ‘growth rate sensitivity’ describes the
change in the leading eigenvalue which is the overall rate at which interlinkages generate overall changes
(which we hope are largely positive) in progress on the SDGs. The second measure, which we term ‘equality
sensitivity’ describes the extent to which a change in a particular interlinkage affects the distribution across the
SDGs of these self-reinforcing benefits so that progress becomes more equal across the whole set of SDGs.

3.1 Growth rate sensitivity

A suitable mathematical measure of the sensitivity of the growth rate to perturbations is to consider the rate
of change of the leading eigenvalue λ1 of the interlinkage matrix to perturbations in one element Aij of the
adjacency matrix. We therefore define the ‘multiplier effect’ sensitivity matrix Sm to be the n × n matrix
whose (i, j) entry is Sm

ij := (1/λ1)∂λ1/∂Aij . The factor of 1/λ1 is included so that Sm computes relative
changes in λ1 rather than absolute changes. In the cases of interest here, Sm

ij turns out to have a simple
expression in terms of the left and right eigenvectors (y(1)T and v(1), respectively) for the leading eigenvalue
λ1. A straightforward calculation, presented in Appendix B of Dawes (2022) and also summarised in Box 2,
leads to the formula

Sm
ij =

1

λ1

y
(1)
i v

(1)
j

y(1)Tv(1)
(9)

Thus Sm
ij is a measure of the sensitivity of the leading eigenvalue of the adjacency matrix to an increase in the

interlinkage Aij .
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The growth rate sensitivity formula (9) has an intuitive explanation that builds on the interpretations of y(1)

as the sources of co-benefits (or trade-offs) in the network, and v(1) as the resulting ‘sinks’ of co-benefits or
trade-offs. Consider the two cases in figure 5 where we show, as thought-experiment, two nodes labelled i
and j and part of their interlinkage network.

For simplicity, suppose that initially the nodes are not linked, and consider the effect on the network overall
of introducing a new edge from j to i. In case (a), corresponding to figure 5(a), suppose that node i has
only incoming edges and no outgoing ones: kouti = 0. (We make no assumptions about the nodes that j
is connected to; suppose j has both incoming and outgoing edges.) Then node i is unable to propagate
co-benefits or trade-offs further through the network; column i in the interlinkage matrix must consist entirely
of zeros: Api = 0 for all p = 1, . . . , n. Then from (5) we conclude that we must have yi = 0 for any left
eigenvector y. So in particular this is true for the leading left eigenvector y(1) and hence Sm

ij = 0 from (9) and
so the addition of the new link j → i does not change the growth rate λ1. Intuitively, if node i only receives
benefits from other nodes and is not a source itself, then adding a new edge pointing towards node i does not
change that situation, and so the network as a whole does not gain or lose.

In case (b), corresponding to 5(b), consider adding the new edge j → i when j has no incoming edges,
only outgoing ones (and we suppose that i might have both incoming and outgoing edges). Then node j
is unable to receive the results of co-benefits or trade-offs from other nodes: row j of the adjacency matrix
contains only zeros: Ajq = 0 for all q = 1, . . . , n. Hence, from (3) we see that vj must be zero, that is, the jth

entry of any (right) eigenvector v must be zero. Then from (9) we see that Sm
ij = 0 and so the addition of the

new edge j → i does not change the growth rate for the network at all.
To summarise, the formula 9 can be justified intuitively as stating that, for a new edge j → i to affect the

network dynamics, it is necessary that node i already propagates co-benefits or trade-offs through to other
nodes in the network (that is, kouti > 0, and that node j already receives co-benefits or trade-offs from other
nodes (that is, kinj > 0). The sensitivity of the network to the addition of the new edge j → i is proportional to
the product of the level of co-benefits currently offered by node i and received by node j.

(a) (b)

Figure 5: Illustrations of the two cases in which we would expect the growth rate sensitivity to the addition of
an edge from node j to node i to be zero. (a) Suppose that j has a mixture of incoming and outgoing edges
(not shown), but that i has only incoming edges, and that we add a new edge j → i. (b) Suppose in this case
that i has a mixture of incoming and outgoing edges (not shown), but that j has only outgoing edges, and that
we add a new edge j → i.
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Box 2. Derivation of the sensitivity matrix Sm. Following Greenbaum et al (2020) here we sum-
marise the derivation of (9) that describes the effect on the growth rate λ1 of a perturbation to the
interlinkage from j to i, that is, the entry Aij . Let the matrix A have distinct eigenvalues λ1, . . . , λn,
with corresponding right and left eigenvectors v(1), . . . ,v(n) and y(1), . . . ,y(n) normalised so that
∥v(i)∥ = ∥y(i)∥ = 1 for all i = 1, . . . , n.

Now consider the adjacency matrix A to be a function of a parameter ε that changes the interlinkage
from j to i (this will be made explicit in a moment), writing A(ε) where A ≡ A(0). Suppose that A(ε)
has an eigenvalue λ1(ε) and a right eigenvector v(1)(ε) that vary smoothly with ε, so that A(ε)v(1)(ε) =
λ1(ε)v

(1)(ε). Differentiating with respect to ε and setting ε = 0 we obtain

A′(0)v(1)(0) +A(0)v(1)′(0) = λ′
1(0)v

(1)(0) + λ1(0)v
(1)′(0),

where ′ denotes a derivative with respect to ε. Now multiply on the left by the left eigenvector y(1)T (0)
and observe that the second term on the left hand side will cancel with the second term on the right
hand side since they are both λ1(0)y

(1)T (0)v(1)′(0). Hence we obtain

λ′
1(0) =

y(1)T (0)A′(0)v(1)(0)

y(1)T (0)v(1)(0)
. (10)

This expression holds for any perturbation to the interlinkage matrix A; we now specialise to the case
that the perturbation is to a single network edge j → i, for which the derivative matrix A′(0) is just the
outer product A′(0) = eie

T
j where ei is the column vector whose ith entry is 1 and all other entries are

zero. For this case, omitting the parameter dependence in the notation, the expression (10) becomes

λ′
1 =

y
(1)
i v

(1)
j

y(1)Tv(1)

which describes the rate of change of the eigenvalue λ1 with respect to the value of the network edge
from j → i. This result is well-known (Jacobi, 1846) and was re-derived more recently in the ecological
literature (see equation (23) in Neubert & Caswell, 1997) in the context of ecosystem resilience.
Finally, the matrix Sm introduced in (9) is precisely the n × n matrix of rates of change with respect to
perturbations in each element of A in turn, scaled by a factor of λ1. We may define:

Sm
ij :=

1

λ1

∂λ1

∂Aij
=

1

λ1

y
(1)
i v

(1)
j

y(1)Tv(1)
. (11)

The factor of 1/λ1 is included in our definition so that Sm computes relative changes in the magnitude
of the leading eigenvalue: this allows better comparison of the values of Sm computed from different
matrices with different absolute values of λ1.

3.2 Equality sensitivity

The second sensitivity measure is also easy to define in terms of eigenvectors, although some of the mathe-
matical details are a little more complicated and are omitted here. We define the equality sensitivity Seq

ij of the
leading eigenvector v(1) to be

Seq
ij := n̂ · ∂v

(1)

∂Aij
, (12)

that is, a ‘scalar product’ (sometimes referred to just as the ‘dot product’) between two vectors, one being the
vector n̂ := 1/

√
n that describes complete equality of progress on all n = 17 SDGs, and the other being the
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rate of change in the leading eigenvector v(1) when the (i, j)th element of A changes. The scalar product
measures the extent to which the two vectors are pointing in the same direction, or not: if the vectors are at
right-angles to each other then the scalar product is zero. The entries of the matrix Seq therefore measure the
extent to which a perturbation to Aij increases the alignment of the leading eigenvector v(1) with the vector n̂
which corresponds to complete equality of progress across all the SDGs. Mathematical details concerning (12)
are given in Appendix 2 of Dawes (2022). The details are a little more complicated than for the growth rate
sensitivity Sm

ij for unfortunately technical and purely mathematical reasons: because eigenvectors are defined
only up to a normalisation, which we take to be the standard one that |v(1)| = 1, this normalisation has to be
accounted for in the calculation of Seq

ij so that an increase in one eigenvector component is compensated for
by decreases elsewhere. For that reason we omit mathematical details here and refer the interested reader to
Appendix B of Dawes (2022).

3.3 Illustrations of sensitivity analysis

Figures 6 and 7 illustrate the theory of the previous sections with calculations of the growth rate sensitivity
Sm from (9) and the equality sensitivity Seq from (12) for the ICSU and GSDR interlinkage matrices shown in
figure 2.

As we would anticipate from figures 3(b) and figure 4, the growth rate sensitivities are largest when both
y(1) and v(1) take their most positive values, corresponding to changes in edges from nodes that are currently
benefitting the most from the network structure (for example nodes 1-3 for the ICSU interlinkage matrix), to
nodes that have the highest influences on other nodes (for example nodes 12, 9, 5 and 4 for the ICSU matrix).
Hence increasing the values of edges {1, 2, 3} → {4, 5, 9, 12} increases the overall growth rate of system-
wide co-benefits the most, for the ICSU network. Similarly, for the GSDR network we would expect edges from
{1, 2, 3, 8} → {6, 7, 12} to affect the overall growth rate the most, and this is confirmed by figure 6(b).

(a) (b)

Figure 6: Growth rate sensitivities Sm for the leading eigenvalue λ1 of (a) the ICSU network illustrated in
figure 2(a); and (b) the averaged GSDR interaction network, illustrated in figure 2(b). Each square in the
grid is coloured according to the relative increase in the growth rate (i.e. Sm that would result from a small
increase in that specific interlinkage, keeping the remainder of the network the same. Lighter grey entries in
the matrix indicate where increases in those interlinkages would increase Sm (and hence increase the leading
eigenvalue λ1); darker grey entries indicate where increases in an interlinkage would decrease Sm (and hence
decrease the leading eigenvalue λ1). Adapted under CC-BY-4.0 from figure 5 in Dawes (2022).

Figure 7 is a little harder to interpret, as the sensitivities plotted here reveal the extent to which the distribu-
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tion of the co-benefits to different SDGs becomes more uniform as the weight of a specific edge is increased.
But the general message is similar: increasing the interlinkages from SDGs 1-3 tends to re-balance the ex-
pected distribution of co-benefits across the SDGs, and this effect is particularly apparent when, for the ICSU
network, the interlinkages are from {1, 2, 3} → {4, 5, 9, 12, 14}. For the GSDR network, the edges that are
most useful in this respect are those from {1, 2, 3, 8} to {12, 17}.

(a) (b)

Figure 7: Equality sensitivities Seq for (a) the ICSU matrix and (b) the GSDR matrix. Light grey colours indicate
that increasing those interlinkages serves to make the components of the leading eigenvector v(1) more equal.
Dark grey colours indicate that increasing an interlinkage will make the leading eigenvector more unbalanced.
The relative differences between matrix entries are significant; the absolute differences between the colour
scales in (a) and (b) are not significant. Adapted under CC-BY-4.0 from figure 6 in Dawes (2022).

4 Hierarchy

Building interlinkage matrices with directed edges between nodes, rather than undirected ones (which could
be interpreted only as either mutually beneficial or mutually antagonistic relationships), immediately provokes
questions at the system level as to whether the network taken as a whole has a sense of directionality to it. To
a certain extent this has been present in the background to the discussions in section 2 since we have looked
to identify nodes that are greater recipients of co-benefits, in some sense lying further ‘downstream’ of other
nodes, and nodes that have the greatest influence and are providers of those benefits, in some sense lying
further ‘upstream’ of other nodes. Thus there is implicitly a sense of directed order across the network. In this
section we tackle this question of hierarchy directly.

It is clear that some directed networks do not have an overarching sense of hierarchy, for example consider
the case of a network consisting of a cyclic ring of directed edges of equal edge weights. In such a network all
nodes must lie at the same ‘level’ by symmetry. Contrastingly, a chain of positive directed edges all pointing
in the same direction confers a clear hierarchy since, in our SDG context, progress on SDGs corresponding
to nodes earlier in the chain results in co-benefits shared with SDGs further along the chain, but the reverse
is not true. In the context of the SDGs it feels likely that there is at least some sense of hierarchy, for example
it is clear that while progress on goals related to societal change such as SDG 5 (Gender equality) and SDG
10 (Reduced inequalities) are highly likely to lead to progress on ‘human development’ goals such as SDG 1
(No poverty) and SDG 3 (Good health and well-being), it is not so clear that all policy actions taken to reduce
poverty or to improve healthcare would necessarily have co-benefits that included progress on SDG 5 or SDG
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10; progress (at least to some extent) on SDG1 or SDG3 could be made through policy choices that fail to
address persistent inequalities in gender or other population characteristics. Indeed, the persistent failure of
sufficient data collection to monitor SDG 5 means that it may be difficult to quantify this effect although it surely
exists (Pollitzer, 2022b).

In this section we look at a quantitative approach to deciding whether a given interlinkage network implies
the existence of a hierarchy, and if it does, to computing the relative ‘level’ for different SDGs in the network.

4.1 Trophic confusion

Following Mackay et al (2020) we assign a level hi to each node i (that is, each SDG in our goal-level analyses),
and the challenge is to find a choice for the levels that minimizes a function F which measures the overall lack
of directionality in the network (that is, we aim to choose levels in order to maximise the amount of directionality
that exists). Mackay et al (2020) refer to F as the amount of ‘trophic confusion’ in the network, motivated by
food webs where the structure of the trophic network is a key quantity of interest in order to understand an
ecosystem. A generalization of their initial idea is to include a collection of pre-specified quantities gij , not
necessarily related to the adjacency matrix A, that provide a set of target spacings between the levels hi. The
values of the levels hi that minimize F can then be determined by minimizing, for example, the function

F (h) :=

∑
ij |Aij | (hi − hj − gij)

2∑
ij |Aij |

. (13)

The form of F (h) in (13) guarantees that it takes positive values, or is zero. F clearly has a minimum value
zero that is achieved when the spacings between levels satisfy exactly the requirements given by the gij , if this
is possible. If it is not, then minimising F attempts to get as close to satisfying this situation as possible. The
denominator provides a normalization of the values of F , enabling comparisons between different networks
if the distribution of edge weights are the same; otherwise it does not affect the values of the levels hi that
minimize F . Mathematically, by considering how F depends on the value chosen for a level hi, it can be
shown that the set of levels hi that minimize F are equivalently given by solving the equation

Λh = vecdiag(AGT −ATG) , (14)

where the matrix Λ := diag(k) − AT − A, G is the matrix whose entries are given by the elements gij , and
vecdiag(M) means the operation that extracts just the elements of the main diagonal of the matrix M and
forms these elements into a column vector. Note also that k is the vector of total degrees k := kin + kout

defined towards the start of section 2, G is the matrix whose entries are the target spacings gij and the notation
diag(v) means the square matrix with the elements of the vector v as the main diagonal of the matrix, with
zeros elsewhere. In the case gij = 1 for all i and j, the right-hand-side vecdiag(AGT −ATG) reduces to the
difference between the (weighted) in-degree and out-degree.

Despite this rather detailed set of definitions, minimizing the ‘trophic confusion’ quantity F is straightforward
to implement computationally and provides a representation of a network that as far as possible provides an
overall sense of directionality. This enables a visualization of which nodes are furthest ‘upstream’ in the
network and so influence most others, and which are furthest downstream and hence benefit most from co-
benefits due to other SDGs.

4.2 Illustrations of hierarchy

In Figure 8 we show the results of minimizing the trophic confusion measure F defined in equation (13) for the
ICSU and GSDR networks. In both parts of the figure, the relative levels of the SDGs are determined so that
as many of the directed edges point upwards as possible. The relative horizontal positions of different SDGs
have no meaning in terms of interlinkages; they are purely to make the figures as easy to interpret as possible.
The influences between pairs of SDGs therefore generally run from the bottom of each figure to the top. We
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(a) (b)

Figure 8: Hierarchies of nodes in the two networks. The vertical axes indicate the (relative) levels hi, con-
structed so as to minimise the function F defined in equation (13), and placing the node at the lowest level at
zero. The horizontal positions of nodes are chosen just so that as many links as possible in the network can
be seen clearly. (a) Hierarchy of nodes in the ICSU matrix: SDG 12 (sustainable consumption and production)
has most influence on other SDGs, whereas SDGs 1 – 3 are the most influenced by others; (b) Hierarchy of
nodes in the GSDR matrix: SDG 17 (partnerships for the goals) is the most influencing, and SDGs 1, 3 and 8
are the most heavily influenced by the others. Adapted under CC-BY-4.0 from figure 10 in Dawes (2022).

see that consistently SDGs 1 – 3 appear close to the top of the figures, and SDG 12 appears low down. SDG
17 does not appear in Figure 8(a) since it was not included in the ICSU analysis. One surprise in Figure 8(b) is
the relatively high position of SDG 5 (gender equality). This illustrates that the construction of these hierarchies
depends on the robustness of the underlying data; as noted above, SDG 5 is rather sparsely represented in
the literature on which the GSDR review was built. One useful direction for future research would clearly be
to develop measures of the robustness or sensitivity of these hierarchy calculations to missing or suspected
biases in the underlying data.
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5 Summary and discussion

The aim of this chapter has been to introduce a number of concepts in network science and illustrate how
they are able to contribute to the understanding of the study of SDG interlinkages. In particular they illuminate
the challenge of drawing system-level inferences from a set of individual pairwise interactions between the
17 SDGs. Such system-level inferences would similarly be possible if we had started with data at the level
of the 169 individual targets, or, indeed, at the even more granular level of indicator timeseries; the figures
would have been more complicated to interpret but the methodology would apply unchanged. The extent to
which SDG interlinkages reinforce each other, generating co-benefits, illustrates exactly the concept of policy
coherence, with, naturally, some care required in the interpretation of these results depending on whether the
interlinkage data are historic, related to current policy actions, or hypothesised as potentially existing if future
policy actions are carried out.

In the public policy literature a central distinction is made between policy instruments (or tools, or tech-
niques) and policy goals (outcomes). In terms of SDG interlinkages, the policy goals are made much more
explicit than the policy instruments that might influence them; the mechanisms or inputs required to achieve
the SDGs are often, as noted above, only described implicitly. The discussion of the relation between policy
instruments and policy goals stretches back at least to the work of Jan Tinbergen who suggested that in typ-
ical situations, if n independent policy goals were to be achieved, then a set of at least n policy instruments
would in general be required (Tinbergen, 1952; Schaeffer, 2019). But of course, any degree of alignment or
coherence between policy goals might enable a reduction in the number of policy instruments required. A set
of 17 separate policy instruments to achieve the SDGs would seem both awkward and at variance with the
call for policy coherence, yet perhaps policy coherence is in many cases the atypical situation and needs to
be ‘designed in’ to policy rather than being frequently and easily available.

The scope of the SDG agenda is so wide that the pursuit of some minimal number of policy ‘tasks’ that
might generate policy coherence, or at least provide focal points for policy formulation, appears to be advo-
cated by a number of recent proposals such as the Six Transformations proposed by the Sustainable Devel-
opment Solutions Network (SDSN) (Sachs et al, 2019, 2020), or the six ‘entry points’ listed by the Global
Sustainable Development Report 2019 (GSDR, 2019).

Three topics were discussed in this chapter: centrality in section 2, sensitivity in section 3, and hierarchy
in section 4. Each topic was illustrated with results for two example networks; one based on expert review
(the ICSU network, elaborated from the ICSU–ISSC report published in 2015) and the other on a substantial
literature survey (GSDR, 2019). These were presented mainly in order to illustrate the mathematical tools
but it is of interest to note the many similarities in the structure of the two networks built from these different
data sources. It should be noted that the data sources are largely, but not quite fully, independent: one of the
177 assessments used by GSDR (2019) was ICSU-ISSC (2015). The results illustrated the kinds of overall
conclusion that could be drawn about the structure of the interlinkage networks that was less obvious, and
certainly less quantifiable, without carrying out the mathematical analysis set out above.

In section 2 the discussion focussed on ‘eigencentrality’; in the context of directed networks, this corre-
sponds to the idea that the most important nodes are those that receive the largest co-benefits from other
nodes. As long as an interlinkage network does not contain too many negative entries (trade-offs), the in-
terpretation of the eigenvector corresponding to the largest eigenvalue as a centrality score makes sense. It
certainly continues to make sense as a measure of how much progress will be made on each SDG if the inter-
nal network dynamics and co-benefits or trade-offs within the network are left to dominate the dynamics of the
system over time. Eigencentrality in the usual sense corresponds to the right eigenvector of the interlinkage
matrix A. The left eigenvector of A has the dual interpretation: it shows which SDGs contribute the most to
the co-benefits that are received by the SDGs that score highly in terms of eigencentrality (that is, those for
which the corresponding entry in the right eigenvector is largest). For our illustrative examples, figure 3(b)
and 4 reveal that SDGs 1–3 (and for the GSDR network, SDG 8 also) have high eigencentrality scores, and
SDG 12 (and SDGs 6 and 7 for the GSDR network) have high influence scores.

Section 3 considered the robustness of the leading eigenvalue λ1 of an interlinkage matrix (that is, the
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overall rate at which network effects influence progress) to perturbations in the interlinkage network. Two pos-
sible measures of this sensitivity were presented in equations (9) and 12 which describe either the sensitivity
Sm of the growth rate λ1 itself, or the sensitivity Seq of the extent to which the network would result in equal
progress across all SDGs, under perturbation. It turns out that Sm can be written elegantly as a product of
the left and right eigenvectors of λ1, but that Seq is a little more complicated but yields similar results. These
results show that adding interlinkages which allow goals that receive very high co-benefits to feed these back
in and influence goals that received much lower levels of co-benefits are the ones that improve the overall rate
of progress the most. While this is in line with our intuition, we have set out in this chapter a mathematical for-
mulation that quantifies and justifies this statement. For our pair of example networks, we observe in figure 6
and 7 that the largest improvements in growth rates arise when progress on SDGs 1–3 (and SDG 8 for the
GSDR network) are allowed to influence progress on specific other SDGs (including for both networks SDG
12).

The eigencentrality idea is particularly powerful due to its dynamical interpretation via equation (4); for
an interlinkage matrix where there is a large gap between the leading eigenvalue and the remaining ones,
eigencentrality reveals which SDGs will receive increasing shares of the overall co-benefits that are available.
In cases where this gap is much smaller, more careful analysis may be required. There are of course many
important additional caveats such as the need to consider interlinkages whose strength might vary over time,
and the level of direct investment in support of specific SDGs. These issues are discussed further in Dawes
(2022). The discussion in the present chapter is intended to highlight how one might begin to analyse a
complex network of interactions and to move securely between consideration of individual interactions and the
overall system-level consequences.

Finally, in section 4 we summarised another approach to this question of downstream response and up-
stream influence in the network, introducing a measure of hierarchy within the network, and computing the
relative levels of different SDGs within the network (that is, how far upstream or downstream of other SDGs
they are). Despite the differences in methodology, the results of the hierarchy calculations, shown in figure 8,
appear in many examples to be well-correlated with the difference, for each SDG, between their scores v(1) for
receipt of co-benefits and y(1) for generation of influence. This can be mathematically justified through careful
consideration of (14); the solution for the levels h can be well-approximated by the formula

hi ≈ kini − kouti

kini + kouti

≈
v
(1)
i (v(1) · 1)− y

(1)
i (y(1) · 1)

v
(1)
i (v(1) · 1) + y

(1)
i (y(1) · 1)

,

where the last expression on the right hand side is a further approximation in the limit in which the leading
eigenvalue λ1 is much larger than the remaining eigenvalues λ2, . . . , λn in which case the ‘network response’
given by the eigencentrality measures v(1) and y(1) effectively captures the whole network response. Note
that the coefficients in parentheses, for example [v(1) · 1], represent scalar (‘dot’) products of two vectors
and are a convenient way to denote the sum of the entries in (in this example) the vector v(1). The form of
these coefficients is not particularly relevant for this discussion – of more interest is that this expression for
hi essentially looks like the difference v

(1)
i − y

(1)
i . In other words, the ‘trophic levels’ h are closely related

to the (relative) differences between the influences received and the influences exerted, for each node in the
network.

Of the many directions for future research we will touch on a couple of the most obvious and pressing. First,
the degree to which the results are sensitive to biases, missing input data, and the details of the construction
of any interlinkage network are obviously extremely important if the results are to be robust and valuable. In
part, detailed knowledge of the limitations, or indeed the rationale behind any one interlinkage network should
be known and understood at the time of construction, or data collection. The results for that network must then
be interpreted in that light; without that context and background understanding interpretation of the results is
likely always to be misleading. That is one reason to include the second topic, on sensitivity analysis, here.

It is likely that similar approaches can be developed in order to understand the robustness of the hierarchy
calculations presented in section 4 as well. The hierarchy calculations can also be formulated in many different
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ways, for example making different choices for the target spacings gij in equation (13). There are indeed a
number of different ‘natural’ choices for gij , and more generally gij allows the formulation of some kind of
‘prior structure’ that one might wish to impose on the answer, for example pairs of SDGs whose levels should
be more or less closely aligned than other pairs of SDGs due to some structural influence or geographical
restriction. These issues deserve to be the subject of future investigation. One concrete example of a set
of targets that thematically cut across the SDGs are the ‘access-related’ targets listed by Pollitzer (2022b),
see pages 18-19 and 38-39 therein. More prosaically, one could use the gij terms to link together targets
within each goal, to explore how hierarchy results are affected by the potential for unanticipated spill-overs
and co-benefits to exist between targets that lie within the same SDG.

Other centrality measures, building on eigencentrality, might also be useful in order to explore more fully
the connected nature of the network; this motivated the inclusion of the short discussion of Katz centrality in
section 2.4 and the discussion of the related work by Weitz et al (2018) that followed. There is related recent
literature that allows the inclusion of three-way interactions between nodes in a directed network (Arrigo,
Higham & Tudisco, 2020, and references therein); this may be another helpful direction for SDG interlinkage
networks in particular due to the prevalence of ‘nexus’ thinking between, for example, water, energy and food
(Weitz, Nilsson & Davis, 2014; Yillia, 2016; Fader et al, 2018; van Noordwijk et al, 2018; Putra, Pradhan &
Kropp, 2020).

To conclude, while the construction of interlinkage networks is in itself a demanding and complex task,
it appears to be gaining momentum as a way to visualize structure within the set of SDGs; it follows that
appropriate network tools should be used to extract the system-level metrics and conclusions that follow from
the interlinkage network. This second step, while of course inheriting biases present in the network data,
is crucial in understanding in policy terms the emergent features that the interlinkage network represents
and how best they should be addressed. Moreover, network science tools directly offer insights that should
challenge and provoke policy coherence and so lead to better policy development.
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