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In this Comment we discuss the results presented in Refs. [5] and [4] for the classic problem of Rayleigh–
Bénard convection, i.e. the thermal instability of a horizontal layer of viscous fluid heated uniformly from
below. In the case of fixed temperature and stress-free horizontal boundaries the critical dimensionless
temperature difference (Rayleigh number R) for the onset of motion can be determined exactly ([6]). For
fixed temperature, but rigid, boundaries the computation becomes more involved. This case was treated
by Chandrasekhar, see Chapter II, section 17 of [1]. He formulated the stability problem as a variational
principle and obtained an approximate solution through the use of an appropriate solution ansatz. This
leads to the following approximate expression for (an upper bound to) the critical Rayleigh number, his
equation (311):

R(k) =
β6

k2

[
1− 16π2k cosh2(k/2)

β4(k + sinh k)

]−1

, (1)

where β2 ≡ π2 + k2 and k is the horizontal wavenumber of the perturbation to the conduction solution.
This expression was re-derived in Ref. [4] through a similar approximation procedure, but without being
formulated as a variational problem, and without reference to its earlier existence in Chandrasekhar’s
book.

We now turn to the effect of rotation on the Rayleigh–Bénard instability for rigid, fixed temperature
boundaries. Chandrasekhar considers the effect of rotation about a vertical axis in Chapter III of [1]. This
leads naturally to a very similar instability problem, with the overall effect of rotation being to stabilise
the flow. Although well-studied, interest in obtaining simplified descriptions of the linear instability
continues to attract attention, see for example [3]. We denote the dimensionless rotation rate (Taylor
number) by T . The linear instability of thermal convection with rotation can also be formulated as a
variational problem, leading again to an approximation for the marginal stability curve R(k, T ). As in
the non-rotating case, the variational formulation guarantees that any estimate of the critical Rayleigh
number will be an upper bound on the true value. Chandrasekhar does not present as simple an explicit
expression as (1) but implicitly it is his equation (159), and it is evaluated numerically in his Table VIII.
The one-term approximation he presents can be written in the reasonably compact form

R(k, T ) =
β6 + π2T

k2

[
1 +

4π2F

β2(β6 + π2T )

]−1

, (2)

where

F =

∑
cyclic q1β

4
1(q23 − q22)(q22 − k2)(q23 − k2) tanh(q1/2)∑

cyclic(q
2
1 − k2)q2q3(q23 − q22) tanh(q2/2) tanh(q3/2)

, (3)

is the part of the expression that indicates the effect of the rigid boundaries (note that the exact result
for the stress-free case is recovered if F = 0). In (3) the sums are taken over the three terms obtained
by cyclically permuting the subscripts (1 2 3), and we define βj = π2 + q2j . The coefficients q1, q2, q3 are

defined as follows: q21 , q22 and q23 are the distinct roots of the cubic polynomial (q2 − k2)3 + Tq2 = 0.
The need to compute the roots of the cubic is an additional complication, Using standard methods,

and defining Y = (12
√

12T 3 + 81T 2k4 − 108Tk2)1/3, we obtain, exactly,

q21 = k2 + Y/6− 2T/Y, q22 = k2 − eiπ/3(Y/6 + 2T/Y ), q23 = k2 − e−iπ/3(Y/6 + 2T/Y ). (4)
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Alternatively, one can compute very good explicit approximations to the roots in a number of ways, for
example through applying a Shanks transformation to the first three terms of the Taylor series solution,
using T−1 as the small parameter [2]. The Shanks transformation yields the simpler, but approximate,
expressions

q21 =
k6

T + 3k4
, q22 = k2 +

5k2T 1/2 + 4iT

4T 1/2 − 3ik2
, q23 = k2 +

5k2T 1/2 − 4iT

4T 1/2 + 3ik2
. (5)

In Ref. [5] the alternative expression

R =

(
β6

k2
+ (1− b)T

)[
1− 8π2k(1 + cosh k)

β4(k + sinh k)

]−1

, (6)

is proposed, see equation (25) in that paper, and where

b = k

(
8π2

β4

1 + cosh k

k + sinh k
+

k − sinh k

(k + tanh k)k2 tanh(k/2)
− 1

k + sinh k
+

4

β2 tanh(k/2)

)
, (7)

i.e. in the notation of [5], b = β6B̃11/k
2 where B̃11 is defined in [5], Appendix A, equation (A23).

The expressions (6) - (7) are not as complicated as (2) - (3), but they are also not as accurate. This
is demonstrated clearly in the tables below where we compare the critical Rayleigh numbers Rc and
wavenumbers kc over a range of values of T .

Table 1: Comparison of estimates for the marginal stability threshold Rc(T ) and the corresponding
critical wavenumber kc(T ) for the onset of convection in the presence of rotation. Figures in bold differ
from the (exact) numerical values quoted in Table I of [5].

Numerical (2)-(3)-(5) (6)-(7)
T Rc(T ) kc(T ) Rc(T ) kc(T ) Rc(T ) kc(T )

102 1 756.3 3.16 1 763.8 3.16 1 753.3 3.15
103 2 151.3 3.49 2 159.3 3.48 2 074.7 3.41
104 4 712.0 4.79 4 717.1 4.78 4 420.6 4.69
105 16 719 7.17 16 743 7.18 17 100 7.56
106 71 085 10.82 71 587 10.88 78 569 11.92
107 324 510 16.34 328 180 16.47 371 470 18.16
108 1 525 100 24.64 1 543 900 24.83 1 760 700 27.20
109 7 244 600 37.01 7 326 200 37.27 8 316 800 40.40

1010 34 498 000 55.40 34 817 000 55.71 39 118 000 59.74

Table 2: Comparison of percentage errors between numerical values and those given by different approx-
imation expressions for Rc(T ) and kc(T ). Figures in bold indicate substantial differences from those
quoted in Table I of [5].

Numerical (2)-(3)-(5) (6)-(7)
T Rc(T ) kc(T ) % Rc % kc % Rc % kc

102 1 756.3 3.16 0.42 0.93 -0.18 -0.41
103 2 151.3 3.49 0.37 0.06 -3.56 -2.12
104 4 712.0 4.79 0.11 0.02 -6.19 -1.90
105 16 719 7.17 0.14 0.20 2.28 5.47
106 71 085 10.82 0.70 0.54 10.53 10.21
107 324 510 16.34 1.13 0.76 14.47 11.14
108 1 525 100 24.64 1.24 0.79 15.45 10.42
109 7 244 600 37.01 1.13 0.69 14.80 9.17

1010 34 498 000 55.40 0.93 0.55 13.39 7.83
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Table 1 shows the values for the critical Rayleigh number Rc at which R attains a minimum over
wavenumbers k at fixed T , computed numerically, and estimated by the two different methods. Table 2
shows the percentage errors in both Rc and the corresponding critical wavenumber kc for both approxi-
mate expressions. While those for (2) using (3) and (5) for the roots are around 1% accurate (or better)
at all values of T shown, expression (6) is substantially worse, particularly at moderately high T . Qual-
itatively, we remark also that (i) the approximate values computed using the formula (6) of Ref [5] are
neither consistently above nor consistently below the true values, and (ii) that the approximation appears
to improve only relatively slowly at large T ; as shown in [5] the approximation (6) yields the well-known
asymptotic limits for Rc and kc as T →∞, therefore both methods must become increasingly accurate in
the limit T → ∞. On the other hand, comparison of the marginal stability curves produced by the two
methods confirms that (6) is more accurate at low Taylor numbers, T ≤ 102, where the exact roots (4)
must be used instead of (5) to preserve the accuracy of Chandrasekhar’s approximation.
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