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Abstract. Heteroclinic networks are invariant sets containing more than one

heteroclinic cycle. Such networks can appear robustly in equivariant vector fields.

Previous authors have demonstrated that trajectories near heteroclinic networks can be

attracted to one of a number of simultaneously ‘stable’ invariant subsets of the network.

None of these invariant sets are asymptotically stable, but do satisfy weaker definitions

of stability. In this paper we discuss the behaviour of trajectories for one specific

symmetric vector field. This vector field contains a robust heteroclinic network and

nearby trajectories display a variety of interesting dynamics. In particular, trajectories

are observed to settle into a pattern of excursions around different parts of the network

that we call ‘cycling cycles’. Cycling patterns displaying different numbers of loops

around the individual component cycles can be stable for the same parameter values,

as can combinations of regular and irregular cycling. Analytic results for the regular

cycling behaviour agree well with numerical simulations. We show that there exist

parameter values where some trajectories display irregular cycling behaviour, in the

sense that the numbers of loops around individual cycles forms a bounded aperiodic

infinite sequence.

AMS classification scheme numbers: 37C29, 37C80

1. Introduction

A heteroclinic orbit γ1 between two equilibria ξ1 and ξ2 of a continuous time dynamical

system ẋ = f(x) is a trajectory φt(y) that is backward asymptotic to ξ1 and forward

asymptotic to ξ2. A heteroclinic cycle is an invariant set X consisting of the union

of a set of equilibria {ξ1, ..., ξn} and orbits {γ1, ..., γn}, where γi is a heteroclinic orbit

between ξi and ξi+1; and ξn+1 ≡ ξ1.

In generic dynamical systems, heteroclinic cycles are of high codimension. However,

if the heteroclinic orbits lie in invariant subspaces, the cycle can be robust to

perturbations of the system that preserve the invariance of these subspaces. This

situation can arise if the dynamical system commutes with a group of symmetries,

as is often the case in models of physical systems, or in models of population dynamics

or game theory, where extinction is a preserved quantity (see the book by Hofbauer and

Sigmund (1988) for examples of this).
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Table 1. Classification of eigenvalues.

eigenvalue class subspace

radial (r) Lj ≡ Pj−1 ∩ Pj

contracting (c) Pj−1 	 Lj

expanding (e) Pj 	 Lj

transverse (t) (Pj−1 + Pj)
⊥

More technically, suppose Γ is a compact Lie group acting linearly on R
n, and

suppose f : R
n → R

n satisfies f(γx) = γf(x) ∀ γ ∈ Γ: we say that f is Γ-equivariant.

For Σ ⊂ Γ a subgroup of Γ, we define the fixed point subspace

Fix Σ = {x ∈ R
n : σx = x ∀σ ∈ Σ}

Definition 1 X is a robust heteroclinic cycle if for each j, 1 ≤ j ≤ n there exists a

fixed point subspace, Pj = Fix Σj where Σj ⊂ Γ and

(i) ξj is a saddle and ξj+1 is a sink in Pj

(ii) there is a heteroclinic connection from ξj to ξj+1 in Pj

(indices are to be taken mod n).

A much studied example of a robust heteroclinic cycle is that of Guckenheimer and

Holmes (1988). Their equations have the symmetry group Z3 n Z
3
2, and are motivated

by the Küppers–Lortz instability in rotating Rayleigh–Bénard convection (Küppers and

Lortz, 1969, Busse and Heikes, 1980). The equations admit a robust heteroclinic cycle

between three symmetry related equilibria. Necessary and sufficient conditions for

the cycle to be asymptotically stable can be given in terms of the eigenvalues of the

linearisation of the flow near the equilibria. Many other examples of robust heteroclinic

cycles, especially those related to physical problems, are given in the review article by

Krupa (1997). Sottorcornola (2003) has given a complete classification of robust cycles

in R
4. Cycles are split into types A, B or C, depending on the symmetry of the fixed

point subspaces Pj (this classification was first done by Chossat et al (1997)).

The stability result of Guckenheimer and Holmes has been generalised to higher

dimensional robust cycles by Krupa and Melbourne (2002). They also generalise the

classification of cycles into higher dimensions. The stability results depend on the

eigenvalues of the linearisation of the vector field f(x) about each equilibrium, which

are classified as lying in certain subspaces as shown in table 1; where P 	L denotes the

orthogonal complement in P of the subspace L. It turns out that the radial eigenvalues

play no part in the stability criteria for any of the three types of cycle. Conditions are

given in Krupa and Melbourne (2002) for asymptotic stability of each type of cycle in

terms of the contracting (c), expanding (e) and transverse (t) eigenvalues.

If a system contains more than one heteroclinic cycle they may be coupled together

to form a heteroclinic network. Ashwin and Field (1999) provide a completely general

definition of a heteroclinic network; in this paper we will only be concerned with flows
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in R
n where each node in the network is an equilibrium of the flow (rather than e.g. a

periodic orbit, a chaotic set or, indeed, another heteroclinic cycle). For our purposes,

the following definition is sufficient:

Definition 2 An invariant set N consisting of equilibria {ξ1, ..., ξn} and heteroclinic

orbits {γ1, ..., γm} is a (depth 1) heteroclinic network if

(i) (compatibility) if x ∈ γi then α(x) = ξj and ω(x) = ξk for some ξj, ξk ∈ N .

(ii) (transitivity) for all ξi and ξj we can find a sequence of orbits {γm1
, ..., γml

} and

equilibria {ξn1
, ..., ξnl+1

} such that ξn1
= ξi and ξnl+1

= ξj and if x ∈ γmk
then

α(x) = ξnk
and ω(x) = ξnk+1

.

where α(x) and ω(x) are the usual limit sets.

This means that if we draw the network as a directed graph between equilibria, then a

path exists between any two equilibria in the network.

Within a heteroclinic network there may exist many heteroclinic cycles. A sub-

cycle X ⊂ N is an invariant set satisfying definition 1. It is clear that unless the

network has only one cycle (i.e it is itself a heteroclinic cycle) then none of the sub-

cycles can be asymptotically stable. This is because each sub-cycle must contain at

least one equilibrium with a two-dimensional unstable manifold, (by the transitivity

property (ii) in definition 2) so there will be points near the cycle which are contained

in a heteroclinic orbit to an equilibrium not contained in the cycle. However, sub-cycles

can still be strongly attracting, in the following sense.

Definition 3 (adapted from Melbourne (1991)) An invariant set X is essentially

asymptotically stable (e.a.s.) if there exists a set A such that given any real number

a ∈ (0, 1), and any neighbourhood U of X, there is an open neighbourhood V ⊂ U of X

such that:

(i) All trajectories starting in V \ A remain in U ,

(ii) All trajectories starting in V \ A are asymptotic to X,

(iii) µ(V \ A)/µ(V) > a, where µ is Lebesgue measure.

If only (ii) and (iii) are satisfied, we say that X is essentially quasi-asymptotically

stable (e.q.a.s.).

If condition (iii) is relaxed to µ(V \ A) > 0 then the set X is a Milnor attractor

(Milnor (1985)); any set which is e.a.s. is also a Milnor attractor. Melbourne (1991)

describes an example of an e.a.s. heteroclinic cycle which is not part of a network, but,

having positive transverse eigenvalues, cannot be asymptotically stable.

A simple example of a heteroclinic network with two sub-cycles was studied by Kirk

and Silber (1994) (and also by Brannath (1994), who also considered other possible

networks in R
4). They found that it was not possible for both sub-cycles to be

simultaneously e.a.s., however they could both be attracting in some sense, and the

network considered as a whole could be e.a.s.. They also found that if one sub-cycle
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is unstable, then ‘switching’ between the sub-cycles could occur. That is, a trajectory

starting close to the network may make a number of excursions near to one of the

cycles, and then switch to cycling near the other. In their example, with only two sub-

cycles, the switching could only occur in one direction and there were no points in a

neighbourhood of the cycle with ω-limit sets equal to the entire network.

Ashwin and Field (1999) considered a heteroclinic network in R
9 with symmetry

Z
9
2 o (Z3 ×Z3) ≡ (Z3 ×Z3) oZ2, where o denotes the wreath product. Essentially this is

three Guckenheimer–Holmes cycles coupled together in a ring. They find that a variety

of types of network may exist and develop a general method of creating networks of

arbitrary depth by forming ‘nested’ wreath products. Ashwin and Field concentrate on

the intrinsic network structure, rather than a description of the dynamics of trajectories

near the network.

In this paper we consider a network constructed from a pair of Guckenheimer–

Holmes cycles, coupled in a different way. We find that switching can occur between

sub-cycles as in the Kirk and Silber case, but in our example this switching can happen

in a cyclical manner.

This paper is organised as follows. In section 2 we define the symmetries and

the specific o.d.e.s for the example system we consider and show that it contains a

robust heteroclinic network. We describe the sub-cycles contained within the network

and discuss their stability. In section 3 we describe the ‘cycling cycles’ trajectories

and discuss the analytic methods used to determine the stability of the regular cycling

trajectories. We also explain our numerical methods. In section 4 we show numerical

results for irregular cycling and state and prove two lemmas to show that for particular

parameter values there will be initial conditions for which the trajectory must display

this aperiodic yet bounded (in a certain sense) behaviour. Section 5 concludes.

2. Structure and basic properties

2.1. System definition

In this section we describe the symmetries of the system of o.d.e.s, under consideration.

We show that it contains a robust heteroclinic network and describe the stability of

some of its sub-cycles.

The phase space we work in is R
6 = R

3 ⊕ R
3, denoting points as (x, y) where

x = (x1, x2, x3) and y = (y1, y2, y3). We refer to the subspace {y ≡ 0} as the x-

subspace and {x ≡ 0} as the y-subspace. We consider a set of equations that are

equivariant under the group generated by the symmetry elements:

κx(x, y) = (κx, y)

κy(x, y) = (x, κy)

ρ(x, y) = (σx, σy)

where κ(x, y, z) = (−x, y, z) and σ(x, y, z) = (y, z, x). These group elements give a

reducible action of Z3 n Z
6
2 on R

3 ⊕ R
3.
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The most general equivariant o.d.e.s, truncated at third order, are:

ẋ1 = x1(µ + a1x
2
1 + a2x

2
2 + a3x

2
3 + b1y

2
1 + b2y

2
2 + b3y

2
3)

ẋ2 = x2(µ + a1x
2
2 + a2x

2
3 + a3x

2
1 + b1y

2
2 + b2y

2
3 + b3y

2
1)

ẋ3 = x3(µ + a1x
2
3 + a2x

2
1 + a3x

2
2 + b1y

2
3 + b2y

2
1 + b3y

2
2)

ẏ1 = y1(µ̂ + â1y
2
1 + â2y

2
2 + â3y

2
3 + c1x

2
1 + c2x

2
2 + c3x

2
3)

ẏ2 = y2(µ̂ + â1y
2
2 + â2y

2
3 + â3y

2
1 + c1x

2
2 + c2x

2
3 + c3x

2
1)

ẏ3 = y3(µ̂ + â1y
2
3 + â2y

2
1 + â3y

2
2 + c1x

2
3 + c2x

2
1 + c3x

2
2)

(1)

In addition we demand that both the x- and y-subspaces contain identical

Guckenheimer–Holmes cycles which are asymptotically stable within these subspaces,

implying that âi = ai and µ̂ = µ. This restriction arises in a group-theoretic way when a

steady-state bifurcation problem on a rotating hexagonal superlattice is considered. The

normal form for this bifurcation (truncated at third order) is exactly that given above

within the subspace where the mode amplitudes are real. The additional restriction

arises as a hidden symmetry of the superlattice bifurcation problem.

We refer to these two Guckenheimer–Holmes cycles as the xxx and yyy cycles

respectively. For asymptotic stability, we require c > e > 0 where

c = µ (−1 + a3/a1) e = µ (1 − a2/a1)

By rescaling variables in (1), we can fix µ = 1, and a1 = −1.

Clearly any co-ordinate hyperplane is invariant under the flow. There are two

types of axial equilibria (i.e. equilibria with maximal isotropy): those lying on the co-

ordinate axes, and those with e.g., x1 = x2 = x3, y = 0. We will not discuss equilibria

of this second kind in what follows. We label those equilibria on the xi co-ordinate

axes as ξi, and those on the yi co-ordinate axes as ηi. The isotropy subgroup of ξ1 is

Σξ1 = 〈ρ2κxρ, ρκxρ
2, κy, ρ

2κyρ, ρκyρ
2〉.

If all the coefficients bj, cj are less than −1, then the Guckenheimer–Holmes cycles

are decoupled; that is, they are both asymptotically stable and there are no heteroclinic

connections between equilibria contained in different cycles. Now consider increasing

b2 through −1, examining the dynamics in the x1 − y2 co-ordinate plane (figure 1).

The unstable ‘mixed-mode’ equilibrium in the x1 − y2 plane disappears in a pitchfork

bifurcation at b2 = −1, and a heteroclinic orbit from η2 to ξ1 is created. By symmetry,

heteroclinic orbits are also formed between η3 and ξ2, and η1 and ξ3. This, in itself,

is not enough to create a heteroclinic network, as there are no orbits connecting any

of the ξi equilibria to one of the ηj equilibria and so the transitivity condition is not

satisfied. However, if we also increase c2 through −1 we can form additional orbits

ξ1 → η3, ξ2 → η1 and ξ3 → η2. This creates the simplest possible heteroclinic network

that can be formed by coupling two Guckenheimer–Holmes cycles in this way. (Note

that if additionally, b1 > −1, we have a more complicated network, with a larger number

of connections between the ξi and ηj, but we do not consider this case here.) We then
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y 2

x 1

y 2

x 1

Figure 1. The left hand picture shows the x1 − y2 plane when b2 < −1, and the right

hand picture when b2 > −1. The ‘mixed-mode’ equilibrium disappears in a pitchfork

bifurcation, creating a heteroclinic connection.
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Figure 2. The figure shows a schematic illustration of the heteroclinic connections

forming the network. The eigenvalues at each equilibria are labelled as expanding (e),

contracting (c) or transverse (si, ti) according to the classification in table 1 applied

to the Guckenheimer–Holmes cycles ξ1 → ξ3 → ξ2 and η1 → η3 → η2 .

rewrite the o.d.e.s (1) as:

ẋ1 = x1(1 − X2 + ex2
2 − cx2

3 − s3y
2
1 + s2y

2
2 − s1y

2
3)

ẋ2 = x2(1 − X2 + ex2
3 − cx2

1 − s3y
2
2 + s2y

2
3 − s1y

2
1)

ẋ3 = x3(1 − X2 + ex2
1 − cx2

2 − s3y
2
3 + s2y

2
1 − s1y

2
2)

ẏ1 = y1(1 − X2 + ey2
2 − cy2

3 − t1x
2
1 + t3x

2
2 − t2x

2
3)

ẏ2 = y2(1 − X2 + ey2
3 − cy2

1 − t1x
2
2 + t3x

2
3 − t2x

2
1)

ẏ3 = y3(1 − X2 + ey2
1 − cy2

2 − t1x
2
3 + t3x

2
1 − t2x

2
2)

(2)

where X2 =
∑3

i=1(x
2
i + y2

i ). The network described above exists when si, ti > 0, for all

1 ≤ i ≤ 3. The directed graph of equilibria and the heteroclinic connections between

them is shown schematically in figure 2.
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This heteroclinic network comprises many new sub-cycles, all having 3n equilibria.

As noted previously, none of these cycles can be asymptotically stable. In the next

section, we look in detail at two new types of 3-cycle (cycles containing three equilibria)

and discuss their stability.

2.2. Sub-cycles in the network

The simplest new sub-cycles in the heteroclinic network are 3-cycles between two ξ

equilibria and one η equilibrium (or vice-versa, by symmetry). We refer to these as

xxy- and yyx-cycles respectively. There are three symmetrically related copies of each

type of cycle within the network. Another cycle we will encounter later is the 6-cycle

between all six equilibria; this sub-cycle contains all three heteroclinic orbits ξi → ηi−1

and all three ηi → ξi−1.

Any four-dimensional subspace of the form xi = yi−1 = 0 (i − 1 taken mod 3)

contains one xxy-cycle and one yyx-cycle. This reduced system is structurally equivalent

to that considered by Kirk and Silber (1994), although in the present system we have

introduced several additional restrictions on the eigenvalues at different equilibria.

The stability properties of these 3-cycles could be investigated using the standard

‘small-box’ and Poincaré map method, as is done by Kirk and Silber (1994).

An alternative method for computing necessary conditions for stability, which we

demonstrate gives the same results, is to consider the length of time T1 spent in

the neighbourhood of a given equilibrium, and the length of time T ′
1 spent near this

equilibrium (or a symmetrically related one) after one excursion around the cycle. A

necessary condition for the heteroclinic cycle to be stable is T ′
1/T1 > 1. This is not

sufficient to assert stability in any sense since it tells us nothing about the size of the

basin of attraction of the sub-cycle. From the overall structure of the network we can

discuss whether a given sub-cycle is asymptotically stable, e.a.s. or is only a Milnor

attractor.

2.3. Necessary conditions for stability for heteroclinic cycles

In this section we illustrate the preceding statements about computation of necessary

stability conditions by re-deriving conditions for two variants of the standard

Guckenheimer–Holmes cycle.

We start by considering a Z
3
2-equivariant vector field in R

3 that has all co-ordinate

hyperplanes invariant. We consider such a vector field with a robust heteroclinic cycle,

(similar to the Guckenheimer–Holmes cycle, but without the Z3 permutation symmetry)

as shown in figure 3. Label the equilibrium on the xi axis ξi, as before.

Consider a trajectory starting near ξ3 that spends a time T3 in a small

neighbourhood of ξ3, a time T2 near ξ2, a time T1 near ξ1, and then on returning

to ξ3 spends a time T ′
3 near it the second time. The x1 component decays at a rate c3

whilst the trajectory is near ξ3, and whilst near ξ2 it grows at a rate e2. We ignore the
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e1
c1

e3c3

e 2

c2

x2

x3

x1

Figure 3. A Z
3
2-equivariant vector field with a robust heteroclinic cycle in R

3.

Expanding and contracting eigenvalues at the equilibria are shown.

parts of the trajectory not near the equilibria, as the trajectory spends very little time

there.

Suppose the trajectory enters a neighbourhood of ξ3 and leaves a neighbourhood

of ξ2 when x1 = h � 1. Then,

he−c3T3+e2T2 = h

⇒ T2 =
c3

e2

T3

similarly we find

T1 =
c2

e1
T2, T ′

3 =
c1

e3
T1, ⇒

T ′
3

T3
=

c1c2c3

e1e2e3

and since there are no transverse directions, the cycle is asymptotically stable if
∏3

i=1 ci >
∏3

i=1 ei, which is the condition given by Krupa and Melbourne (1995) for

such a cycle.

Now, assuming that this condition holds, consider perturbations in a direction

transverse to the cycle. That is, embed the cycle in R
4, so that at each equilibrium

ξi there is now an additional eigenvalue ti in the (transverse) x4 direction. Suppose a

trajectory has initial condition x4 = h � 1, and so in a neighbourhood of ξi, x4 ∼ etiT .

Again we ignore the parts of the trajectory away from the equilibria. In fact, we consider

three such trajectories, one starting near each of the ξi equilibria, and compare the

magnitude of the x4 co-ordinate after each trajectory has completed one full cycle. For

the trajectory starting near the equilibrium ξi, we find x4 = heνiTi , where

ν1 = t1 + t3
c1

e3
+ t2

c1c3

e2e3

ν2 = t2 + t1
c2

e1

+ t3
c1c2

e1e3

ν3 = t3 + t2
c3

e2
+ t1

c2c3

e1e2

For the cycle to be stable in any sense we require the x4 co-ordinate to decay; hence

we require νi < 0 for all i. These conditions are the same as those derived by Kirk and



Regular and irregular cycling near a heteroclinic network 9

500 1000 1500 2000 2500 3000 3500 4000
t

-1000
-800
-600
-400
-200

0

lo
g 

x4
Figure 4. The logarithm of a component x4 transverse to a 3-cycle, plotted against

time. Although the minimum value over each full cycle decreases, the maximum value

over a cycle increases; eventually x4 is no longer small and so the 3-cycle is unstable.

Silber (1994) for each of their 3-cycles. Asymptotic stability requires all ti < 0. Three

conditions are required because there is no symmetry and the behaviour of trajectories

near heteroclinic cycles is not ergodic, meaning that long-time averages cannot be taken.

An example of a time series from such a trajectory is shown in figure 4. Notice that

although the minimum value of log x4 over each cycle decreases, the maximum value

increases, so if we were to take an ‘average’ of the change in x4 over one cycle, the result

would depend on where we started our average.

If t1 > 0 then the cycle cannot be asymptotically stable. It could, however, be

essentially asymptotically stable, depending on the shape of the domains of attraction

local to each equilibrium. The shapes of these domains can be calculated using the

standard box and map method, as done by Kirk and Silber (1994).

Clearly, it is possible to do similar, albeit more complicated, calculations for cycles

between four, or more, equilibria, and hence reproduce the results given in Krupa and

Melbourne (2002).

2.4. Stability of xxy- and yyx-cycles

We now apply the method of the previous section to the xxy- and yyx-cycles within

the heteroclinic network to see in what sense either or both types of sub-cycle can be

stable. Since it is the behaviour of perturbations in directions transverse to a sub-cycle

that gives rise to the different kinds of stability, we assume that both cycles are stable

within the 3-dimensional subspaces in which they lie. This subspace stability condition

is the same for both cycles, namely δ? > 1 where

δ? =
cs1t2
es2t3

(3)

Since both types of sub-cycle (xxy and yyx) have three transverse directions, there

will be a total of nine conditions involved in determining the stability of each type of

cycle: three conditions for each transverse direction. For simplicity, we first concentrate

on the yyx-cycle η3 − η2 − ξ1. The transverse directions at each of the equilibria are x2,

y1 and x3. Straightforward calculations using the methods of the previous section give

the nine conditions:

α1, α2, α3 > 0 β1, β2, β3 > 0 γ1, γ2, γ3 > 0 (4)
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where

α1 =
c

t3
−

s2

e
δ̂x +

s3

s2
δ̂xδ3 β1 = −

e

t3
+

s3

e
δ̂x +

s1

s2
δ̂xδ3 γ1 =

t1
t3

+
c

e
δ̂x −

e

s2
δ̂xδ3

α2 =
s3

s2

+
c

t3
δ2 −

s2

e
δ2δ̂x β2 =

s1

s2

−
e

t3
δ2 +

s3

e
δ2δ̂x γ2 = −

e

s2

+
t1
t3

δ2 +
c

e
δ2δ̂x

α3 = −
s2

e
+

s3

s2

δ3 +
c

t3
δ2δ3 β3 =

s3

e
+

s1

s2

δ3 −
e

t3
δ2δ3 γ3 =

c

e
−

e

s2

δ3 +
t1
t3

δ2δ3

with

δ̂x =
t2
t3

δ2 =
c

s2
δ3 =

s1

e

where the αi control the growth of the x2 component, the βi control the growth of the

x3 component, and the γi control the y1 component. Simple algebraic manipulations

(detailed in Appendix A) show that

α2 > 0 ⇒ α1, α3 > 0

β3 > 0 ⇒ β1, β2 > 0

γ1 > 0 ⇒ γ2, γ3 > 0

and so, of the nine conditions, these three are in fact sufficient. This is an artifact of

there being only one positive transverse eigenvalue at each equilibrium. If any of the nine

conditions are broken, the cycle will be unstable to perturbations in the corresponding

transverse direction, and hence the basin of attraction of the cycle will have measure

zero.

Similar conditions can be derived for the xxy-cycle; the details of these can be

found in Appendix A.

It is possible to find parameters such that all the conditions (4) are satisfied and also

all the corresponding ones for the xxy-cycle; hence for this combination of parameters,

both cycles can be simultaneously attracting. However, neither type of cycle can ever

be e.a.s.. To see this, consider for example the yyx-cycle η3 − η2 − ξ1. For a trajectory

to be attracted to this cycle we require that it leaves the neighbourhood of η3 in the

y2 direction rather than in the x2 direction. By considering the travel times from the

plane x1 = h to the planes y2 = h and x2 = h we find that a trajectory starting at a

point x1 = h, y2 = ỹ2, x2 = x̃2 follows the cycle if ỹ2 > h1x̃
s2/e
2 for some constant h1.

Similarly, trajectories starting from x2 = h, x1 = x̃1, y1 = ỹ1 near η2 remain close to

the cycle if x̃1 > h2ỹ
e/s2

1 for some constant h2. Ignoring the ‘resonant’ case s2 = e it

is clear that one of these domains of attraction is cusp-shaped and so has smaller and

smaller measure relative to that of neighbourhoods of the connecting orbit. Hence the

cycle cannot be e.a.s.. We find that the ‘best’ we can do in terms of stability is that

each cycle attracts an ‘essentially full’ neighbourhood of points near two out of the three

connecting orbits in the cycle. The network as a whole can be e.a.s., as essentially full

neighbourhoods of all connections, (and so, of the entire network) are attracted to some

cycle, which is a subset of the network. In this case, points in such a neighbourhood

will have an ω-limit set equal to one heteroclinic sub-cycle, and not the whole network.
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More interesting behaviour occurs when one or more of the cycles is unstable in a

transverse direction. We will describe these phenomena in the next sections.

2.5. Essentially quasi-asymptotically stable cycles

As noted above, neither the xxy- or yyx-cycle can be e.a.s.. However, if one type of

cycle is unstable in one or more transverse directions that the stability of the other type

of cycle can be enhanced, and the cycle can be essentially quasi-asymptotically stable.

(This phenomenon was noted by Kirk and Silber (1994), and they called it ‘e.a.s. in

spirit’.)

We give an example to demonstrate this. We find parameter values so that the

yyx-cycle η3 − η2 − ξ1 is unstable in the x2 direction, and the xxy-cycles are stable in

all transverse directions. Moreover, we can find parameter values so that essentially

all initial conditions near the connections η3 → ξ2 and ξ2 → ξ1 are asymptotic to the

ξ2 − ξ1 − η3 cycle. ‘Essentially all’ trajectories near the ξ1 → η3 connection will initially

move around the η3 − η2 − ξ1 cycle, but, since perturbations to this cycle in the x2

direction will grow, the trajectory will eventually switch onto the ξ2 − ξ1 − η3 cycle. As

a result, the ξ2 − ξ1 − η3 cycle is essentially quasi-asymptotically stable.

3. Cycling cycles: regular cycling

We now focus in detail on a particular kind of behaviour that can occur when both

the xxy- and yyx-cycles are unstable in exactly one transverse direction. Transverse

instability implies that nearby trajectories cannot be asymptotically attracted to just

one sub-cycle, but always eventually switch onto the next cycle in the sequence. We

will focus on the case

α2, β̃1 < 0 β3, γ1, α̃3, γ̃2 > 0

This means the η3−η2−ξ1 cycle is unstable in only the x2 direction, and the ξ2−ξ1−η3

cycle is unstable in only the y1 direction. Figures 5 and 6 show numerical data and a

schematic illustration of such a trajectory. We can see the cycle switching from the

ξ2 − ξ1 − η3 cycle to the η1 − η3 − ξ2 cycle and then to the ξ3 − ξ2 − η1 cycle.

To simplify the analysis in this section we introduce an extra symmetry element γ

which acts on R
6 as follows:

γ(x, y) = (σ2
y, σ2

x)

so γ2(x, y) = ρ(x, y). The symmetry group now acting (irreducibly) on R
6 is Z6 n Z

6
2.

Symmetry forces s1 = t2, s2 = t3 and s3 = t1, implying that α2 = β̃1. The network now

contains six symmetric copies of the xxy-cycle because the xxy- and yyx-cycles are now

symmetry related.

We are particularly interested in describing the number of loops that trajectories

make around each sub-cycle; for some parameter values this is constant, and we call

the resulting behaviour ‘regular cycling’. In section 4 we describe ‘irregular cycling’
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Figure 5. Numerical data from integration of equations (2), showing cycling cycles.

The cycles are visited in the order ξ2 − ξ1 − η3, η1 − η3 − ξ2, ξ3 − ξ2 − η1, see also

figure 6. Parameter values are c = 1, e = 0.5, s1 = 1.4, s2 = 1.6, s3 = 1.1, t1 = 0.9,

t2 = 0.7, t3 = 0.9, implying α2 = −0.17 and β̃1 = −0.056.

2η ξ1

η1

ξ3 ξ2

3η

Figure 6. Schematic diagram of a cycling cycles trajectory when α2, β̃1 < 0; compare

with figure 5.
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behaviour that also exists. First we briefly discuss a couple of points that help improve

the speed of our numerical integrations over these extremely long integration times

without losing accuracy.

3.1. Numerical methods

O.d.e.s are in general fairly simple to solve numerically, and we give a brief description

here of the methods used and a few alterations made to a standard o.d.e. solver to

increase the efficiency of integration for our particular system. In all the numerical

simulations we have set c = 1 and e = 0.5.

The basis of the code is a standard 4th order Runge-Kutta (RK4) integrator. The

trajectories we are interested in are those lying close to the heteroclinic connections, and

points on these trajectories will routinely have components which become very small,

as the trajectory approaches the invariant co-ordinate planes in which the connections

lie. To minimise the errors which occur when computing small quantities, we apply the

transformation Xi = log(xi), Yi = log(yi) to (2), and integrate the equations in the form

Ẋ1 = (1 − X2 + e exp 2X2 − c exp 2X3 − s3 exp 2Y1 + s2 exp 2Y2 − s1 exp 2Y3)

etc. These equations are valid in the interior of R
6
+, which is invariant under the flow,

and we restrict our attention to this region. To prevent floating underflow errors, we

approximate exp(X) by 0 when X < −300; the error incurred here is extremely small.

The second alteration we make is applied when the trajectory is in the

neighbourhood of an equilibrium. Here the flow can be very well approximated by

its linearisation about the equilibrium and hence can be integrated analytically. This is

implemented by the following algorithm:

• Count the number of (log) co-ordinates with value less than −H, for some fixed

threshold (box size) e−H � 1.

• If this equals five, check that the sixth co-ordinate is close to 1; this identifies which

equilibrium the trajectory is near.

• Using the linearised flow around the equilibrium, calculate the time until one of the

(log) co-ordinates has increased to be equal to −H.

• Calculate the value of all the co-ordinates at this future time using the linearised

flow.

• Continue with standard RK4 away from the equilibrium, until five co-ordinates are

again less than −H.

The times spent near successive equilibria will increase approximately geometrically

in any stable heteroclinic cycle or network, and so this method massively reduces the

computational time required.

The code has been checked against a standard RK4 routine for the original

equations; they agree to approximately 8 significant figures. In further numerical checks,

the time-step in the RK4 part of the code has been varied from dt = 0.001 to 0.01, and
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the box size eH has been varied from e−1000 to e−50. Values of dt = 0.005 and H = −100

were chosen for the results presented here.

3.2. Analytic calculations

Many numerical simulations show the trajectory quickly settling to a state in which it

performs a constant number of loops n around each sub-cycle. In this section we shall

look at this phenomenon analytically. Note that the case n = 0 corresponds to the

6-cycle mentioned in section 2.2.

For a fixed n, we derive a recurrence relation for the ratio ri = Ti/Ti−1 where Ti

is the length of time spent near the ith cycle. When the number of loops becomes

constant, numerical simulations indicate that ri also converges to a constant value. The

order in which the sub-cycles are visited is unique, as for each sub-cycle there is only one

unstable transverse direction. For cycling trajectories we calculate the growth or decay

of individual co-ordinates in terms of the times spent near each equilibrium. This allows

us to produce an expression for Ti in terms of Ti−1, ..., Ti−4 and hence find a recurrence

relation for the ri.

Consider a trajectory starting near η3, that initially loops n0 times around the

η3 − ξ2 − ξ1 cycle. The growth or decay of the x1 co-ordinate of the trajectory over four

subsequent sub-cycles is shown in table 2, where T0, ..., T4 are unknowns and

∆n =
δ?n − 1

δ? − 1
, ν =

s1

e

(

1 +
s1

s2
+

cs1

s2
2

)

(5)

and δ? is defined in (3); recall that t1 = s3, t2 = s1 and t3 = s2.

We assume that the magnitude of the x1 component is the same when the trajectory

last enters the neighbourhood of η3 on the ξ2−ξ1−η3 cycle (that is, the first equilibrium

which is visited after the last visit to ξ1) and when it leaves a neighbourhood of the last

equilibrium before it returns to ξ1 (η2 in the ξ1 − ξ3 − η2 cycle, having just switched

from the η2 − η1 − ξ3 cycle), i.e. exactly as in the ‘small box’ approach. This implies

that the overall growth factor for x1 must be unity, i.e. the sum of all the terms in the

right hand column of table 2 must be zero:

s2T4 = (s1α3∆n3
+ c)T3 + (s1γ3∆n2

+ s3)T2 + (s1β3∆n1
− e)T1 + s1δ

?n0T0

Since the sub-cycles are symmetrically related we continue in this manner and find

inductively that

Ti = A1(ni−1)Ti−1 + A2(ni−2)Ti−2 + A3(ni−3)Ti−3 + A4(ni−4)Ti−4 (6)

where

A1(n) =
s1

s2
α3∆n +

c

s2

A2(n) =
s1

s2
γ3∆n +

s3

s2

A3(n) =
s1

s2
β3∆n −

e

s2

A4(n) =
s1

s2

δ?n

(7)
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Table 2. This table shows the time spent near equilibria for cycling trajectories and

the corresponding growth and decay of the x1 co-ordinate. Recall that δ? = cs2

1
/es2

2
.

cycle equilibrium time growth or decay factor of x1

η3 T0

ξ2

ξ1

η3















n0 times

s1

e
T0

s2

1

es2

T0

δ?T0















∆n0
νT00

−s1δ
?n0T0

ξ2 T1 eT1

η1

η3

ξ2















n1 times

s1

e
T1

s2

1

es2

T1

δ?T1















∆n1
νT1

−s3
s1T1

e

−s1

s2

1
T1

es2

eδ?T1















−s1β3∆n1
T11

η1 T2 −s3T2

ξ3

ξ2

η1















n2 times

s1

e
T2

s2

1

es2

T2

δ?T2















∆n2
νT2

−c s1T2

e

s2

s2

1
T2

es2

−s3δ
?T2















−s1γ3∆n2
T22

ξ3 T3 −cT3

η2

η1

ξ3















n3 times

s1

e
T3

s2

1

es2

T3

δ?T3















∆n3
νT3

s2
s1T3

e

−s3

s2

1
T3

es2

−cδ?T3















−s1α3∆n3
T33

4 η2 T4 s2T4

and ∆n is defined in (5). Note that A4 is always positive, as is A2, since γ1 > 0

(assumed at the beginning of section 3) implies γ3 > 0, using results from Appendix A.

A3 is positive for sufficiently large n since we are assuming β3 > 0. The sign of A1 for

large n is equal to the sign of α3 and we have so far made no assumptions about this.

We define the length of time spent on each cycle to be Ti = Ti(∆ni
ν + 1), so the Ti

also satisfy the linear recurrence relation (6). In general we have no further information

about the sequence {ni} and it is not clear how to proceed. As a first step we consider

the constant n case, setting ni = n for all i. With this simplification, we consider

solutions of the recurrence relation (6) in the next section.

3.2.1. Analysis of the recurrence relation In the case ni = n for all i, equation (6) has

a general solution of the form

Ti = a1ρ
i
1 + a2ρ

i
2 + a3ρ

i
3 + a4ρ

i
4

where a1, ..., a4 are constants and ρ1, ..., ρ4 are the solutions of

ρ4 − A1ρ
3 − A2ρ

2 − A3ρ − A4 = 0 (8)



Regular and irregular cycling near a heteroclinic network 16

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  10  20  30  40  50  60

lo
g 

|λ
|

n

Figure 7. The graph shows log |λ| for the three Floquet multipliers λ of the positive

fixed point of the map (9) against n, for the parameters s1 = 1.0, s2 = 1.25, s3 = 0.8.

Here α3 > 0, and all fixed points are stable.

Assume that ρ1 is the root of (8) with magnitude strictly greater than ρ2, ..., ρ4, then
∣

∣

∣

Ti−a1ρi
1

a1ρi
1

∣

∣

∣
→ 0 as i → ∞. Hence ri ≡

Ti

Ti−1
→ ρ1 as i → ∞ and the only stable fixed point

of the related recurrence relation for ri

ri = A1(n) +
A2(n)

ri−1
+

A3(n)

ri−1ri−2
+

A4(n)

ri−1ri−2ri−3
(9)

is ri = ρ1; all other fixed points of this recurrence relation will be unstable. In

consequence, if ρ1 < 1 then the positive, and therefore relevant, solutions for ri will

be unstable.

When n becomes large, the coefficients A1, ..., A4 all scale as δ?n. In the limit of

large n, it is clear to see that there is one root of (8) where ρ ∼ A1(n) and three more

where ρ ∼ 1. If A1(n) > 0 then the root ρ ∼ A1(n) is both stable, since it is the root

with the largest magnitude, and meaningful in the context of r > 0 being a ratio of

cycle times. If A1(n) < 0 for large n, then the root ρ ∼ A1(n) has no proper meaning

in this context and, moreover, its stability guarantees that any other positive root will

be unstable as a fixed point of (9).

From (7), for large n the sign of A1 is equal to the sign of α3. If α3 > 0, we expect

that stable regular cycling cycles trajectories are possible for all sufficiently large n. If,

on the other hand, α3 < 0, then we would expect only a limited number of stable cycling

cycle trajectories to be possible, all for small n (it is this case which causes the irregular

cycling which we will consider in section 4).

For a particular set of parameter values, we can locate the fixed points of (9) and

compute their stability for any n. Figures 7 and 8 show log |λj| against n, where the

λj are the Floquet multipliers of the positive fixed point of (9). Figure 7 illustrates the

case α3 > 0, and all fixed points are stable. In figure 8 we have α3 < 0, and there are

stable fixed points for 0 ≤ n ≤ 7, but all large n fixed points are unstable. This suggests

that we should be able to find initial conditions for trajectories which undergo regular
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Figure 8. The graphs show log |λ| for the three Floquet multipliers λ of the positive

fixed point of the map (9) against n, for parameter values s1 = 1.0, s2 = 1.3, s3 = 0.8.

The right hand graph is a close up of the graph for 0 ≤ n ≤ 15. If any of the three

plotted points are positive, the fixed point is unstable. This example has α3 < 0, so

all large n fixed points are unstable.

Table 3. Comparison of limiting ratios of time spent on consecutive cycles for

various n, computed analytically and from numerical integration. Parameter values

are s1 = 1.0, s2 = 1.3, s3 = 0.8, as for figure 8.

n 0 2 4 5

Analytic result, (9) 1.336540953711 2.66521546892 3.5205959481 3.9102073410

Numerical integration 1.336540953725 2.66521546933 3.5205959475 3.910207

cycling with n loops around each sub-cycle, only for n in the range 0 ≤ n ≤ 7. We do

not, however, know the sizes of the basins of attraction for different n.

3.3. Numerical results and comparison with analytic results

For the parameter values s1 = 1.0, s2 = 1.3, s3 = 0.8, we were able to find initial

conditions for regular cycling cycles trajectories with n equal to 0, 2, 4 and 5. Table 3

shows the ratios as computed analytically and the limit found by numerical computation.

The agreement is excellent. For these particular values, convergence to the final n

occurred very rapidly, within 10 cycles at most. However, this is not always the case, and

for some initial conditions we observe irregular transients: figure 9 shows the number of

loops around each sub-cycle for three different initial conditions for the slightly different

parameters s1 = 1.1, s2 = 1.5, s3 = 0.8, and the corresponding Floquet multipliers for

each n; we see that n = 0, 1, 2 are stable whilst all n > 2 are unstable. Two of the three

trajectories shown eventually converge to n = 2; the third does not settle down in the

length of time the integration could be carried out for; this was approximately t = 1039.
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Figure 9. The left hand graph shows the number of loops around sub-cycles, for three

trajectories with very similar initial conditions. Two of the trajectories eventually

converge on n = 2, but the third does not.log |λ| for the three Floquet multipliers λ of

the positive fixed point of the map (9) are shown in the right hand graph. Notice that

for n ≥ 3 the fixed point is unstable. Parameter values are s1 = 1.1, s2 = 1.5, s3 = 0.8.

Figure 10. The graph shows the number of loops around a sub-cycle versus the

number of the sub-cycle in the sequence, for three trajectories with very similar initial

conditions, and a fourth with different initial conditions, such that the number of loops

around the first cycle is large. Parameter values are s1 = 1.0, s2 = 1.4, s3 = 0.8. Note

that the lines on the graph are only for clarity, and it is the points at each cycle number

which are important.
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Figure 11. For the parameters s1 = 1.0, s2 = 1.4, s3 = 0.8, this graph shows the

logarithm of the Floquet multipliers against n, for the map (9). Again, α3 < 0, so for

all large n the fixed point is unstable.

4. Irregular cycling

As hinted at earlier, numerical integrations have indicated the possibility of trajectories

displaying sustained irregular cycling behaviour, that is, the number of loops around

each sub-cycle does not settle down to a constant value but behaves in an irregular way.

Figure 10 shows an example of this for four trajectories with s1 = 1.0, s2 = 1.4, s3 = 0.8.

Notice how the number of loops seems to be ‘trapped’ in a band between roughly n = 35

and n = 45. The initial conditions for three of the trajectories were very close together.

The Floquet multipliers for the positive fixed point of the map (9) for these

parameter values are shown in figure 11. Since α3 < 0, the fixed points for the range

of n covered by the irregular cycling are all unstable. However, there are stable fixed

points for n = 0, 1, 2, 3, and initial conditions for several trajectories undergoing regular

cycling with these values of n have been found numerically. For these parameter values

stable regular and irregular cycling coexist.

In the remainder of this section we will state and prove two lemmas for irregular

cycling. First, we show that for some parameter values the number of loops around each

cycle can be trapped in a band. More precisely:

Lemma 1 There exists an open region of parameter space, RT , and for each point in

RT , there exists integers nmin, nmax and reals rmin, rmax, such that if

nmin < ni < nmax, and rmin < ri < rmax, for j − 2 ≤ i ≤ j

for some integer j then

nmin < ni < nmax, and rmin < ri < rmax, for all i > j

Also, there is an open subset R̂T ⊂ RT where for each n : nmin < n < nmax, the positive

fixed point of (9) is unstable.



Regular and irregular cycling near a heteroclinic network 20

We show also that all periodic sequences of loops are unstable, hence the only

possible kind of cycling is necessarily aperiodic and ‘irregular’. We suppose that the

number of loops around each cycle forms a sequence of integers {ni}, and the ratios of

the times spent on each cycle forms a sequence of reals {ri}. First we define what we

mean by periodic cycling.

Definition 4 A trajectory undergoes k-periodic cycling if the number of loops {ni}

around successive sub-cycles is a periodic sequence with period k.

Recall that the recurrence relation for the ratio sequence {ri} is given by

ri+ ≡







ui+1

vi+1

ri+1






= fj







ui

vi

ri






=







vi

ri

A1(nj) +
A2(nj−1)

ri
+

A3(nj−2)

rivi
+

A4(nj−3)

riuivi






(10)

where j = i mod k. k-periodic cycling trajectories correspond to fixed points of the

composition map F = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1 which implicitly depends on the sequence

of numbers of loops {ni}. Our second result is:

Lemma 2 There exists an open region of parameter space, RU , such that for each point

in RU there exists an integer Nmin such that any k-periodic cycling solution trajectory

of (2) with sequence {n1, ..., nk} such that min{n1, ..., nk} ≥ Nmin, is unstable as a fixed

point of F .

4.1. Proof of lemma 1

This proof is divided into two parts. We first show that the number of loops around

a cycle depends only on two of the co-ordinates of the trajectory as it approaches the

cycle. We then use this information inductively to give bounds on the number of loops

around subsequent cycles.

4.1.1. Part 1 For simplicity, we consider the trajectory as it begins to approach cycle

1 (the ξ2 − ξ1 − η3 sub-cycle, see table 2 and figure 2), and we examine the y1 and x3

co-ordinates at the point when the trajectory arrives close to the ξ2 equilibrium from

the y3 direction, setting y3 = h, y1 = ỹ1, x3 = x̃3. (We are again implicitly using the

small box approach here.)

From the definition of T1 as the time spent near ξ2 we have

ỹ1e
s2T1 = h (11)

since ξ2 is unstable in the y1 direction.

Near ξ2, the x3 co-ordinate decays by a factor e−cT1 ; in addition after n1 loops

around the η1 − η3 − ξ2 sub-cycle it decays by a further factor exp(−s1α3∆n1
T1). This

factor can be read off from table 2 because, by symmetry, the growth or decay of x3

on cycle 1 is equivalent to the growth or decay of x1 on cycle 3. Finally, x3 grows by a

factor es2T2 whilst near η1 and is then equal to h. So overall we have

x̃3 exp(−cT1 − s1α3∆n1
+ s2T2) ≡ x̃3 exp(−s2A1(n1)T1 + s2T2) = h (12)
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using (7). Rearranging and combining (11) and (12) gives

s2T1 = log

(

h

ỹ1

)

s2T2 = A1(n1) log

(

h

ỹ1

)

+ ln

(

h

x̃3

)

Since the trajectory makes exactly n1 loops around cycle 1 before switching onto cycle

2, we know that

T2 < T1
s1

e
δ?n1

in order to escape onto cycle 2; the right-hand side is the length of time that the

trajectory would have spent on the n1th pass near η1 if it were going to complete n1 +1

loops of cycle 1. Similarly, we also know that

T̂2 > T1
s1

e
δ?n1−1

where T̂2 satisfies

x̃3 exp(−s2A1(n1 − 1)T1 + s2T̂2) = h (13)

and is the length of time that would have been spent near η1 if the trajectory had only

completed n1 − 1 loops on cycle 1, before switching to cycle 2.

Hence, substituting for T1, T2 and T̂2 in (12) and (13) we find

G(n1 − 1) log

(

h

ỹ1

)

< log

(

h

x̃3

)

< G(n1) log

(

h

ỹ1

)

(14)

where

G(n) =
s1

e
δ?n − A1(n)

is clearly an increasing function of n when A1(n) < 0 and ∆n > c/(−α3s1) (this requires

α3 < 0 which we will assume for the remainder of the proof).

When 0 < x̃3, ỹ1 � h we can ignore the log h terms in (14), to obtain

ỹ
G(n1)
1 < x̃3 < ỹ

G(n1−1)
1 (15)

Hence the number of loops n1 on cycle 1 depends only on the y1 and x3 co-ordinates

as the trajectory approaches ξ2. Moreover, as ỹ1 and x̃3 become very small, n1 depends

only on the ratio log x̃3/ log ỹ1.

4.1.2. Part 2 We now use this information about the magnitude of x̃3 to determine the

possible values of n1, depending on the number of loops around previous cycles (denoted

n0, n−1, n−2). The x3 co-ordinate was last O(1) when the trajectory was near ξ3, and

in a similar method to that used to construct table 2, we find that

x̃3 = h exp(−s2A2(n0)T0 − s2A3(n−1)T−1 − s2A4(n−2)T−2) (16)

From (15) we have that

G(n1 − 1) <
| log x̃3|

| log ỹ1|
< G(n1)
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Figure 12. The graph shows the sequence {ni} as predicted by equations (18)

and (19) for parameter values s1 = 1.0, s2 = 1.4, s3 = 0.8, and initial conditions

r1 = r2 = r3 = 3.8 and n0 = n1 = n2 = 38. Notice the similarity to figure 10.

and substituting in from (11) and (16), and again ignoring the log h terms we find

G(n1 − 1) <
A2(n0)

r1
+

A3(n−1)

r1r0
+

A4(n−2)

r1r0r−1
< G(n1) (17)

or, more generally,

G(ni+1 − 1) <
A2(ni)

ri+1
+

A3(ni−1)

ri+1ri
+

A4(ni−2)

ri+1riri−1
< G(ni+1) (18)

so in the range in which G(n) is strictly increasing this give a unique value for ni+1 if

we also know ri+1, ri and ri−1. However, we already have a recurrence relation for the

ri:

ri+1 = A1(ni) +
A2(ni−1)

ri
+

A3(ni−2)

riri−1
+

A4(ni−3)

riri−1ri−2
(19)

Iterating (18) and (19) together with initial conditions n0, n1, n2, and r1, r2, r3 should

give the sequences. For parameter values s1 = 1.0, s2 = 1.4, s3 = 0.8 this give us very

similar results to those seen from integrations, shown in figure 12. However, the results

do not agree quantitatively, the main source of error is on the transitions between the

sub-cycles: as the transverse component grows the trajectory moves away from the

equilibrium and the linearisation becomes less accurate. The analysis is not necessarily

more accurate in the large n limit.
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We now use (18) and (19) iteratively to show that the sequences {ni} and {ri} can

remain bounded within a band. Putting (18) and (19) together gives

G(ni − 1) < ri+1 − A1(ni) < G(ni)

which simplifies to yield
(

s3

c
+

c

s2

)

δ?ni < ri+1 <
s1

e
δ?ni (20)

so inverting and multiplying by A2(ni) we have that

A2(ni)
s1

e
δ?ni

<
A2(ni)

ri+1

<
A2(ni)

(

s3

c
+ c

s2

)

δ?ni

Recall that for large n, A2(n) ∼ s1γ3∆n/s2 and notice that

∆n

δ?n =
δ?n − 1

δ?n(δ? − 1)

is an increasing function of n. We now suppose that for cycles i, i − 1, i − 2 and i − 3,

nmin < ni < nmax and rmin < ri < rmax. Then we can assert

A2(nmin)
s1

e
δ?nmin

<
A2(ni)

ri+1

<
A2(nmax)

(

s3

c
+ c

s2

)

δ?nmax

and similar expressions for A3 and A4. Now, using the bounds in (20) and (18) we can

guarantee that nmin < ni+1 < nmax and rmin < ri+1 < rmax if

A2(nmin) + A3(nmin)
rmax

+ A4(nmin)
r2
max

s1

e
δ?nmin

> G(nmin) (21)

A2(nmax) + A3(nmax)
rmin

+ A4(nmax)
r2
min

(

s3

c
+ c

s2

)

δ?nmax

< G(nmax − 1) (22)

s1

e
δ?nmax < rmax (23)

(

s3

c
+

c

s2

)

δ?nmin > rmin (24)

These four inequalities define possible sets of bounds {nmin, nmax, rmin, rmax}. Our

task is now to find the best possible set of values. Clearly (21) is not satisfied for very

large nmin. Setting rmax = ∞, and then (for definiteness) find the largest nmin that

satisfies (21); this is our initial estimate for nmin. If this estimate is negative, then set

nmin = 0.

Now, using this estimate for nmin, we find the largest rmin that satisfies (24). Having

found an estimate for rmin, we now use (22) to estimate nmax as the smallest value for

which (22) holds. From nmax we use (23) to find a smaller estimate for rmax; initially

we had set rmax = ∞. This process can be repeated until convergence is attained.

Clearly nmin will increase as we iterate, since the l.h.s. of (21) increases when rmax

decreases; similarly nmax will decrease. Therefore, for any parameter sets with α3 < 0
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Table 4. The table shows the values obtained when iterating equations (21) to (24)

for the parameter values s1 = 1.0, s2 = 1.4, s3 = 0.8.

iteration rmax nmin rmin nmax

1 ∞ 14 2.009 58

2 6.455 25 2.509 54

3 5.954 26 2.561 54

(and β3, γ1 < 0) we will be able to find bounds nmin, nmax within which the ni remain

trapped. For a subset of these collections of parameter values, the smallest n for which

regular cycling is stable (as discussed in section 3.2.1) will be less than nmin, and so

trapped trajectories cannot undergo regular cycling. This will occur for those parameters

for which (21) is more easily satisfied for larger nmin, for example when eγ3/s2 is larger

(and hence the l.h.s. of (21) is larger) or when s1(−α3)/s2 is smaller (so that the r.h.s.

of (21) is smaller). �

For the parameter values s1 = 1.0, s2 = 1.4, s3 = 0.8, we compute bounds of

nmin = 26 and nmax = 54, which are in good agreement with the numerically observed

bounds (see figure 10). This convergence occurred after only three iterations, which

we show in table 4. All this analysis depends on taking sufficiently large values of n

that the coefficients Aj(n) are monotonically increasing in n: for our typical parameter

values this is abundantly the case.

4.2. Proof of lemma 2

Suppose the {ni} form a repeating sequence with period k, say {n1, n2, ..., nk}. Let

Nmin = min{n1, ..., nk} and Nmax = max{n1, ..., nk}. We are interested in the case where

Nmin is large, so that A1(n), ..., A4(n) are dominated by the ∆n term, see section 3.2 for

definitions.

We consider the recurrence relation (10) for the ratio of times spent on the cycles.

The Jacobian matrix for the map ri+ = fj(rj) has the form

f ′
j =







0 1 0

0 0 1

−
A4(nj−3)

riviu2
i

−
A3(nj−2)

riv2
i

−
A4(nj−3)

riv2
i ui

−
A2(nj−1)

r2
i

−
A3(nj−2)

r2
i vi

−
A4(nj−3)

r2
i viui






(25)

We are interested in finding fixed points of F = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1 since they may

correspond to k-periodic cycling solutions of the system (2). Suppose r is a fixed point

of F , and

ri+ = fj(ri)

then the third components of the ri form a periodic sequence {r1, ..., rk}. The stability

of this fixed point r = F (r) is determined by the eigenvalues of the matrix

F ′(r) = f ′
k(rk)f ′

k−1(rk−)...f
′
2(r)f

′
1(r) =

k
∏

j=1

f ′
j(rj)
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If all eigenvalues (Floquet multipliers of the map) have modulus less than 1, the solution

is stable, otherwise it is unstable. A fixed point of the map (10) can be interpreted as

a cycling cycles solution of equation (2) if rj > 0, j = 1, ..., k.

We are able to estimate the largest eigenvalue of F ′(r) through estimates of the

largest eigenvalues of the matrices f ′
j(rj) since the eigenvectors all lie close the the

(0, 0, 1)> direction for the type of fixed point we find we need to analyse.

We now consider the possible types of fixed points of F . First we consider the

possibility of a fixed point with all rj being of order 1 (and Nmin is large). Since, in the

limit we are considering, |A1|, ..., |A4| are large, and we must have all rj > 0, a fixed

point is possible only if A1 < 0 and there is cancellation between the large terms in the

recurrence relation (10). A solution of this form will have

f ′
j(rj) =







0 1 0

0 0 1

Ej1 Ej2 Ej3







where there exist order 1 constants (by which we mean independent of n) k̂jm, kjm such

that

k̂jm∆Nmin
< |Ejm| < kjm∆Nmax

Note that in the following we bound quantities above and below but in fact, we can

take Nmax to be as large as we want here. We use Nmax in only one part of the proof,

contained in Appendix B; this part of the discussion is slightly tangential since the fixed

point it discusses has no physical interpretation in terms of cycling trajectories for the

parameter values we consider. Now we will show by induction that for all k ≥ 2, there

are order 1 constants clm(k), dlm(k) and reals Dlm(k) satisfying

clm(k)∆Nmin
< |Dlm(k)| < dlm(k)∆Nmax

(26)

such that

F ′ ≡

k
∏

j=1

f ′
j(rj) =







D11(k)k−2 D12(k)k−2 D13(k)k−2

D21(k)k−1 D22(k)k−1 D23(k)k−1

D31(k)k D32(k)k D33(k)k






(27)

Assuming this is true for k − 1, we have

k
∏

j=1

f ′
j(rj) =







0 1 0

0 0 1

Ek1 Ek2 Ek3







k−1
∏

j=1

f ′
j(rj)

=







0 1 0

0 0 1

Ek1 Ek2 Ek3













D11(k − 1)k−3 D12(k − 1)k−3 D13(k − 1)k−3

D21(k − 1)k−2 D22(k − 1)k−2 D23(k − 1)k−2

D31(k − 1)k−1 D32(k − 1)k−1 D33(k − 1)k−1







=







D21(k − 1)k−2 D22(k − 1)k−2 D23(k − 1)k−2

D31(k − 1)k−1 D32(k − 1)k−1 D33(k − 1)k−1

D31(k)k D32(k)k D33(k)k






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where for m = 1, 2, 3,

D3m(k)k = D1m(k − 1)k−3Ek1 + D2m(k − 1)k−2Ek2 + D3m(k − 1)k−1Ek3

and we can find order 1 constants c3m(k) and d3m(k) so that D3m(k) satisfies the

inequality (26). We then define

Dlm(k) = D(l+1)m(k − 1)

clm(k) = c(l+1)m(k − 1)

dlm(k) = d(l+1)m(k − 1)

for l = 1, 2 and m = 1, 2, 3 to complete the inductive step.

Since

f ′
2(r)f

′
1(r) =







0 0 1

E11 E12 E13

E11E23 E21 + E12E23 E22 + E13E23







=







0 0 1

E11 E12 E13

(D31(2))2 (D32(2))2 (D33(2))2







for some order 1 constants c3m(2), d3m(2) chosen so that

c3m(2)∆Nmin
< D3m(2) < d3m(2)∆Nmax

then the inductive hypotheses (26) and (27) are true for k = 2, and hence for all k > 2.

We now want to consider the eigenvalues of the matrix

F ′ =







D11(k)k−2 D12(k)k−2 D13(k)k−2

D21(k)k−1 D22(k)k−1 D23(k)k−1

D31(k)k D32(k)k D33(k)k







We can calculate the determinant exactly, because det f ′
j(rj) = Ej1, and it is straight

forward to estimate the trace from the matrix above; hence

det F ′ = c1D
k tr F ′ = c2D

k

where ∆Nmin
< D < ∆Nmax

and c1, c2 are (more) order 1 constants. So F ′ must have

exactly one eigenvalue λ = c3D
k with c3 order 1. Then for Nmin sufficiently large, |λ| > 1

and solutions with rj order 1 are unstable.

We next consider the form of other possible fixed points. First suppose there is

a k-periodic cycling trajectory with {r1, ..., rk−1} order 1 but rk large, say rk = c∆n

for some order 1 constant c, and Nmin ≤ n ≤ Nmax. Then, using (10), we find that

r1 − A1(nk) is of order 1, and hence we have a contradiction since r1 must now be

order ∆nk
. In fact, we can try to find solutions with other scalings, i.e. by trying

rj = crD
β, vj = cvD

γ,uj = cuD
σ, for ci order 1. We can estimate the next terms in the

recurrence relation by substituting these scalings into (10), for different combinations

of signs of the exponents β, γ, and σ. We find that unless β = γ = σ = 0 (the solution

type where all the rj are order 1, considered previously), then we always have that
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ĉ1∆Nmin
< rj+2, rj+3, rj+4 < ĉ2∆Nmax

for some order 1 constants ĉ1 and ĉ2, and hence all

rj must be large.

The only remaining possibility is that all the rj are large. We now consider this

solution in detail. From equation (7) we see that for ∆n large, we have

A1(n) ∼
s1

s2
α3∆n A2(n) ∼

s1

s2
γ3∆n

A3(n) ∼
s1

s2
β3∆n A4(n) =

s1

s2
δ?n ∼

s1(δ
? − 1)

s2
∆n

From (10) we can approximate rj+1 by

rj+1 ≈ A1(nj) +
A2(nj−1)

A1(nj−1)

moreover, we can find order 1 constants c̃1 and c̃2 such that

c̃1ε̂ <

∣

∣

∣

∣

rj+1 −

(

A1(nj) +
A2(nj−1)

A1(nj−1)

)∣

∣

∣

∣

< c̃2ε

where we define

ε = max
ni∈{n1,...,nk}

{

A2(ni)

A1(ni)2
,

A3(ni−1)

A1(ni)A1(ni−1)
,

A4(ni−1)

A1(ni)A1(ni−1)
,

1

|A1(ni)|

}

= max

{

A2(Nmin)

A1(Nmin)2
,

A3(Nmin)

A1(Nmin)2
,

A4(Nmin)

A1(Nmin)2
,

1

|A1(Nmin)|

}

=
e1

∆Nmin

for some order 1 constant e1, assuming Nmin is large enough that |A1(n)| is an increasing

function of n for n > Nmin, and |A2(n)/A1(n)| tends to a constant as n → ∞ (as does

|A3(n)/A1(n)| and |A4(n)/A1(n)|). Similarly we define

ε̂ = min
ni∈{n1,...,nk}

{

A2(ni)

A1(ni)2
,

A3(ni−1)

A1(ni)A1(ni−1)
,

A4(ni−1)

A1(ni)A1(ni−1)
,

1

|A1(ni)|

}

= min

{

A2(Nmax)

A1(Nmax)2
,

A3(Nmax)

A1(Nmax)2
,

A4(Nmax)

A1(Nmax)2
,

1

|A1(Nmax)|

}

=
e2

∆Nmax

for some order 1 constant e2.

Appendix B shows that for a given Nmin, we can find an Nmax the map (10) has a

stable fixed point with all the |rj| large regardless of the sign of A1. However, in the

case A1 < 0 this fixed point will not be relevant to the behaviour of solution trajectories

to the system (2) because at least some of the rj will be negative. This is the only part

of the proof to use the upper bound Nmax.

Therefore if α3 < 0 then we can find an Nmin such that A1(n) < 0 for n > Nmin and

the only relevant fixed points for the map F are those with all rj of order 1 and these

are unstable so long as ∆Nmin
is large enough. Hence there can be no stable k-periodic

cycling solutions. �

Remark If A1 > 0, then the k-periodic cycling solutions can be stable, but also all
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regular (1-periodic) cycling solutions are stable. Numerical simulations have shown

trajectories converging to the regular cycling solutions where n is constant, but it may

be possible to find initial conditions for trajectories which display k-periodic cycling

behaviour for k > 1.

Remark The open sets R̂T and RU have a non-empty intersection, and moreover, there

is a subset of the intersection for which Nmin < nmin.

To justify this remark we observe that the parameter values s1 = 1.0, s2 = 1.4,

s3 = 0.8 are contained in both R̂T and RU , with nmin = 26, and nmax = 53. Taking

Nmin = 25 gives a sufficiently large ∆Nmin
for lemma 2 to hold, and hence all trajectories

are trapped in a region where there are no periodic solutions, and hence must display

irregular cycling behaviour.

5. Conclusions

In this paper we have examined a structurally stable heteroclinic network in R
6, with

symmetry Z3 n Z
6
2. The system contains a number of parameters which can be varied

in order to find different types of behaviour. We have shown that there is a subset

of parameter values for which none of the sub-cycles in the network can be e.a.s., but

the network as a whole is still strongly attracting. In this particular case, the network

resembles three copies of the system studied by Kirk and Silber (1994).

To simplify the calculations we then enlarged the symmetry group to Z6nZ
6
2, so the

network contained six symmetric sub-cycles, and concentrated on a particular type of

trajectory which occurs when each sub-cycle is unstable in one transverse direction. In

this case switching between neighbourhoods of the sub-cycles can occur in a cyclical

manner. We demonstrated analytically that this ‘cycling cycles’ behaviour can be

regular or irregular, depending on both parameter values and the initial conditions

of the trajectory.

An interesting question to ask about the irregular cycling is whether in some sense

the trajectories can be thought of as chaotic. Numerical simulations have indicated the

presence of ‘sensitive dependence on initial conditions’. Clearly the orbits in R
6 are not

dense, because the trajectories are always converging to the heteroclinic network.

Our analysis gives rise to many questions concerning the dynamics near heteroclinic

networks; for example is this combination of regular and irregular behaviour typical for

networks with a particular structure, and to what extent is it possible to characterise

the possibilities in terms of the underlying equivariance of the vector field?

There are a number of ways in which our specific vector field could be generalised.

For example we could form an analogous sequence of 2n 3-cycles by coupling together a

pair of cycles similar to the two Guckenheimer–Holmes 3-cycles in the x and y-subspaces

but containing n > 3 equilibria. Such a vector field in R
2n would naturally be Z2n nZ

2n
2 -

symmetric. It seems very likely that similar regular and irregular cycling behaviour

would occur in this situation. More interestingly, we could aim to construct lower-
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dimensional examples of these dynamics, hopefully exploiting the complete classification

of homoclinic cycles in R
4 given recently by Sottocornola (2003). Alternatively, we could

investigate vector fields in R
6 that are equivariant under different symmetry groups; the

behaviour described here may exist only for ‘sufficiently complicated’ group actions. In

the present system, the cycling occurs between cycles which are of type B (in the ‘A,B,C

classification’ of Chossat et al (1997)).

Of more physical relevance would be study of the effects of introducing small

symmetry-breaking terms, for example quadratic terms. Such perturbations would

break some, but crucially not all, of the heteroclinic connecting orbits and may generate

periodic orbits in their place. Work on some of these problems is ongoing.
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Appendix A.

In this appendix we give the details of the calculations of the results in section 2.4.

Recall that:

δ̂x =
t2
t3

δ̂y =
s1

s2
δ2 =

c

s2
δ3 =

s1

e
δ̃1 =

c

t3
δ̃2 =

t2
e

Also, recall the exponents for the yyx-cycle are:

α1 =
c

t3
−

s2

e
δ̂x +

s3

s2
δ̂xδ3 β1 = −

e

t3
+

s3

e
δ̂x +

s1

s2
δ̂xδ3 γ1 =

t1
t3

+
c

e
δ̂x −

e

s2
δ̂xδ3

α2 =
s3

s2
+

c

t3
δ2 −

s2

e
δ2δ̂x β2 =

s1

s2
−

e

t3
δ2 +

s3

e
δ2δ̂x γ2 = −

e

s2
+

t1
t3

δ2 +
c

e
δ2δ̂x

α3 = −
s2

e
+

s3

s2
δ3 +

c

t3
δ2δ3 β3 =

s3

e
+

s1

s2
δ3 −

e

t3
δ2δ3 γ3 =

c

e
−

e

s2
δ3 +

t1
t3

δ2δ3

Simple manipulations give the following relations:

δ̂xα3 =
c

t3
(δ? − 1) + α1

δ2α1 =
s3

s2
(δ? − 1) + α2

δ2β1 =
s1

s2
(δ? − 1) + β2

δ3β2 =
s3

e
(δ? − 1) + β3

δ3γ2 =
c

e
(δ? − 1) + γ3

δ̂xγ3 =
t1
t3

(δ? − 1) + γ1
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and so if δ? > 1 it is clear that

α2 > 0 ⇒ α1, α3 > 0

β3 > 0 ⇒ β1, β2 > 0

γ1 > 0 ⇒ γ2, γ3 > 0

The equivalent exponents for the xxy-cycle are:

α̃1 = −
e

t3
+

s3

s2

δ̃1 +
c

e
δ̃1δ̂y β̃1 =

t1
t3

+
c

s2

δ̃1 −
t3
e

δ̃1δ̂y γ̃1 =
t2
t3

−
e

s2

δ̃1 −
t1
e

δ̃1δ̂y

α̃2 =
c

e
−

e

t3
δ̃2 +

s3

s2
δ̃2δ̃1 β̃2 = −

t3
e

+
t1
t3

δ̃2 +
c

s2
δ̃2δ̃1 γ̃2 =

t1
e

+
t2
t3

δ̃2 −
e

s2
δ̃2δ̃1

α̃3 =
s3

s2
+

c

e
δ̂y −

e

t3
δ̃2δ̂y β̃3 =

c

s2
−

t3
e

δ̂y +
t1
t3

δ̃2δ̂y γ̃3 = −
e

s2
+

t1
e

δ̂y +
t2
t3

δ̂yδ̃2

and similar relations between these coefficients can be found:

δ̃2α̃1 =
c

e
(δ? − 1) + α̃2

δ̂yα̃2 =
s3

s2
(δ? − 1) + α̃3

δ̂yβ̃2 =
c

s2
(δ? − 1) + β̃3

δ̃1β̃3 =
t1
t3

(δ? − 1) + β̃1

δ̃2γ̃1 =
t1
e

(δ? − 1) + γ̃2

δ̃1γ̃3 =
t2
t3

(δ? − 1) + γ̃1

meaning that:

α̃3 > 0 ⇒ α̃1, α̃2 > 0

β̃1 > 0 ⇒ β̃2, β̃3 > 0

γ̃2 > 0 ⇒ γ̃1, γ̃3 > 0

Appendix B.

Here we show that the map F = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1 has a stable fixed point with

{r1, ..., rk} large. Recall from section 4.2 that we have

c1ε̂ <

∣

∣

∣

∣

rj+1 −

(

A1(nj) +
A2(nj−1)

A1(nj−1)

)∣

∣

∣

∣

< c2ε

which implies also that there exist constants c3, c4 of order 1 (i.e. independent of n)

such that:

c3εε̂ <

∣

∣

∣

∣

1

rj+1
−

1

A1(nj)

∣

∣

∣

∣

< c4εε̂
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Then, defining εj, δj and aj with reference to (25), viz:

f ′
j =







0 1 0

0 0 1

εj δj aj






= ai







0 1
aj

0

0 0 1
aj

εj

aj

δj

aj
1







we find that there are order 1 constants ĉi such that

ĉ1ε̂
3 < |εi| < ĉ2ε

3

ĉ3ε̂
2 < |δi| < ĉ4ε

2

ĉ5ε̂ < |ai| < ĉ6ε

(B.1)

and so there are order 1 constants c̃i such that

c̃1

ε
<

1

|ai|
<

c̃2

ε̂

c̃3ε̂
2

ε
<

1

|δi|
<

c̃4ε
2

ε̂

c̃5ε̂
3

ε
<

1

|εi|
<

c̃6ε
3

ε̂

This tells us that we can write f ′
j in the form

f ′
j = Bj







1 0 0

0 ε 0

0 0 ε2













0 b1 0

0 0 b2

b3 b4 b5













1 0 0

0 ε−1 0

0 0 ε−2







where

|Bj| < |ai|
ε

ε̂

and the bi are order 1. Also,

f ′
j = Cj







1 0 0

0 ε̂ 0

0 0 ε̂2













0 c1 0

0 0 c2

c3 c4 c5













1 0 0

0 ε̂−1 0

0 0 ε̂−2







where

|Cj| > |ai|
ε̂

ε

and the ci are order 1. When we calculate F ′ ≡
∏k

j=1 f ′
j we find that the matrix product

F ′ ≡
k

∏

j=1

Bj







1 0 0

0 ε 0

0 0 ε2






M







1 0 0

0 ε−1 0

0 0 ε−2







≡

k
∏

j=1

Cj







1 0 0

0 ε̂ 0

0 0 ε̂2






M̂







1 0 0

0 ε̂−1 0

0 0 ε̂−2






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where M and M̂ are 3 × 3 matrices with have order 1 entries. Thus M and M̂ have

order 1 eigenvalues. This tells us that the eigenvalues λ of F ′ must satisfy

K1

(

ε̂

ε

)k k
∏

j=1

aj < |λ| < K2

(ε

ε̂

)k
k

∏

j=1

aj

for some order 1 constants K1 and K2. Hence, using (B.1), we find

|λ| < K3

(

ε2

ε̂

)k

which can be ensured to be less than 1 so long as ε2 < ε̂ (choosing Nmin sufficiently

large, or Nmax sufficiently small). Hence this fixed point has eigenvalues with modulus

less than 1 and is therefore stable.
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