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Robust heteroclinic cycles between equilibria lose stability either through local bifurcations of their
equilibria or through global bifurcations. This paper considers a global loss of stability termed a
‘resonant’ bifurcation. This bifurcation is usually associated with the birth or death of a nearby
periodic orbit, and generically occurs in either a supercritical or subcritical manner. For a specific
robust heteroclinic cycle between equilibria with complex eigenvalues we examine the codimension-
two point that separates the supercritical and subcritical. We investigate the bifurcation structure
and show the existence of further bifurcations of periodic orbits.

1 Introduction

Dynamical systems with symmetry are widely recognised to naturally have
properties that would be very special in the absence of such symmetry. This
change in the notion of generic behaviour for symmetric systems has moti-
vated a great deal of work, particularly in developing a symmetric setting for
bifurcation theory for ordinary differential equations [1, 2]. At the same time
it has been recognised that properties imparted by symmetry can also arise
in other ways, for example in mathematical ecology or game theory [3]. An
important example of such a property is the existence of flow-invariant sub-
spaces. In the symmetric setting these subspaces arise due to the equivariance
of the dynamics with respect to some symmetry group Γ: the symmetries of a
solution cannot change as it evolves in time. In the ecological setting the flow-
invariance is a biologically reasonable restriction: once a population is extinct
it is not possible to generate new individuals.

A heteroclinic cycle is a topological circle of connecting orbits between
saddle-type equilibria. In generic (non-symmetric) systems such cycles are of
high codimension. However, one consequence of the existence of invariant sub-
spaces is that connecting orbits can be contained within these subspaces. The
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connecting orbits then persist in the presence of perturbations of the vector
field, as long as those perturbations preserve the invariance of the subspaces.
Such connecting orbits are termed ‘robust’. A heteroclinic cycle made up of
equilibria and robust connecting orbits is termed a ‘robust heteroclinic cycle’.
In the case that all equilibria lie on the same group orbit, the cycle is often
termed a ‘robust homoclinic cycle’. Robust cycles are natural objects of study
in the setting of symmetric dynamics, mathematical ecology or game theory
and have occurred in a wide variety of models for intermittent dynamics in
physical and biological systems. The review by Krupa [4] discusses many ex-
amples and provides further background.

A prototypical example of a robust heteroclinic cycle in R
3 is that discussed

by Guckenheimer and Holmes [5]. It arises from an analysis of Busse and
Heikes [6] of the Küppers–Lortz instability of thermal convection rolls in a
rotating fluid layer, and was also independently proposed as a model of three
competing species [7].

For the types of cycles we study in this paper, dynamical stability results
depend only on certain genericity assumptions and on eigenvalues of the flow
linearised about the equilibria. Krupa and Melbourne [8] give sufficient con-
ditions for the asymptotic stability of a class of robust cycles. An important
result is that the so-called ‘radial’ eigenvalues do not play a part in stabil-
ity conditions. In R

4, Chossat et al. [9] propose a classification of homoclinic
cycles into three types (denoted A, B and C) which are distinguished by the
existence, or lack, of a fixed-point subspace that contains the cycle, and the
action of the symmetry group on this subspace. A later paper by Krupa and
Melbourne [10] extends this classification and gives improved conditions for
asymptotic stability of some cycles. In higher dimensions a complete deriva-
tion of conditions for stability is lacking, but some recent progress has been
made [11].

For homoclinic cycles in R
n, n ≥ 4, there are (at least) two different ways

for robust cycles to lose stability: these are termed ‘transverse’ and ‘resonant’
bifurcations. Transverse bifurcations occur when one of the transverse eigen-
values at an equilibrium passes through zero; the equilibrium undergoes a
local bifurcation. Chossat et al. [9] prove that for homoclinic cycles in R

4 a
transverse bifurcation is accompanied by the birth of either a periodic orbit
or a new heteroclinic cycle. In higher dimensions, and for more complicated
(heteroclinic) cycles, little is known in general.

At a resonant bifurcation the signs of the eigenvalues are unchanged; the
eigenvalues satisfy an algebraic condition that determines a global change in
the stability properties of the cycle. Resonant bifurcations were first studied in
the non-symmetric case by Chow et al. [12] in the context of a bifurcation from
a homoclinic orbit. They found that the nature of the bifurcation depends cru-
cially on the global dynamics, specifically, whether or not the stable manifold
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of the homoclinic orbit is orientable. There are many studies of higher codi-
mension bifurcations of homoclinic orbits, for instance the codimension-three
study of a resonant homoclinic bifurcation by Homburg and Krauskopf [13].
In this paper we study a codimension-two bifurcation from a robust hetero-
clinic cycle. Our example seems to be the simplest natural example exhibiting
this codimension-two bifurcation in a non-degenerate way in a vector field
truncated at cubic order.

Except in degenerate cases, the change of stability of a heteroclinic cycle
at a resonant bifurcation is intuitively expected to be accompanied by the
birth or death of a nearby (long period) periodic orbit. This can occur in both
a subcritical and a supercritical manner (see Hofbauer and Sigmund [3]). A
notable exception is the standard Guckenheimer–Holmes case using only the
third-order Taylor series truncation of the vector field. In this case the dynam-
ics at the point of resonance is degenerate: an equilibrium away from the cycle
undergoes a degenerate Hopf bifurcation at the resonant bifurcation point and
the system is Hamiltonian. It is expected that the addition of 5th-order terms
consistent with the symmetries would break this degeneracy, and periodic or-
bits would be seen after the resonant bifurcation. However, a detailed study
of the effect of the different possible 5th-order terms has not yet been carried
out.

In this paper, we consider a robust cycle, X, between symmetry-related
equilibria in R

6 (the cycle is of ‘Type C’ in the classification given by [10]). Our
cycle is similar in structure to the example analysed by Field and Swift [14], but
has an additional pair of complex conjugate eigenvalues at each equilibrium, in
‘radial’ directions. The conditions for asymptotic stability are the same, as the
radial eigenvalues do not affect the asymptotic stability of robust heteroclinic
cycles (Krupa and Melbourne [8]). The change of stability of the heteroclinic
cycle creates an exponentially flat branch of periodic orbits, and the exact
nature of the global flow determines whether the bifurcation occurs sub- or
supercritically. This is also the case for the homoclinic bifurcation in [12] and
the transverse bifurcations of heteroclinic cycles in [9].

Our analysis assumes that all equilibria are hyperbolic and that the flow in a
neighbourhood of each equilibrium can be linearised. In fact, these assumptions
are generic, since the existence of the invariant subspaces near the equilibria
mean that there exists a smooth (C1) linearisation, even if there are resonances
between the eigenvalues (see Hofbauer [15]).

We now describe the main results of this paper.

• The resonant bifurcation of X creates a ‘flat’ branch of periodic orbits.
These periodic orbits undergo a further series of saddle-node bifurcations
due to the twisting of the flow on the stable manifold.

• In a two-parameter bifurcation diagram, the curve of saddle-node bifurca-
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tions of periodic orbits has a self-similar structure organised around the
codimension-two point of the resonant bifurcation.

• At the codimension-two point, there exists an infinity of periodic orbits. Near
the codimension-two point there exists a stable periodic orbit arbitrarily
close to a stable homoclinic cycle.

The paper is organised as follows. In section 2 we review briefly the def-
inition and structure of robust heteroclinic cycles, and describe the system
containing the particular cycle we study. Section 3 describes the construction
of Poincaré maps, and in section 4 we investigate fixed points of these maps -
these correspond to periodic orbits in the original vector field. We also show
results of numerical investigations. In section 5 we analyse the codimension-
two point about which the bifurcations of the periodic orbits are organised,
and compare the analytical and numerical results. Section 6 concludes.

2 Description of system and symmetries

2.1 Definitions

We first recall the notion of a robust heteroclinic cycle and give some defini-
tions. For more details see [8] and [10].

Let Γ ⊂ O(n) be a finite group acting linearly on R
n, and f : R

n → R
n a

Γ-equivariant vector field. We say there is a heteroclinic connection γj between
two equilibria ξj and ξj+1 of f if γj(t) ∈ R

n is a solution of ẋ = f(x) which
is backward asymptotic to ξj and forward asymptotic to ξj+1. A heteroclinic
cycle is an invariant set X ⊂ R

n consisting of the union of a set of equilibria
{ξ1, ..., ξm} of f and orbits {γ1, ..., γm}, where γj is a heteroclinic connection
between ξj and ξj+1; and ξm+1 ≡ ξ1.

For Σ ⊂ Γ a subgroup of Γ, we define the fixed-point subspace

Fix Σ = {x ∈ R
n : σx = x ∀σ ∈ Σ}.

Definition 2.1 X is a robust heteroclinic cycle if for each j, 1 ≤ j ≤ m there
exists a fixed point subspace, Pj = Fix Σj where Σj ⊂ Γ and

(i) ξj is a saddle and ξj+1 is a sink in Pj

(ii) there is a heteroclinic connection from ξj to ξj+1 in Pj

(indices are to be taken mod m).

It is important to classify the eigenvalues of the linearisation of f at each
equilibrium into four classes: radial, contracting, expanding and transverse.
Table 1 defines each of these classes according to the subspaces in which the
eigenspaces lie. P⊖L denotes the orthogonal complement in P of the subspace



C.M. Postlethwaite and J.H.P. Dawes 5

Table 1. Classification of eigenvalues of Df(ξj) at an equilibrium point ξj on the cycle. P ⊖L denotes the orthogonal

complement of the subspace L within the subspace P .

Eigenvalue class Subspace
Radial (r) Lj ≡ Pj−1 ∩ Pj

Contracting (c) Vj(c) = Pj−1 ⊖ Lj

Expanding (e) Vj(e) = Pj ⊖ Lj

Transverse (t) Vj(t) = (Pj−1 + Pj)
⊥

L. The notation P and L is purposefully suggestive of planes and lines, but it is
important to note that dim(L) may be greater than one. We set c, r, t < 0 and
e > 0 and restrict our attention to the case where Vj(e) is one dimensional;
hence the unstable manifold W u(ξj) is one dimensional. This prevents the
formation of heteroclinic networks [16].

2.2 Example system

In this section we describe the specific heteroclinic cycle studied in the re-
mainder of this paper. We consider a continuous time Γ-equivariant dynami-
cal system (defined by a set of ODEs) with phase space R

6. We denote points
x ∈ R

6 by x = (x1, x2, x3, x4, x5, x6). Let

Γ = Z6 ⋉ ∆6 (1)

where ∆6 = (Z2)
6 is generated by reflections κ1, . . . , κ6 in each coordinate

hyperplane:

κ1(x) = (−x1, x2, x3, x4, x5, x6)

and similarly for κ2, . . . , κ6. These reflections guarantee that any coordinate
hyperplane is an invariant subspace. Z6 is generated by a permutation of the
coordinate axes:

ρ(x1, x2, x3, x4, x5, x6) = (x6, x1, x2, x3, x4, x5). (2)

Clearly this action of Γ on R
6 is absolutely irreducible. It is clearly also suffi-

cient to consider the dynamics restricted to the domain

R
6
+ = {(x1, . . . , x6) ∈ R

6|x1, . . . , x6 ≥ 0}.

We consider ODEs of the form

ẋ = f(x, µ, ν) ≡ λ(µ, ν)x+Q(x, µ, ν) (3)
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where f is Γ-equivariant: γf(x, µ, ν) = f(γx, µ, ν) and µ and ν are bifurcation
parameters. We set λ > 0 and let Q(x, µ, ν) be a third-order polynomial in x
satisfying

Q(x) · x < 0 (4)

where x · y is the usual inner product on R
n. By the invariant sphere theorem

of Field [17] there is an attracting invariant topological 5-sphere S5 ∈ R
6 \{0}

which we denote S. It follows that the intersection S ∩ R
6
+ = S+ is also flow

invariant.
Specifically we consider the ODEs

ẋ1 = x1(1 −X2 − c1x
2
2 + e2x

2
3 − tx2

4 − c2x
2
5 + e1x

2
6)

ẋ2 = x2(1 −X2 + e1x
2
1 − c1x

2
3 + e2x

2
4 − tx2

5 − c2x
2
6)

ẋ3 = x3(1 −X2 − c2x
2
1 + e1x

2
2 − c1x

2
4 + e2x

2
5 − tx2

6) (5)

ẋ4 = x4(1 −X2 − tx2
1 − c2x

2
2 + e1x

2
3 − c1x

2
5 + e2x

2
6)

ẋ5 = x5(1 −X2 + e2x
2
1 − tx2

2 − c2x
2
3 + e1x

2
4 − c1x

2
6)

ẋ6 = x6(1 −X2 − c1x
2
1 + e2x

2
2 − tx2

3 − c2x
2
4 + e1x

2
5)

where X2 =
∑6

j=1 x
2
j , and ci, ei, and t are strictly positive parameters. By

rescaling time and the coordinates xi we set the coefficient of the linear terms
(λ in (3)) equal to unity, and the coefficient of the x3

j term in the xj equation
equal to −1; it follows from (4) that it is negative.

Equations (5) are clearly Γ-equivariant as required. We focus on the equi-
librium ξ1 which is the equilibrium with three non-zero components in the
subspace {x4 = x5 = x6 = 0}; there are five other symmetry-related equi-
libria, which we denote ξ2, . . . , ξ6. To show the existence of a heteroclinic
connection from ξ1 to ξ2 we consider the four-dimensional invariant subspace
P1 = {x5 = x6 = 0} = Fix(Zκ5

2 × Z
κ6

2 ) in which it must lie. It can be verified
that if an equilibrium with four non-zero components exists, for (5), it must
be unstable. For an open region of parameter space the flow restricted to P1,
ξ2 is the only sink and the connection is robust. Applying the definitions in
table 1 we deduce that dimV1(c) = dimV1(e) = dimV1(t) = 1: the expanding
eigenvalue at ξ1 (λe) is in the x4 direction, the contracting eigenvalue (−λc)
is in the x6 direction and the transverse eigenvalue (−λt) is in the x5 direc-
tion. In contrast, dimL1 = 3 and we label the radial eigenvalues −λr and
−λR ± iλI . Appendix A contains expressions for these eigenvalues in terms of
ci, ei and t. A finite number of conditions (hence holding in an open region of
parameter space that intersects the region where the robust connections exist)
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Figure 1. A trajectory approaching a heteroclinic cycle from a numerical simulation of equations (5),
projected onto the x1-x2 plane. Parameters are c1 = 0.65, c2 = 1.0, e1 = 3.8, e2 = 0.5, t = 1.1.

ensure that the eigenvalues have the correct signs and that the conditions for
invariant sphere theorem to apply are satisfied. These conditions are not given
explicitly, but we have verified that they hold for the region of parameter space
we investigate numerically.

We remark that the eigenspaces satisfy the conditions for a type C cycle
given in Krupa and Melbourne [10], that is, there exist subspaces Qj , Rj ,
1 ≤ j ≤ 6 (j taken mod 6), such that

Qj = Pj ⊕ Vj(c) = Pj ⊕ Vj+1(t) (6)

Rj = Pj ⊕ Vj(t) = Pj ⊕ Vj+1(e) (7)

Figure 1 shows a trajectory very close to a heteroclinic cycle from a numer-
ical integration of (5). Notice the spiralling approach to, and monotonic de-
parture from, each equilibrium. For the numerics, we introduce new variables
Xj = log(xj), and integrate the transformed equations instead of integrat-
ing equations (5) directly. These new equations are valid in the interior of R

6
+

which is invariant, along with its boundaries. In particular, any periodic orbits
that bifurcate from the cycle will all be contained in the interior of R

6
+. Our

change of variables significantly reduces numerical error. The numerical inte-
grations of the new equations were performed using a standard RK4 integrator
with a timestep dt = 0.01.
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3 Construction of Poincaré maps

We construct Poincaré maps to approximate the flow ẋ = f(x, µ, ν) near the
heteroclinic cycle. This enables us to study the dynamics of trajectories close to
the heteroclinic cycle, to calculate the stability of the cycle, and to determine
the location and stability of nearby periodic orbits. We define coordinates and
Poincaré sections about the equilibria, and write down local and global maps
approximating the flow in the usual way.

We chose local Cartesian coordinates about ξ1: (xX , xY , xc, xt, xe) spanning
the spaces L1 ∩ S (of dimension 2), V1(c), V1(t) and V1(e) respectively. The
linearised flow about ξ1 is:

ẋX = −λRxX − λIxY

ẋY = λIxX − λRxY

ẋc = −λcxc

ẋt = −λtxt

ẋe = λexe

It is useful to define polar coordinates (r, θ) by xX = r cos θ and xY = r sin θ.
In the following we will often interchange pairs (xX , xY ) with (r, θ); this will
be obvious from the context. We define two Poincaré sections near ξ1:

H in ={(r, θ, xc, xt, xe) : r2 + x2
c = h2, 0 < θ ≤ 2π, 0 ≤ xt, xe ≤ h}

Hout ={(r, θ, xc, xt, xe) : xe = h, 0 < θ ≤ 2π, 0 ≤ r, xt, xc ≤ h}

where 0 < h ≪ 1 is a constant. When h is small enough we expect that the
heteroclinic connection intersects H in and Hout transversely. It is then simple
to write down a local map φ : H in → Hout integrating the linearised flow:

φ













r
θ
xc

xt

xe













=

















r
(

xe

h

)

λR
λe

θ − λI

λe
ln

(

xe

h

)

xc

(

xe

h

)
λc
λe

xt

(

xe

h

)
λt

λe

h

















The time of flight of the trajectory from H in to Hout is given in this linear
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approximation by

T = −
1

λe
log

(xe

h

)

. (8)

Since ξ2 = ρξ1, the Poincaré sections near ξ2 can be defined by ρH in and
ρHout. The second element of the construction is a global map ϕ : Hout →
ρH in to approximate the part of the flow near the heteroclinic connection.
Firstly we label the point of intersection of the unstable manifold of ξ1 (that
is, the heteroclinic connection) with ρH in as

x = (r⋆, θ⋆, 0, 0, x⋆) ∈ ρH in; r⋆2 + x⋆2 = h2 (9)

and write X⋆ = r⋆ cos θ⋆, Y ⋆ = r⋆ sin θ⋆. In the case |λR| < |λc|, the trajectory
decays onto L2 (the radial subspace for ξ2) faster than it spirals in towards r =
0. Hence we can always pick h small enough so that x⋆ ≪ r⋆. We will assume
from now on that this is the case - the other case is less interesting as there
is no twisting of the stable manifold because it approaches the equilibrium
tangent to the one-dimensional space V2(c).

Secondly, the unstable manifold of ξ1 lies in the subspace P1 = V1(e) +
L1 = Fix (〈κc, κt〉), (see table 1) and has isotropy Z

κc

2 × Z
κt

2 . The isotypic
decomposition of R

6 with respect to Z
κc

2 × Z
κt

2 is R
6 = P1 ⊕ V1(c) ⊕ V1(t).

The coordinates xX , xY and xe span P1, so the global map ϕ : Hout → ρH in,
including only constant and linear terms, takes the form

ϕ













xX

xY

xc

xt

h













=













X⋆

Y ⋆

0
0
x⋆













+













a11 a12 0 0 a15

a21 a22 0 0 a25

0 0 a33 0 0
0 0 0 a44 0
a51 a52 0 0 a55

























xX

xY

xc

xt

h













(10)

where the constants aij depend on the global flow. We take them to be O(1),
and assume certain non-degeneracy conditions that will become clear in due
course. Note that the flow invariance of R

6
+ implies a33, a44 > 0. Composing

the local and global maps together with the symmetry ρ−1 gives a complete
return map ρ−1 ◦ ϕ ◦ φ ≡ ψ : H in → H in:
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ψ













r
θ
xc

xt

xe













=























r⋆ +Arr
(

xe

h

)

λR
λe cos

(

λI

λe
log xe + θ + Φr

)

θ⋆ +Aθr
(

xe

h

)

λR
λe cos

(

λI

λe
log xe + θ + Φθ

)

x⋆ +Acr
(

xe

h

)

λR
λe cos

(

λI

λe
log xe + θ + Φc

)

Atxc

(

xe

h

)
λc

λe

Aext

(

xe

h

)
λt

λe























+ h.o.t.

where Aα and Φα are functions of the aij (and hence of the bifurcation pa-
rameters µ and ν), and At, Ae > 0. The dynamics close to the heteroclinic
connection are given by initial conditions with r, xc, xt and xe all small. Two
components of the return map can be eliminated by approximations that are
consistent with our approach. We approximate θ by θ⋆, since the error in the r
and xc components is then of order r2(xe/h)

2λR/λe which is the same order as
the terms omitted by taking only the linear terms in (10). We also eliminate
the r coordinate: it is determined by the xc coordinate and the definition of
H in (recall r2 + x2

c = h2 on H in). Since x⋆ ≪ r⋆, we may assume xc ≪ r and
write r ≈ 1 − x2

c/2.
We rescale the remaining coordinates, the constants Ac, Ae, At, Φc and x⋆

for convenience, to obtain the three-dimensional map

ψ





xc

xt

xe



 =











x⋆ +Acx
λR
λe
e cos

(

λI

λe
log xe + Φc

)

Atxcx
λc
λe
e

Aextx
λt

λe
e











+O











x
2

λR
λe

e

x2
cx

2 λc
λe

e , xcxtx
λc+λt

λe
e

x2
tx

2 λt

λe
e , xcxtx

λc+λt

λe
e











(11)
where 0 < x⋆ < 1, At, Ae > 0, Ac and Φc are O(1). We include here the size
of the next order terms; they were omitted for clarity in previous expressions.
The stability of the fixed point (x⋆, 0, 0) yields the stability of the heteroclinic
cycle in the flow.

For initial conditions very close to the cycle, when xt, xe ≪ x⋆, we can
further reduce the dimension of the map by setting xc = x⋆. At leading order
we obtain

ψ

(

xt

xe

)

=





Atx
⋆x

λc

λe
e

Aextx
λt
λe
e



 (12)

which, as expected, is the map for Type C cycles in R
4 obtained in [14] and [10].
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Figure 2. A periodic orbit from a numerical simulation of equations (5), projected onto the x1-x2 plane.
Parameters are c1 = 0.65, c2 = 1.0, e1 = 3.5, e2 = 0.5, t = 0.8.

The condition for the cycle to be asymptotically stable is then easily seen to
be λc + λt − λe > 0. A resonant bifurcation occurs when this condition is an
equality and asymptotic stability is lost.

4 Periodic orbits

We now look at non-trivial fixed points of (11); these correspond to periodic
orbits lying close to the heteroclinic cycle. Figure 2 shows an example of such
a periodic orbit found in a numerical simulation of (5). Provided the periodic
orbits are close enough to the heteroclinic cycle, the higher order terms in (11)
can be safely neglected: in the first instance we look for fixed points of (11)
using only the leading order terms and taking xc = x⋆ constant: this enables
us to determine the stability of the periodic orbits and the subcritical or su-
percritical nature of the bifurcation. Later we include the full set of leading
order terms in (11) and follow periodic orbits further from the global bifur-
cation. We define bifurcation parameters µ and ν: µ governs the stability of
the heteroclinic cycle (so µ = 0 at the resonant bifurcation) while the second
bifurcation parameter ν, defined presently, controls whether the bifurcation is
subcritical or supercritical.

We define the eigenvalue ratios δ = λc

λe
and σ = λt

λe
and will sometimes write

At = At(µ, ν) > 0 and Ae = Ae(µ, ν) > 0, to make clear that At and Ae are
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continuous functions of µ and ν. We assume the non-degeneracy conditions

At(0, ν), Ae(0, ν) 6= 0 (13)

We define the bifurcation parameter µ = 1 − σ − δ; the cycle is stable or
unstable when µ < 0 or µ > 0. The lowest order terms in the map give

ψ





xc

xt

xe



 =





x⋆

Atxcx
1−σ−µ
e

Aextx
σ
e



 (14)

The non-trivial fixed point of this map occurs at

x̄c = x⋆, x̄e = B
1

µ x̄t = Atx
⋆B(1−σ−µ)/µ

where B = x⋆AtAe. The coordinates x̄e and x̄t will be small and positive
(that is, the fixed point corresponds to a periodic orbit in the flow close to
the heteroclinic cycle) if either B < 1 and µ > 0 or B > 1 and µ < 0. It is
straightforward to calculate the eigenvalues of the map (14) at the fixed point.
They are independent of B, and lie inside the unit circle if µ > 0, so the fixed
point corresponds to a stable periodic orbit for the flow. Conversely, when
µ < 0 one of the eigenvalues is greater than one and hence the corresponding
periodic orbit in the flow is unstable. By the continuous dependence of B
and µ on the eigenvalues, if at µ = 0 we have B < 1, then B < 1 for small
enough µ > 0 and the bifurcation is supercritical. Similarly, if at µ = 0 we
have B > 1, the bifurcation is subcritical. The case B = 1 is degenerate, and
implicitly defines the codimension-two point. We define the second bifurcation
parameter ν = B − 1.

To make a more detailed analysis we include the other terms in the first
component of the map (11) as this enables us to locate periodic orbits as we
move further from the heteroclinic cycle. Locating fixed points we find

x̄t = Atx̄cx̄
1−σ(µ,ν)−µ

µ

e , x̄µ
e = AtAex̄c

so

x̄µ
e = B +Ax̄

λR
λe
e cos

(

λI

λe
log xe + Φc

)

(15)

where A = AtAeAc. From (8) the time of flight T , of the trajectory from H in

to Hout, is given by x̄e = e−λeT . The period of the corresponding periodic
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orbit is 6T . Rewriting equation (15) in terms of T yields

e−λeµT = B +Ae−λRT cos (λIT + Φ) . (16)

As µ→ 0 and T → ∞ we deduce the leading order expression

e−λeµT = B ⇒ µ→
− logB

λeT
(17)

This reproduces the earlier result that if B < 1 then periodic orbits close to
the heteroclinic orbit exist in µ > 0, and if B > 1 then they exist in µ < 0.

For finite T a series of saddle-node bifurcations occurs, generating more
periodic orbits at smaller T . If ν 6= 0 there is a finite number of wiggles, and
for T large enough the curve becomes monotonic in the (µ, T ) plane. Exactly at
ν = 0 there is an infinite sequence of saddle-node bifurcations and so infinitely
many periodic orbits exist at µ = ν = 0.

4.1 Numerical continuation of saddle-node bifurcations

For our example ODEs given in section 2.2 we follow the curves of periodic
orbits using continuation in the ODE coefficients e1 and t and the well known
continuation package AUTO [18]. In the numerical simulations we introduce a
rescaled bifurcation parameter f = λeµ. Figure 3 illustrates the cases of sub-
critical and supercritical bifurcations. We obviously cannot calculate B(µ, ν)
explicitly for our example ODEs, since it depends on the global location of
the heteroclinic orbit between the equilibria, but from the preceding analysis
expect that B(0, ν) > 1 for 3(a) and B(0, ν) < 1 for 3(b).

The continuation is carried out using the transformed equations described
at the end of section 2.2. This decreases the computation time as well as
increasing accuracy; the locations of periodic orbits and their bifurcations
are unaffected. We are now able to investigate periodic orbits with very high
periods, where coordinates routinely become as small as e−200.

The dependence of f (= λeµ) on the two coefficients e1 and t is given
explicitly in the Appendix. We remark that B varies implicitly with both
coefficients in a way that is difficult to calculate analytically. Shown in figure 4
are the resulting curves, plotted in the (f, t) plane. Notice the nearly self-
similar structure of cusps, converging to a point on the line f = 0 (where
ν = 0). The two plots in figure 3 were taken for t just above and just below
this accumulation point.
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(a) The subcritical case

f

6T
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100.

125.
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(b) The supercritical case

Figure 3. Curves of periodic orbits in the (f, T ) plane. Stable and unstable orbits are shown with solid and
dashed lines respectively, illustrating the sequence of saddle-node bifurcations. The heteroclinic cycle is

stable in the region f < 0. For clarity the vertical line f = 0 is given. In (a), the largest period orbits are
unstable, and exist in f < 0, and the bifurcation is subcritical. In (b), the largest period orbits are stable,
and exist in f > 0 and the bifurcation is supercritical. For both plots, coefficients are fixed at c1 = 0.65,

c2 = 1.0, e2 = 0.5 with continuation carried out in e1. For figure (a) we take t = 1.227, and for (b) t = 1.03.
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Figure 4. Curves of saddle-node bifurcations in the (f, t) plane, from AUTO output, with coefficient values
c1 = 0.65, c2 = 1.0 and e2 = 0.5, with continuation in the remaining two parameters e1 and t. The

accumulation point corresponds to e1 = 3.90 and t = 1.12. The lower two figures are successive close ups on
the indicated areas. Notice how the sequence of cusps seems to be repeating on smaller and smaller scales.
The circled numbers are labels for the cusp points, as referred to in table 2. The periods of the orbits at

these points are also shown in table 2. The period of the longest orbit before it is impossible to distinguish
changes of sign of f is approximately 6T = 200.

5 The codimension-two point

At µ = ν = 0 the resonant heteroclinic bifurcation changes from supercritical
to subcritical. The AUTO calculations indicate the structure of the arrange-
ment of the saddle-node bifurcations about this codimension-two point. In this
section, we investigate this structure analytically using equation (16). We then
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compare our results with the numerical data obtained from AUTO.
We use the parameter f = λeµ for convenience, and expand about the

codimension-two point f = ν = 0, taking T ≫ 1. In the expansion we as-
sume that A, Φ, λR and λI are all order 1, non-zero constants. We rewrite
equation (16) as

Tf = − log
(

1 + ν +Ae−λRT cos(λIT + Φ)
)

(18)

and approximate at leading order in ν and e−λRT to find

f =
1

T

(

−ν −Ae−λRT cos(λIT + Φ)
)

+O

(

ν2

T
,
e−2λRT

T

)

(19)

This first approximation (of the position of the periodic orbits near the
codimension-two point) indicates that the relative size of ν and e−λRT is im-
portant in determining the shape of the curve. If ν dominates, then the curve
is monotonic, but if e−λRT is of the same order or larger magnitude than ν,
then the oscillatory term introduces saddle-node bifurcations.

These saddle-node bifurcations occur when df
dT = 0: differentiating (19) we

find

df

dT
=

ν

T 2
−R(T ) cos(λIT + α1(T ) + Φ) +O

(

ν2

T 2
,
e−2λRT

T 2

)

, (20)

where

R(T ) = A|λ|e−λRT 1

T
+O

(

e−λRT

T 2

)

and tan(α1(T )) =
−λI

λR + 1
T

, (21)

and |λ| = (λ2
R + λ2

I)
1/2. So, when df

dT = 0 we find

ν = A|λ|T e−λRT cos(λIT + α1(T ) + Φ) +O
(

ν2, e−λRT
)

. (22)

Figure 5 illustrates the relationship (curve C) between ν and T along the curve
of saddle-node bifurcations, for large T .

The first case we consider is the region where we expect saddle-node bifur-
cations, that is, where ν . e−λRT . The second case is the region where there
are no such bifurcations, when ν ∼ T e−λRT , so ν ≫ e−λRT .
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Τ1 Τ2

T

T*

C

ν

X*

Figure 5. The curve C shows the relationship between ν and T along the curve of saddle-node bifurcations,
given by equation (22).

At ν = 0, equation (22) has solutions

cos(λIT + α1(T ) + Φ) = O
(

e−λRT
)

≪ 1 (23)

Suppose (23) is satisfied for some T = T1, sufficiently large, then it will also
be satisfied for T = T2 ≈ T1 + π/λI since to first order α1(T ) is independent
of T . So, for ν = 0 and for large enough T , the saddle-node bifurcations occur
at a frequency of ∆T = π

λI
. These points are indicated in figure 5 (T1 and

T2). This approximation can be extended into the region of small, nonzero ν.
Rearranging (22) gives

cos(λIT + α1(T ) + Φ) = −
ν

T 2R(T )
+O

(

ν2eλRT

T
,
e−λRT

T

)

= O

(

νeλRT

T
,
e−λRT

T

)

(24)

so the same solutions are valid so long as

ν ≪ T e−λRT (25)

which is certainly the case in the region where ν . e−λRT .
We now consider the locations of these saddle-node bifurcations in the f -T

plane, and in the f -ν plane. Let the bifurcation at T1 occur for some f = f1

and the bifurcation at T2 > T1 for some f = f2. Figure 6(a) shows a sketch of
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2T

1T

2f1f

T

f

(a)

f1

f2

f

ν

ν∗

f*

(b)

Figure 6. (a) shows a curve of periodic orbits in the f -T plane. f1 and f2 are the locations of two
saddle-node bifurcations of periodic orbits, and (b) shows how their location changes as ν is varied. The bold

line indicates the region where the saddle-node bifurcations exist.

the curve of periodic orbits in the f -T plane, indicating these two bifurcations.
Note that the bifurcations only exist when f2 > f1.

Let cos(λIT1 + Φ) = φ, then cos(λIT2 + Φ) = −φ, and from (19) we can
write down equations for f1 and f2 in terms of ν:

f1 =
−ν − c1
c2

f2 =
−ν + e

−π
λR
λI c1

c2 + π
λI

(26)

where c1 = Aφe−λRT1 ≪ 1 and c2 = T1 ≫ 1.
For ν ≪ T e−λRT , T is independent of f and ν along each curve, and so the

curves f1 and f2 are straight lines in the f -ν plane, as shown in figure 6(b).
We have, in this sketch, extended the lines out of the range of ν for which
the approximations are valid, but will come back later and correct this. The
main point to take away from this sketch is that when the two curves f1 and
f2 cross, the two saddle-node bifurcations disappear and the curve of periodic
orbits in the f -T plane becomes monotonic in the region T1 ≤ T ≤ T2. The
point where they cross corresponds to the point X⋆ in figure 5, that is, where
ν changes direction for increasing T . The bold line in figure 6(b) is where
f2 > f1, that is, the line of saddle-node bifurcations.

The curves f1 and f2 can extend into f < 0, where the bifurcation at f2
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f
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f

ν

(b)

Figure 7. (a) f2 and f3 are two saddle-node bifurcations of periodic orbits for f < 0. (b) is a continuation
of figure 6(b) showing in bold the location of saddle-node bifurcations in the f -ν plane.

collides with a saddle-node bifurcation with larger period, shown as f3 in
figure 7(a). The equation for the location of f3 is

f3 =
−ν − e

−2π
λR

λI c1

c2 + 2π
λI

(27)

and the saddle-node bifurcations at f2 and f3 exist if f2 > f3. Following f3

back into f > 0 and continuing in this manner we find a curve of saddle-node
bifurcations of increasing T which spirals in towards f = ν = 0. This is shown
schematically in figure 7(b). This figure has obvious structural similarities
with figure 4; recall that we do not know the direction of ν in figure 4, so the
orientation of the curves is different. Compare this also with figure 5, which
shows ν oscillating towards zero as T increases along the curve of saddle-node
bifurcations.

We now consider the second region, where ν ≫ e−λRT . This is the outer
region of the sketch in figure 7(b), where the curves fi cross and the saddle-
node bifurcations annihilate each other. We use figure 5 and equation (22)
to gain more insight into the shape of the curves fi in this region: they are
no longer well approximated by straight lines. We label the point where the
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curves f1 and f2 cross as X⋆ = (f⋆, ν⋆) (see figure 6(b)), and let the period of
the periodic orbit at this point be 6T ⋆ (also labelled on figure 5).

The portion of curve C in figure 5 from T1 to T ⋆ corresponds to the curve
f1 from ν = 0 to the point X⋆. Equation (26) still holds outside of the region
ν ≪ T e−λRT , but now c1 and c2 are not constants, but complicated functions
of ν obtained by inverting equation (22). To do this analytically is intractable,
but we can get a feel of what happens qualitatively.

As ν decreases from 0, T increases from T1, meaning c2 increases and c1
decreases. This increases the (modulus of the) gradient of the curve f1 towards
X⋆. Similarly for f2, we find that the gradient decreases towards X⋆. At X⋆,
the gradients will be the same (since T is continuous along the line of saddle-
node bifurcations) so X⋆ is actually a cusp point in the curve of saddle-node
bifurcations. This agrees with the data from the AUTO calculations - figure 4
shows cusps points in the curve of saddle-node bifurcations.

We can calculate the locations of the cusp points, since they occur when
dν
dT = 0 along the curve of saddle-node bifurcations. Differentiating equa-
tion (22) gives:

dν

dT
= A|λ|2T e−λRT cos(λIT +Φ+α1(T )+α2(T ))+O(e−λRT , νT e−λRT ) (28)

where tan(α2(T )) = λI

−λR+1/T . So the cusp points occur at

cos(λIT + Φ + α1(T ) + α2(T )) = O

(

1

T
, ν

)

≪ 1

so again, since both α1(T ) and α2(T ) are to first order (that is, for large
enough T ) independent of T , the cusp points will occur with frequency

∆T =
π

λI

Let cos(λIT
⋆ +Φ+α1(T

⋆)) = −φ′, then at X⋆, we have (from equation (22)):

ν⋆ = Aφ′|λ|T ⋆e−λRT ⋆

(29)

and as expected (25) no longer holds.
The leading order approximating for f at this point gives

f⋆ =
ν⋆

T ⋆
+O

(

e−λRT

T

)

= Aφ′|λ|e−λRT ⋆

+O

(

e−λRT

T
,
ν2

T

)

(30)
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We know the next cusp point occurs at T ≈ T ⋆ + π
λI

, with cos(λIT + Φ +

α1(T )) ≈ φ′. This increase in T is equivalent to rescaling f in (30):

f → −fe
−π

λR
λI

5.1 Comparison with numerical results

We now compare our analytical findings with data obtained from AUTO calcu-
lations for the example from section 2.2. We have already noted the similarities
in the structure of the arrangement of the saddle-node bifurcations, shown in
figures 7(b) and 4. We use the AUTO data to confirm the re-scalings of f
between the cusp points

f → −fe
−π

λR

λI

and the difference in the periods of the orbits at the cusp points

∆T =
∆Period

6
=

π

λI

which were obtained from the analytic calculations.
Recall that in our analytic approximations, we assumed the λα were con-

stant. In the AUTO calculations, we cannot keep these eigenvalues constant,
as the continuation parameters are parameters in the original equations (in
this case, e1 and t). So, as we move towards f = 0, not only are the errors in
the calculation decreasing (as T → ∞), but also the values of λR and λI are
converging to their values at the codimension-two point.

We show the results from the AUTO calculation in table 2. We give the
value of f and T for the periodic orbit at each of the cusp points, and show
the ratios/differences between these. Due to the variation in λR and λI , the
convergence is seen more easily if we separate the cusps into two sets, f > 0
and f < 0. We expect the ratio fn−2/fn to converge to exp(2π λR

λI
) as f → 0

and the change in the period should converge to 12π/λI as f → 0. At the
accumulation point (the codimension-two point),

exp
2π

λR
λI = 3.98

6π

λI
= ∆Period = 22.2

These values are close to the limits of the values given in table 2.
There was some difficulty in calculating the value of f at the cusp points

from the data provided by AUTO. The continuation parameters (e1 and t)
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Table 2. Showing the values of f at each of the cusp points labelled in figure 4

(n) fn

∣

∣

∣

fn−2

fn

∣

∣

∣
Period ∆Period

1 0.057759 66.84
3 0.022879 2.524 89.45 22.61
5 0.006918 3.307 110.0 20.55
7 0.001805 3.83 131.0 21.0
9 0.00048 3.8 153.0 22.0

(n) fn

∣

∣

∣

fn−2

fn

∣

∣

∣
Period ∆Period

2 -0.07118 66.91
4 -0.014898 4.778 93.99 27.08
6 -0.003576 4.166 118.1 24.11
8 -0.000907 3.93 141.0 22.9
10 -0.0003 3 163.8 22.8

f
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Figure 8. The graph shows the curve of saddle-node bifurcations in the f -T plane, plotted from AUTO
output. Parameters are c1 = 0.65, c2 = 1.0, e2 = 0.5, and continuation is in e1 and t. The right-hand figure

is a close up and extension of the top portion of the left-hand figure.

are non-zero at f = 0, and the error in f is the same as the error in e1 and
t. Hence, as we approach f = 0, since the error in e1 and t remains constant,
the percentage error in f increases. Also we found that for orbits with period
6T & 170, AUTO loses accuracy, as shown in figure 8. Unfortunately, we were
unable to improve things by adjusting the discretisation and computation
constants in AUTO.

The values of f in table 2 correspond to the maxima and minima of f along
the curve of saddle-node bifurcations, from the data shown in figure 8. The
values were calculated by fitting a least squares quadratic to 5 or 7 points
around each maxima. This was repeated for two different data sets (with
different step size in AUTO) and the number of significant figures shown in



C.M. Postlethwaite and J.H.P. Dawes 23

the table is that to which the two methods agreed.

6 Conclusions

In this paper we have studied a robust heteroclinic cycle in R
6 which has a pair

of complex conjugate radial eigenvalues at each equilibrium. The robustness
arises because the vector field commutes with an action of Z6 ⋉ (Z2)

6.
We first considered the codimension-one resonant bifurcation of the cycle

and showed that it is associated with the birth or death of a nearby (long
period) periodic orbit. This periodic orbit undergoes a further series of saddle-
node bifurcations. The bifurcation can occur subcritically or supercritically.
We introduce a second bifurcation parameter to unfold the degeneracy which
occurs when the bifurcation is neither subcritical nor supercritical.

We then found that there is a repeating structure of saddle-node bifurcations
about the codimension-two point, with a well-defined scaling as we approach
the codimension-two point. The analytical findings were compared with nu-
merical results and good agreement was found.

We expect that similar results may be found for bifurcations of similar hete-
roclinic cycles in systems commuting with symmetry groups Zn⋉(Z2)

n, n ≥ 5,
although we have not yet looked at any specific examples. These groups are
important in an ecological context; many examples of ODEs describing popu-
lation models commute with a group of this form, see Hofbauer [3].

Much of the structure in our problem arises as a result of the complex eigen-
values at the equilibria in the cycle. We expect that if the complex eigenvalues
were not present, the situation would be simpler. The codimension-two bifur-
cation in the real eigenvalue case would have a structure similar to that shown
in figure 9. The curve of saddle-node bifurcations predicted for this case (the
dashed line in figure 9(a)) is monotonic, rather than spiralling through a se-
quence of cusps. This predicted bifurcation diagram is very similar to that
found in the resonant homoclinic bifurcation [12] in the non-robust case.

It is expected that such a bifurcation diagram would be found near the
codimension-two point for a resonant bifurcation in the real eigenvalue case.
To the best of the authors knowledge this has not been demonstrated however;
both the Guckenheimer–Holmes cycles and the example of Field and Swift [14]
are degenerate at the codimension-two point when only linear and cubic terms
are included. In either case, we may be able to break the degeneracies by adding
appropriate fifth order terms to these vector fields.
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Heteroclinic
bifurcation

S−N of periodic orbits

(b)

(c)
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Figure 9. (a) shows a conjectured bifurcation diagram of a codimension-two resonant bifurcation from a
heteroclinic cycle with real eigenvalues. (b) and (c) show the periods and locations of the bifurcating

periodic orbits for two sections across the diagram, as indicated.
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Appendix A: Eigenvalue data

In the appendix we set out explicit expressions for the eigenvalues λα at the
equilibria for the ODEs on the cycle. First, let

D = 2e1c1 + c21 + c2e2 + 2c2c1 + c2c
2
1 + 2e2e1 + e21 − e2e

2
1
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Then

λR = (c2c
2
1 − e2e

2
1)/D

λI = (3c22c
4
1 + 18c2c

2
1e2e

2
1 + 3e22e

4
1 + 8c22c

2
1e2e1 + 8e31c2e2c1 + 4e31c2c

2
1

+ 8e21c2c
3
1 + 8e31c

2
1e2 + 4c22c

3
1e1 + 4e41e2c1 + 8e1c

3
1c2e2 + 8e21c1c2e

2
2

+ 4e21c
3
1e2 + 4e1c

4
1c2 + 4c31c

2
2e2 + 4e31c1e

2
2 + 4e22e

3
1c2 + 4e1c1c

2
2e

2
2)

1/2/D

λt = (−c2c
2
1 + e2e

2
1 − e22e1 + tc2e2 + c22c1 + c2e

2
1 − c1e2e1 + tc2c1 + te2e1 + c2c1e1 − c21e2)/D

λc = (−c2c
2
1 + e2e

2
1 + c1e2e1 − c2e

2
2 + tc2c1 + te21 + c21e1 − c2c1e2 − e22e1 + tc1e1 + c31)/D

λe = (c2c
2
1 − e2e

2
1 − te2e1 − c22e2 + c2c1e1 + e31 − tc1e1 − c22c1 − c2e2e1 + c1e

2
1 − tc21)/D

For the heteroclinic cycle to exist as we describe we require λR, λt, λc, λe > 0.
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[3] Hofbauer, J. and Sigmund, K., 1998, Evolutionary Games and Population Dynamics, CUP.
[4] Krupa, M., 1997, Robust heteroclinic cycles. J. Nonlinear Sci., 7 129-176.
[5] Guckenheimer, J. and Holmes, P., 1988, Structurally stable heteroclinic cycles. Math. Proc.

Camb. Phil. Soc., 103 189-192.
[6] Busse, F. H. and Heikes, K. E., 1980, Convection in a rotating layer: A simple case of turbulence.

Science, 208, 173-175.
[7] May, R. M. and Leonard, W., 1975, Nonlinear aspects of competition between three species.

SIAM J. Appl. Math., 29, 243-253.
[8] Krupa, M. and Melbourne, I., 1995, Asymptotic stability of heteroclinic cycles in systems with

symmetry. Ergod. Th. & Dynam. Sys., 15 121-147.
[9] Chossat, P., Krupa, M., Melbourne, I. and Scheel, A., 1997, Transverse bifurcations of homoclinic

cycles. Physica D, 100, 85-100.
[10] Krupa, M. and Melbourne, I., 2004, Asymptotic stability of heteroclinic cycles in systems with

symmetry, II. Proc. Roy. Soc. Edinburgh A, 134A, 1177-1197.
[11] Postlethwaite, C. M., 2005, Stability results for a class of robust homoclinic cycles in R

n. In
preparation.

[12] Chow, S.-N., Deng, B. and Fielder, B., 1990, Homoclinic bifurcation at resonant eigenvalues, J.
Dyn. Diff. Eq. 2, 177-244.

[13] Homburg, A. J. and Krauskopf, B., 2000, Resonant Homoclinic Flip Bifurcations, J. Dyn. Diff.
Eq. 12, 807-850.

[14] Field, M. J. and Swift, J., 1991, Stationary bifurcation to limit cycles and heteroclinic cycles.
Nonlinearity, 4, 1001-1043.

[15] Hofbauer, J., 1994 Heteroclinic Cycles in Ecological Differential Equations Tatra Mountains
Math. Publ. 4 105-116

[16] Postlethwaite, C. M. and Dawes, J. H. P., 2005, Regular and irregular cycling near a heteroclinic
network Nonlinearity, 18, 1477-1509.

[17] Field, M. J., 1996, Lectures on bifurcations, dynamics and symmetry. Pitman Research Notes
in Mathematics, vol. 356. London: Longman Scientific and Technical.

[18] Doedel, E., Champneys, A., Fairgrieve, T., Kuznetsov, Y., Sandstede, B. and Wang X., 1997,
AUTO97: Continuation and bifurcation software for ordinary differential equations. Available
via FTP from directory pub/doedel/auto at ftp.cs.concordia.ca.


