
ar
X

iv
:1

70
8.

00
63

2v
1 

 [
q-

bi
o.

PE
] 

 2
 A

ug
 2

01
7
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Abstract

We study the phenomenon of cyclic dominance in the paradigmatic Rock–Paper–Scissors
model, as occurring in both stochastic individual-based models of finite populations and
in the deterministic replicator equations. The mean-field replicator equations are valid
in the limit of large populations and, in the presence of mutation and unbalanced payoffs,
they exhibit an attracting limit cycle. The period of this cycle depends on the rate of
mutation; specifically, the period grows logarithmically as the mutation rate tends to
zero. We find that this behaviour is not reproduced in stochastic simulations with a
fixed finite population size. Instead, demographic noise present in the individual-based
model dramatically slows down the progress of the limit cycle, with the typical period
growing as the reciprocal of the mutation rate. Here we develop a theory that explains
these scaling regimes and delineates them in terms of population size and mutation
rate. We identify a further intermediate regime in which we construct a stochastic
differential equation model describing the transition between stochastically-dominated
and mean-field behaviour.

Keywords: cyclic dominance ecology, limit cycle, mean field model, replicator
equation, stochastic differential equation, stochastic simulation

1. Introduction

Many mathematical models in ecology are well-known to be capable of generating
oscillatory dynamics in time; important examples stretch right back to the initial work
of Lotka and Volterra on predator-prey interactions [16, 9, 14, 3, 21, 31]. Such models,
although dramatic simplifications when compared to real biological systems, have a
significant impact in shaping our understanding of the modes of response of ecological
systems and are helpful in understanding implications of different strategies for, for
example, biodiversity management, and the structure of food webs [25].

Competition between species is a key driver of complex dynamics in ecological mod-
els. Even very simple competitive interactions can yield complex dynamical behaviour,
for example the well documented example of the different strategies adopted by three
distinct kinds of side-blotched lizard [27]. Similar cyclical interactions occur in bacte-
rial colonies of competing strains of E. coli [12, 13, 33]. In mathematical neuroscience
dynamical switches of this type have been referred to as ‘winnerless competition’ since
there is no best-performing state overall [24, 32].

∗Corresponding author
Email addresses: Q.Yang2@bath.ac.uk (Qian Yang), T.C.Rogers@bath.ac.uk (Tim Rogers),

J.H.P.Dawes@bath.ac.uk (Jonathan H.P. Dawes)

Preprint submitted to Journal of Theoretical Biology August 3, 2017

http://arxiv.org/abs/1708.00632v1


Evolutionary Game Theory (EGT) provides a useful framework for modelling com-
petitive interaction, in particular the replicator equations [30, 26] give a dynamical
systems interpretation for models posed in game-theoretic language. Work by many
authors, including in particular Hofbauer and Sigmund [11, 10] has resulted in a very
good understanding of replicator equation models for competing species. Recent work
has extended these deterministic approaches to consider stochastic effects that emerge
from consideration of finite, rather than infinite, populations. The classic Rock–Paper–
Scissors (RPS) provides an important example of stochastic phenomena in ecological
dynamics. When mutation (allowing individuals to spontaneous swap strategies) is
added to the replicator equations for the RPS game, the deterministic can exhibit
damped oscillations that converge to a fixed point. In [18], it was shown that stochastic
effects present in finite populations cause an amplification of these transient oscillations,
leading to so-called quasi-cycles [17]. For smaller values of mutation rate, the determin-
istic system passes through a Hopf bifurcation, and a limit cycles appears. Some past
studies exist on the role of noise around limit cycles, such as [1, 2], in which small-scale
fluctuations around the mean-field equations are explored using Floquet theory. More
recently, it has been discovered that noise can induce much stronger effects including
counterrotation and bistability [19].

In this paper we combine deterministic and stochastic approaches in order to present
a comprehensive description of the effect of demographic fluctuations around cycles of
dominance in the RPS model. We determine three regimes, depending on the scaling of
population size N and mutation rate µ. The basic link between stochastic individual-
based dynamics and population-level ODEs is a theorem of Kurtz [15], allowing us to
construct a consistent set of individual-level behaviours corresponding to the mean-field
replicator dynamics for the RPS model that we take as our starting point. Between
these two views of the dynamics lies a third: the construction of a stochastic differential
equation (SDE) that captures the transition between them. Changing variables to the
asymptotic phase of the ODE limit cycle reveals that the contribution of the stochas-
ticity is to speed up some parts of the phase space dynamics and to slow down others
but that the overall effect is to markedly increase the oscillation period. Our central
conclusion is that as the stochastic effects become more important, the period of the
oscillations increases rapidly, and this slowing down is a significant departure from the
prediction of oscillation periods made on the basis of the mean-field ODE model.

The structure of the remainder of the paper is as follows. In section 2 we intro-
duce the replicator dynamical model for the rock-paper-scissors game with mutation.
The mean-field ODE version of the model is well-known and we derive a self-consistent
individual-based description; this is not as straightforward as one might initially imag-
ine. We show numerically that the two models give the same mean period for the cyclic
dynamics when the mutation rate is large but disagree when µ is small.

In section 3 we summarise the computation to estimate the period of the limit cycle
when µ is small. This follows the usual approach, dividing up trajectories into local
behaviour near equilibrium points, and global maps valid near the unstable manifolds
of these saddle points. Section 4 turns to the stochastic population model and analyses
the dynamics in terms of a Markov chain. This leads to a detailed understanding of
the individual-level behaviour in the limit of small mutation rate µ. Section 5 then fills
the gap between the analyses of sections 3 and 4 by deriving an SDE that allows us to
understand the relative contributions of the stochastic behaviour and the deterministic
parts in an intermediate regime. Finally, section 6 discusses our results and concludes.
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2. Models for Rock-Paper-Scissors with mutation

2.1. Rock-paper-scissors with mutation

Rock–Paper–Scissors (RPS) is a simple two-player, three-state game which illus-
trates the idea of cyclic dominance: a collection of strategies, or unchanging system
states, in which each state in turn is unstable to the next in the cycle. In detail: playing
the strategy ‘rock’ beats the strategy ‘scissors’ but loses to the strategy ‘paper’; simi-
larly, ‘scissors’ beats ‘paper’ but loses to ‘rock’. When the two players play the same
strategy the contest is a draw.

This information is summarised in the payoff matrix

P :=





0 −1− β 1
1 0 −1− β

−1− β 1 0



 (1)

where β ≥ 0 is a parameter that indicates that the loss incurred in losing contests is
greater than the payoff gained from winning them. When β = 0, the row and column
sums of P are zero: this is the simplest case. When β > 0, the game becomes more
complicated, particularly when we would like to relate the behaviour at the population
level to the individual level, as we discuss later in sections 2.2 and 2.3.

2.2. Deterministic rate equations

Setting the RPS game in the context of Evolutionary Game Theory (EGT), one
considers a large well-mixed population of N players playing the game against opponents
drawn uniformly at random from the whole population. We are then interested in the
proportions of the total population who are playing different strategies at future times.
The state of the system is given by the population fractions (xa(t), xb(t), xc(t)) :=
(NA(t), NB(t), NC(t))/N where NA,B,C(t) are the numbers of players playing strategies
A, B and C respectively.

The proportions of the population playing each strategy are expected to change over
time according to the typical payoff received, as compared to the average over the whole
population. The simplest mean field model for the resultant dynamics are the replicator
equations

ẋi = xi(t)





∑

j

Pijxj(t)−
∑

j,k

Pjkxj(t)xk(t)



 , (2)

where the subscripts i, j take values in {a, b, c} and the proportions xi sum to unity.
A common variant of the model introduces the additional mechanism of mutation

between the three strategies, occurring between any pair with equal frequency. Mutation
affects the rate of change of strategy i over time since the strategies other than i will
contribute new players of i at rates µ while i will lose players at a rate given by 2µxi
as these players switch to a different strategy.

In the particular case of Rock–Paper–Scissors, the combined effects of the repli-
cator dynamics together with mutations between strategies gives rise to the ordinary
differential equations

ẋa = xa[xc − (1 + β)xb + β(xaxb + xbxc + xaxc)] + µ(xb + xc − 2xa),

ẋb = xb[xa − (1 + β)xc + β(xaxb + xbxc + xaxc)] + µ(xa + xc − 2xb),

ẋc = xc[xb − (1 + β)xa + β(xaxb + xbxc + xaxc)] + µ(xa + xb − 2xc).

(3)
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We note that these equations are to be solved in the region of R3 where all coordinates
are non-negative. This region is clearly invariant under the vector field (3). Moreover,
the constraint xa + xb + xc = 1 is required to hold at all times.

The system (3) possess a single interior equilibrium point x∗ = (1/3, 1/3, 1/3), in
which the three strategies are balanced. Straightforward linear stability analysis shows
that this equilibrium is stable when µ > µc = β/18. Previous work by Mobilia [18]
has shown that the system undergoes a Hopf bifurcation as µ is lowered and that for
µ < µc trajectories of (3) spiral away from x∗ and are attracted to a unique periodic
orbit which is stable, i.e a limit cycle.

2.3. Stochastic chemical reactions

The replicator equations shown above are expected to hold in the limit of infinitely
large population size. In finite populations, however, the behaviour of many competing
individuals is more appropriately modelled as a Markov process describing the random
timing individual events. It is common practice to specify such a stochastic model as a
chemical reaction scheme, which, chosen appropriately should recover the ODEs (3) in
the limit of large systems. It is interesting to note that different stochastic individual-
based models may give rise to the same mean-field ODEs, so that the question of
constructing a stochastic reaction scheme starting from a particular set of ODEs does
not have a unique answer. Moreover, the construction of the stochastic model is subject
to a number of natural constraints, for example that all reaction rates are at all times
non-negative.

With the goal of studying dynamics around the fixed point x∗ a reaction scheme was
proposed in [18] based on consideration of the frequency-dependent Moran model with
rates chosen to match the mean-field equations as required in the infinite system limit.
Although that scheme is well motivated and perfectly correct for the regimes previously
studied, it will not be suitable for our study of the stochastic dynamics around the
limit cycle, as the reaction rates can take negative (unphysical) values near the system
boundaries. Thus our first task here is to choose a reaction scheme that permits us to
study the whole of state space in the case β > 0, µ ≪ 1.

For the “replicator” part of the dynamics we propose the chemical reactions

A+B
1−→ B +B, B + C

1−→ C + C, C +A
1−→ A+A, (4)

A+B +B
β−→ B +B +B, (5)

A+A+ C
β−→ A+A+A, (6)

B + C + C
β−→ C + C + C, (7)

Mutations are included in the model through the additional six reactions

A
µ−→ B, B

µ−→ C, C
µ−→ A,

A
µ−→ C, B

µ−→ A, C
µ−→ B.

(8)

This information can be more usefully summarised in terms of an integer ‘jump matrix’
S describing the changes to x caused by the various reactions (so element Sij represents
the increment or decrement of species i taking place in reaction j), and vector r(x)
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describing the reaction rates. For the reactions in (4) we have

S1 =





−1 0 1 −1 1 0
1 −1 0 1 0 −1
0 1 −1 0 −1 1



 , (9)

r1 = (xaxb, xbxc, xcxa, βxax
2
b , βx

2
axc, βxbx

2
c)

T . (10)

Whilst the mutation reactions in (8) are specified by

S2 =





−1 0 1 −1 1 0
1 −1 0 0 −1 1
0 1 −1 1 0 −1



 , (11)

r2 = (xa, xb, xc, xa, xb, xc)
T . (12)

The jump matrix and rate vector for the full scheme are found simply by concatenation:

S = (S1,S2) , r =

(

r1
r2

)

. (13)

We choose to express our reactions in this form in order to appeal to a very useful
theorem of Kurtz [15], stating that in the limit N → ∞ of large populations, the
stochastic process described by these reactions converges to the deterministic dynamical
system

ẋ = Sr(x) .

It is easy to check that the above scheme thus reproduces the system (3). Although we
will develop our analysis for this particular chemical reaction scheme, it is important
to reiterate that it is not unique in reproducing the replicator equations in the large
population limit. However, we argue that the important features of the stochastic
slowdown we observe will be common to all reasonable models, including those with
more biologically realistic properties such as involving only two-body interactions, and
permitting varying population sizes.

2.4. Simulations

To gain an initial insight into the differences between the deterministic and stochas-
tic viewpoints for the RPS game with mutation,we use the Gillespie algorithm [7], the
standard and widely used stochastic simulation algorithm (SSA), to simulate the chem-
ical reactions (4)-(8) in order to illustrate the typical dynamics in the stochastic case
and to compare that with the deterministic case.

Figure 1 presents results comparing the stochastic and deterministic cases for two
different values of the mutation rate µ. In each plot we show a typical realisation of
the stochastic simulation algorithm, for two different finite, but large, population sizes
N = 28 (green dashed line) and N = 216 (red dashed line), together with a trajectory
of the ODEs (blue solid line).

The solution to the ODEs is shown by the blue line in 1(a). The red dashed line
in 1(a) starts from a very similar initial condition and evolves similarly: spiralling out
towards the boundary of phase space and at large times occupying a region of phase
space near to the limit cycle but with small fluctuations around it. The green dashed
line in 1(a) shows much larger fluctuations around the limit cycle, including excursions
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that take the simulation onto the boundaries of the phase space, and much closer to the
corners. Note that because of the mutations, the boundaries of the phase space are not
absorbing states for the random process (or invariant lines for the ODE dynamics).

Figure 1(b) illustrates the behaviour for a significantly larger value of µ for which
the limit cycle for the ODEs (blue curve) lies much closer to the centre of the phase
space. The SSA for N = 216 lies close to the limit cycle but fluctuates around it; for
N = 28 the fluctuations are much larger and the sample path of the stochastic process
lies outside the limit cycle for a large proportion of the simulation time.

To quantify the differences between the three results shown in each part of figure 1,
we focus on one specific aspect of the dynamics: the period of the oscillations around
the central equilibrium point at (1/3, 1/3, 1/3). For the ODEs, the period of the limit
cycle can be defined to be the smallest elapsed time between successive crossings of a
hyperplane in the same direction, for example the plane xa = 1/2 (this is a sensible
choice because, as we will later show, the effect of noise is smallest at this part of the
cycle). We denote by TODE the period of the deterministic limit cycle. In stochastic
simulations, a trajectory may by chance cross a hyperplane back and forth several times
in quick succession, thus the time between crossings may not represent a full transit
of the cycle. We avoid this complication by measuring the period as three times the
transit time between a hyperplane and its 2π/3 rotation. The expected value of this
oscillation period in the stochastic case we denote by TSSA.

SSA result of N=28

SSA result of N=21�

ODEs result

0.2 0.4 0.6 0.8 1.0
y1

0.2

0.4

0.6

0.8

1.0

y2

SSA result of N=28

SSA result of N=216

ODEs result

0.2 0.4 0.6 0.8 1.0
y1

0.2

0.4

0.6

0.8

1.0

y2

(a) (b)

Figure 1: Illustrative comparisons between trajectories of the ODEs (blue solid lines) and realisations
of the stochastic simulations (red and green dashed lines). ‘Unbalanced’ means that the payoff matrix
is not zero-sum, i.e. β > 0. (a) When µ ≪ µc the trajectories lie close to the boundary of the phase
space, β = 1/2, µ = 1/216. (b) When µ is only slightly smaller than µc, trajectories lie much closer to
the central equilibrium point, β = 1/2, µ = 5/198.

Figure 2 provides a quantitative comparison of the different dependencies of the
average period TSSA of the stochastic simulations and the period TODE of the determin-
istic ODEs on the mutation rate µ, for 0 < µ < µc. The blue solid line indicates the
relatively slow increase in ther period TODE as µ decreases. The red error bars indicate
the range of values of the oscillation period in the stochastic case, with the averages
of those values shown by the red dots. The data in this figure for the stochastic sim-
ulations was obtained from simulations at a fixed value N = 217 with µ varying, but
for presentational reasons that will become clearer later in the paper we have chosen
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to plot the scaled quantity µN lnN on the horizontal axis. We then observe that if µ
is sufficiently small then the difference between TODE and TSSA is very significant: the
oscillations in the stochastic simulation have a much longer period, on average, than
that predicted by the ODEs, while if µN lnN is larger than unity, the agreement in
terms of the oscillation period, between the deterministic and stochastic simulations is
very good. We label these two regimes ‘Region III’ and ‘Region I’ respectively. The
cross-over region where µN lnN ≈ 1 we label ‘Region II’.

ODE

Simulation N=131072

0.001 1 1000 10
6
μNlnN1

10

100

1000

10
4

10
5

T

������ ��� ������ �� ������ �

Figure 2: Comparison between the period TODE of the limit cycle in the deterministic case and the
average period TSSA of oscillations in the stochastic case, as a function of the parameter µ at fixed
N = 217. The blue line shows TODE and red dots indicate TSSA. As µ decreases, the two periods start
to separate from each other in Region II where µN logN ≈ 1.

In the following sections of the paper we will focus on each of the three regions in
turn. In section 3 we study the period of the limit cycle in the ODEs (region I). In
section 4 we analyse the stochastic dynamics to determine the average period of cycles in
region III. In section 5 the cross-over between the deterministic and stochastic regions
is understood through the analysis of an SDE that combines both deterministic and
stochastic effects, thus describing region II.

3. Analysis of the periodic orbit in region I

Region I is defined to be the right hand side of figure 2; more precisely, it is the regime
in which N ≫ 1 and (N logN)−1 ≪ µ < µc. In this region, stochastic simulation results
show only very small fluctuations about a mean value, and this mean value coincides
well with numerical solutions to the ODEs. This is evidence that the behaviour of the
deterministic ODEs provides a very good guide to the stochastic simulation results in
this region. Hence our goal in this section is to explain the asymptotic result that the
period TODE ∝ −3 log µ for µ small, but for large, even infinite, N as shown in figure 3.

The standard approach to the analysis of trajectories near the limit cycle, in the
regime where it lies close to the corners of the phase space, is to construct local maps
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Figure 3: Period TSSA for three different values of N , compared with the result for TODE (blue solid
line) on a log-linear plot indicating the scaling law TODE ∝ −3 log µ which applies in region I where the
stochastic simulations behave in a similar way to the ODEs.

that analyse the flow near the corners, and global maps that approximate the behaviour
of trajectories close to the boundaries [8]. Figure 4 shows the construction of a local
map in the neighbourhood of the corner where xc = 1, following by the global map from
this neighbourhood to a neighbourhood of the corner where xa = 1. In this section we
consider local and global maps in turn, in sections 3.1 and 3.2, and then in section 3.2
we study their composition, and deduce an estimate for the period TODE of the limit
cycle.

3.1. Local map

Using the notation as in figure 4, we begin by defining a neighbourhood of the
corner xc = 1 by setting 0 < h ≪ 1 to be a small positive constant. We assume that

the trajectory for the ODEs (3) starts at the point (x
(0)
a , h, x

(0)
c ) at time t = 0, and

arrives at the point (h, x
(1)
b , x

(1)
c ) at time t = T1 > 0. For the whole time 0 < t < T1 the

trajectory lies close to the corner (0, 0, 1), so we suppose that 0 < xa, xb, u ≪ 1 where
u := 1− xc. Note that we have xa + xb − u = 0 since xa + xb + xc = 1.

Then the behaviour of the ODEs (3) in this neighbourhood is very similar to that
of their linearisation obtained by dropping terms higher than linear order in the small
quantitites 0 < xa, xb, u ≪ 1. For the linearised system we obtain











ẋa = µ− xa(3µ − 1),

ẋb = µ− xb(1 + β + 3µ),

u̇ = −xb(1 + β) + xa + 2µ− 3µu.

(14)

The equations (14) are linear and constant coefficient and so can be solved analytically;
note that the first and second equation are actually decoupled from each other and from
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global map 

local map

(0,0,1) (1,0,0)

(0,1,0)

Figure 4: This picture shows the local map and the global map starting from initial position (x0
a, h, x

0
c).

the u equation. Integrating from t = 0 to the time t = T1, we denote the point on the

trajectory by (xa(T1), xb(T1), xc(T1)) ≡ (x
(1)
a = h, x

(1)
b , x

(1)
c ) where

x
(1)
b =

µ

γ

(

1− e−γT1
)

+ he−γT1 , (15)

x(1)a = h =
µ

γ̂
+ e−γ̂T1

(

x0a −
µ

γ̂

)

(16)

where γ := 1 + β + 3µ and γ̂ := 3µ− 1. Equation (16) allows us to express T1 in terms

of x
(0)
a :

T1 = −1

γ̂
log

(

h− µ/γ̂

x
(0)
a − µ/γ̂

)

, (17)

and we can now use (17) to eliminate T1 from (15) and obtain a relationship between

x
(0)
a and x

(1)
b which takes the form

x
(1)
b =

µ

γ
+

(

h− µ

γ

)

(

h− µ/γ̂

x
(0)
a − µ/γ̂

)γ/γ̂

. (18)

This relationship is the key part of the local map near the point (xa, xb, xc) = (0, 0, 1)
that we will use in what follows.

3.2. Global map

For the global map, we observe that trajectories remain close to one of the boundaries
(in this case, the boundary xb = 0) and so we propose that the trajectory starting from
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(x
(1)
a = h, x

(1)
b , x

(1)
c ) arrives at the point (x

(2)
a , x

(2)
b , h) at time t = T2. Referring to (3),

the ODE for xb near the boundary can be well approximated by taking just ẋb = µ
(since xa + xc = 1 when xb = 0), so its solution is

x
(2)
b = x

(1)
b + (T2 − T1)µ = x

(1)
b + C0µ, (19)

where we denote the elapsed time by C0 := T2 − T1. As is typical in these analyses,

trajectories take a relatively short time to arrive at the hyperplane x
(2)
c = h starting

from x
(1)
c , compared to the time taken to move along the part of the trajectory from

x
(0)
c to x

(1)
c ; this is intuitively because the absolute value of ẋc on the global part of the

map between T1 and T2 is much larger than on the local part, i.e. when 0 < t < T1. As
a result, the time taken on the global part of the map, C0 := T2 − T1 is much less than
the local travel time T1; the majority of the time spent on the limit cycle is taken up
with travel near the corners.

The composition of local and global maps near the corner xc = 1 and boundary
xb = 0 is now straightforward: we combine (18) and (19) to obtain:

x
(2)
b = C0µ+

µ

γ
+

(

h− µ

γ

)

(

h− µ/γ̂

x
(0)
a − µ/γ̂

)γ/γ̂

. (20)

We can now use the permutation symmetry inherent in the dynamics to complete
the analysis. Due to the fact that the model is rotationally symmetric, the next stage
of the evolution is local map again with the same parameter values. The trajectory will

start from (x
(2)
a , x

(2)
b , h) and stay near the corner (1, 0, 0) for long time before arriving

at a point, say, (x
(3)
a , h, x

(3)
c ) where we will construct another global map, and so on:

x(0)a
local−−−→ x

(1)
b

global−−−→ x
(2)
b

local−−−→ x(3)c
global−−−→ x(4)c

local−−−→ x(5)a
global−−−→ x(6)a → · · · (21)

which can be summarised further as

x0
local & global−−−−−−−−−−−→ x1

local & global−−−−−−−−−−−→ x2
local & global−−−−−−−−−−−→ x3 → · · · (22)

Equations (21) and (22) above define a one-to-one correspondence between the points

{(x(n)a , x
(n)
b , x

(n)
c )} on a trajectory and a sequence of values (selecting appropriate coor-

dinates) {xn}. From the previous discussion on local and global maps, the map that
generates the sequence {xn} takes the form

xn+1 = C0µ+
µ

γ
+

(

h− µ

γ

)(

h− µ/γ̂

xn − µ/γ̂

)γ/γ̂

, (23)

where, as before, γ := 1 + β + 3µ and γ̂ := 3µ − 1.
If iterates of the map (23) converge to a fixed point then this corresponds to a stable

limit cycle for the ODE dynamics. We now estimate the location of this fixed point and
deduce an estimate for the period of the resulting limit cycle.

Let yn := xn/µ be a scaled version of xn, then (23) can be written as:

yn+1 = C0 +
1

γ
+

(

h− µ

γ

)

1

µ

(

µyn + µ
1−3µ

h+ µ
1−3µ

)
1+3µ+β
1−3µ

= C0 +
1

γ
+

(

h− µ

γ

)

µ
1+3µ+β
1−3µ

−1
(

yn(1− 3µ) + 1

h(1− 3µ) + µ

)
1+3µ+β
1−3µ

, (24)
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where γ := 1+3µ+β. Denoting the fixed point of the map by y∗, from (24) we see that
y∗ = C0 + 1/γ + o(µ) in the limit µ → 0. This observation is crucial in order to ensure
that we obtain the correct leading-order behaviour and distinguish carefully between
the various small quantities in the problem. Then it follows that x∗ = µy∗ ≈ C1µ, where
C1 = C0 + 1/(1 + β), in the limit µ → 0.

Introducing this leading-order approximation for x∗ into (17), we obtain an estimate
of the time spent in a neighbourhood of the corner T1 of the stable limit cycle:

T1 =
1

1− 3µ
log

(

h+ µ(1− 3µ)

C1µ+ µ(1− 3µ)

)

. (25)

Since in this case µ is assumed to be very small, (25) takes the form, at leading order,

T1 =
1

1− 3µ
log

(

1

µ

)

+ B0 as µ → 0. (26)

where B0 is a constant.
Finally, as remarked on above, because trajectories remain near each corner for

large parts of the period of the orbit, the local map travel time T1 is the dominant
contribution, compared to the time spent on the global map. Hence the period of the
limit cycle is given at leading order by considering only the contribution from the three
local maps required in one full period of the limit cycle. Hence our estimate for TODE

becomes
TODE ≈ 3T1 = −3 log µ+ B1, (27)

as µ → 0.

4. Analysis of the periodic orbit in region III

We now turn our attention to Region III, where the period of the orbit in the
stochastic simulations increases much more rapidly as µ decreases, at fixed finite N ,
than the prediction from the analysis of the ODEs in section 3 above suggests. Figure 5
illustrates this by plotting the period TSSA as a function of µN lnN for three different
values of N . By plotting, on a log-log scale, the mean values of the periods and the
error bars from an ensemble of stochastic simulations we observe that the period TSSA ≈
(µN lnN)−1 for small µ, with a constant that does not demonstrate any systematic
dependence on N . In fact, the range of values of N presented here is small: we cannot
distinguish from these numerical results the precise form of the dependence on N .

As well as the dependence of the period TSSA on µ it is also of interest to determine
the extent of Region III in which this scaling behaviour applies; in other words how
small is µ required to be in order to move into this regime? The numerical data in
figure 5 indicate that the cross-over from the ODE result to this new stochastic scaling
arises when µN logN = 1.

In this section, then, our aim is to explain firstly why this new scaling regime in
Region III exists, and secondly, why it extends as far as µN lnN = 1. We will find that
in fact the period should scale as TSSA ≈ (µN)−1 for small µ, but that the observation
that the cross-over occurs when µN lnN = 1 is correct; this explains why we have
chosen to plot figure 5 in the form that it appears.

Careful examination of the numerical simulations in this regime show that their
behaviour is qualitatively different from that in Region I discussed above. In stochastic
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Figure 5: Log-log plot of the period TSSA as a function of the mutation rate µ for three different values
of N , showing that in region III the mean period scales roughly as TSSA ≈ (µN lnN)−1.

simulations the system becomes strongly attracted to the corner states (which would
be absorbing states in the absence of mutation) and then can only escape from a corner
when a mutation occurs; mutations are rare when µ is small. Our analysis later in
this section shows that the mean period of oscillation is dominated by the contribution
from the time needed to escape one step from a corner. Trajectories then typically
move along a boundary towards the next corner. We show below that, although this
latter part requires at least N − 1 steps, the expected total time required is less than
the waiting time to escape from the corner. Our schematic approach is illustrated in
figure 6 while sketches this separation into a first step away from a corner, following by
movement along the adjoining boundary.

In the following subsections we consider in detail three issues: firstly, in section 4.1 we
show that the probability that the motion along a boundary is towards the next corner
in the sequence, and that the systems state hits this next corner with a probability
that tends to 1 as N → ∞. Since we are interested in the regime where the mutation
rate is very small, we carry out this calculation in the limit µ = 0. In section 4.2 we
compute the expected time until the system hits this next corner, again setting µ = 0.
Finally, in section 4.3 we compare this expected time for the system state to evolve
along the boundary with the expected time until a mutation occurs. Together, this
analysis confirms the intuitive picture outlined in the previous paragraph.

4.1. Probability of hitting the absorbing status

In this section we consider the state-discrete and time-continuous Markov Chain
dynamics of the system evolving along a boundary, ignoring the effect of mutation. In
this case the system is a one dimensional chain of states labelled 0 to N , corresponding
to, for example, the number of strategy B individuals invading a population of size N
initially composed of all strategy A individuals. Let hi = Pi(hit 0) be the probability
that the system hits (and is therefore absorbed by) state 0 having started at node i,
and similarly let h̄i = Pi(hit N) be the probability of hitting state N having started at
node i.

12



Figure 6: Sketch of the dynamics in the small-µ stochastic limit. The system is strongly attracted to
corner states where the population is all in one state. Mutation is then the only mechanism for escape,
and the expected time for the first mutation (curved arrows) is longer than the expected time required
for subsequent steps along a boundary towards the next corner (straight lines with arrows).

When the system is in state i there are two possible moves: jumps to the left or
to the right. The rate at which jumps to the left occur is pi = (N − i)i2/N2; the
rate at which jumps to the right occur is qi = (N − i)i2(1 + β)/N2 + (N − i)i/N . The
transition probabilities of moving to the left and to the right are then ℓi = pi/(pi + qi)
and ri = qi/(pi + qi); clearly ℓi + ri = 1. We remark that the ratio of transition
probabilities can be simplified to be

ℓi
ri

=
pi
qi

=
1

(1 + β) + N
i

. (28)

This allows us to derive a recurrence relation for the probability hi that the system hits
the state 0 starting from state i:











h0 = 1,

hi = ℓihi−1 + rihi+1, for i = 1 . . . N − 1,

hN = 0.

(29)

Recurrence relations of this type are straightforward to solve by standard methods [20].
In our case we find

h1 =

∑N−1
i=1 γi

1 +
∑N−1

i=1 γi
, (30)

and of course h̄1 = 1− h1. Here we define γi as

γi :=

i
∏

j=1

ℓj
rj

=

i
∏

j=1

j

j(1 + β) +N
<

i!

N i
(31)

We now examine the limiting behaviour of this result and prove that h1 → 1 as N → ∞.
Since

0 < γi+1 =
pi+1

qi+1
γi,
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and pi+1/qi+1 < 1, it follows that γi+1 < γi. Also, since γi < i!/N i, we conclude that

0 <
N−1
∑

i=1

γi = γ1 +
N−1
∑

i=2

γi

≤ 1

N
+ (N − 2)

2

N2
,

which clearly tends to zero as N → ∞. Hence

lim
N→∞

N−1
∑

i=1

γi = 0. (32)

In conclusion, we have shown that, given that it starts at state 1, the probability of the
system hitting the absorbing state at N tends to 1 as N → ∞.

4.2. Average hitting time

Having shown that the system reaches stateN with high probability, we now consider
the expected time until this happens. Let Ti be is the first time at which the system
hits an absorbing state starting from state i at time 0, i.e. the time at which the system
hits either 0 or N . Define τi = E(Ti) for 0 ≤ i ≤ N , the expected hitting time starting
from state i. Clearly we have that τ0 = E(T0) = 0 and τN = E(TN ) = 0. Through
a similar calculation to setion 4.1, we now compute τ1, the mean time taken to reach
either 0 or N , starting from 1.

The recurrence formula for expected hitting times τi can be computed as the sum of
the expected time spent in state i before jumping either left or right, plus the expected
future time required when in that new state:

τi =
1

pi + qi
+ ℓiτi−1 + riτi+1, for i = 1 . . . N − 1. (33)

This three-term recurrence can be rearranged to give a two term recurrence on the
variable τi−1 − τi, whose solution yields

τ1 =

(

1 +
N−1
∑

i=1

γi

)−1 N−1
∑

i=1





1

qi

N−1
∑

j=i

γj
γi



 . (34)

We now wish to examine the asymptotic behaviour of this expression for the expected
hitting time, in the limit when N ≫ 1. Initial numerical explorations lead us to propose
that τ1 ∝ lnN when N is sufficiently large. In the remainder of this section we will
deduce this estimate systematically.

First, note that from (32) we know that

lim
N→∞

(

1 +

N−1
∑

i=1

γi

)

= 1. (35)

From the discussion before (28) we have that

qi = i(N − i)
1

N

[

i

N
(1 + β) + 1

]

⇒ 1

qi
=

N

i(N − i)

1

1 + (1 + β) i
N

. (36)
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Since

1

2 + β
<

1

1 + (1 + β) i
N

< 1,

(as 1 ≤ i ≤ N − 1), we can bound
∑N−1

i=1 1/qi as follows

1

2 + β

N−1
∑

i=1

N − i+ i

(N − i)i
≤

N−1
∑

i=1

1

qi
≤

N−1
∑

i=1

N − i+ i

(N − i)i

=⇒ 2

2 + β
ln(N − 1) ≤

N−1
∑

i=1

1

qi
≤ 2 (1 + ln(N − 1)) ,

(37)

Next we prove that, for any 1 ≤ i ≤ N − 1,
∑N−1

j=i γj/γi is bounded as N → ∞.
From the definition of γj we see that

γj
γi

=

j
∏

k=i+1

1

(1 + β) + N
k

<

j
∏

k=i+1

k

N + k
=

j!

i!

(N + i)!

(N + j)!
. (38)

Therefore,

N−1
∑

j=i

γj
γi

<

N−1
∑

j=i

j!

i!

(N + i)!

(N + j)!
=

1

N − 1

[

i+N − 2N
N !(N + i)!

i!(2N)!

]

≤ 2.

We note that if we set i = N − 1 in the above, then the limiting value is small, due to
the influence of the negative term that is a ratio of factorials, but the limit must still
be positive; in the case i = 1 we have a limit that is closer to 1. In all cases, since
1 ≤ i ≤ N − 1 the limiting value must be non-negative, and at most 2. Hence we see
that

lim
N→∞

N−1
∑

j=i

γj
γi

≤ 2. (39)

We now apply the results (35), (37) and (39) to (34) in order to deduce the result

τ1 ≤ 4 (1 + ln(N − 1)) (40)

which is an upper bound on the expected time, starting in state 1, until the system hits
one of the two absorbing states 0 or N . Together with the conclusion of the previous
section, in which we computed that the probability that the system arrives in state N
tends to 1 as N → ∞, we can conclude that the expected time required for the system
to hit state N is no greater than 4(1 + lnN). In using this result later, we will omit
the subdominant constant term 1 since we are concerned primarily with values of N for
which lnN ≫ 1, in the limit N → ∞.

4.3. The effect of mutation on the stochastic dynamics

The analysis in the previous two subsections ignored the role of mutation in order to
understand the dynamics on the boundary of phase space and, in particular, to estimate
the time required to travel along the boundary to a corner.
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Since in the absence of mutation the corners are absorbing states, mutation plays an
important role in moving the system from a corner (state 0) to state 1 on the boundary,
allowing it then to travel further towards the next corner. The mutation rate µ, together
with our assumptions on the stochastic dynamics, imply that, for any system state, the
time until the next mutation event M occurs is exponentially distributed:

P(M > t) = e−µNt

For system states on the boundary of phase space, we would expect that mutations
would move them away, into the interior, where the analysis in the previous sections
might become less useful. This is unlikely to happen if mutations are not expected
during the time taken for the system to move along the whole boundary, i.e. if

P(hit state N before mutation) = P(M > 4 lnN) = e−4µN lnN (41)

is close to 1. From the form of (41), if N is fixed and µ → 0, then this probability of
hitting state N before any mutation occurs tends to 1, which implies that the system
remains in boundary states and the analysis of sections 4.1 and 4.2 applies. On the
other hand, if N → ∞, and µ remains fixed, then mutation is expected to occur before
the system reaches the next corner, and so the system state tends to leave the boundary.
The intermediate balance between these two regimes occurs when µ ∼ (N lnN)−1.

An equivalent discussion can be framed in terms of the sketch of the dynamics
indicated in figure 6. The time required for a full period of the oscillation is composed of
two contribution on each boundary piece: the first contribution τm is the time required to
jump, via mutation, from a corner to a state with one new individual of the appropriate
kind. This mutation takes an expected time τm ∼ 1/(Nµ) since there are N individuals
and each mutates independently at a rate µ. The second contribution τ1 is the time
required to traverse the boundary starting from state 1. This is approximately τ1 =
4 lnN . If τm ≫ τ1, i.e. µ ≪ (4N lnN)−1, then the largest contribution to the mean
period of oscillation is from the mutation events, and so we expect in this regime to
have the period of the orbit being dominated by the time required for three independent
mutations to occur, i.e. TSSA ∼ 3/(Nµ).

5. Analysis of the periodic orbit in region II

Region II is the cross-over region between ‘large µ’ where the ODE approximation
is valid, and ‘small µ’ where the stochastic approach based on a Markov Chain, is
appropriate. Using the analysis of the previous section we see mathematically speaking
that region II arises where µ ∼ (N lnN)−1. In region II the stochastic simulations show
large fluctuations around the ODE predictions, but the system does not spend time
always near the boundaries of phase space, so it is not clear that the analysis of region
III should apply directly.

In this section we examine region II, and explain why the fluctuations in the stochas-
tic system act to increase the period of the oscillations rather than to decrease it. This
involves a third approach to the dynamics, using a stochastic differential equation de-
rived from the chemical reaction model and which is valid for large, but not infinite,
system sizes. We show that the SDE approach captures, in some detail, the transition
between the deterministic and the fully stochastic regimes described in previous sections
of the paper.
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5.1. Stochastic differential equation

It was proved by Kurtz [15] that trajectories of Markov jump processes specified in
terms of a stoichiometric matrix S and rate vector r(x), as discussed in section 2.3, are
well approximated for large N by the trajectories of the SDE

dx = A(x)dt+
1√
N

G(x)dW(t) . (42)

Here dWt is a vector, each element of which is an independent Wiener process [6], and
the vector A and matrix G are given by

A(x) = Sr(x) , Gij(x) = Sij

√

rj(x) . (43)

In the calculation of the statistical properties of this equation, it is more useful to
consider the matrix B = GGT . For our system we obtain the explicit formulas

A1 = xa[xc − (1 + β)xb + β(xaxb + xbxc + xaxc)] + µ(xb + xc − 2xa),

A2 = xb[xa − (1 + β)xc + β(xaxb + xbxc + xaxc)] + µ(xa + xc − 2xb),
(44)

B11 = xaxb + xcxa + (xax
2
b + xcx

2
a)(2 + β) + µ(2xa + xb + xc),

B12 = B21 = −(xaxb + xax
2
b(2 + β) + µ(xa + xb)),

B22 = xaxb + xbxc + (xax
2
b + xbx

2
c)(2 + β) + µ(xa + 2xb + xc).

(45)

5.2. Asymptotic phase of points near the periodic orbit

In order to explain the increase in the period of the orbit as the fluctuations grow,
we use the SDE (42) to derive an equation for the angular velocity around the limit
cycle, and then compute the period of the limit cycle by integrating the angular velocity.
In this section we extend this idea by deriving an SDE for the angular velocity. This
allows us to investigate the effects of noise on the period of the orbit. A fully analytic
approach is unfortunately not possible, so our approach is a combination of numerical
and analytic methods. Identifying the correct scalings for features of the limit cycle
however enables us to confirm the various asymptotic scalings found in regions I and
III and to see how they both contribute in this region, region II.

Since the phase space is two dimensional, we follow the presentation started in
section 2.4, showing the periodic orbit in the plane R

2 using coordinates

y = (y1, y2) =

(

xa +
1

2
xb,

√
3

2
xb

)

. (46)

These, and other definitions for our coordinate systems, are illustrated in figure 7. Let
Γ ⊂ R

2 be the set of points on the limit cycle, i.e. the red circle in figure 7. We
further define the polar coordinates (ρ, θ) based on the centre of the triangle, in the y

coordinates, i.e. let

ρ(y) =

√

√

√

√

(

y1 −
1

2

)2

+

(

y2 −
√
3

6

)2

,
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Figure 7: The red circle is the limit cycle when β = 1/2, µ = 1/216, the blue triangle is the limit
cycle when β = 1/2, µ = 10−6. When µ is very small, it is hard to tell the difference between triangle
boundary and limit cycle without zooming-in.

and

θ(y) = arctan

(

y1 − 1/2√
3/6− y2

)

.

Let T be the period of limit cycle, i.e. T is the smallest positive value such that ∀y ∈ Γ,
y(t) = y(t + T ) but for any 0 < T

′

< T , y(t) 6= y(t + T
′

). All points in the interior
of the limit cycle (except the equilibrium point at y = (1/2,

√
3/6) are attracted to the

limit cycle, enabling us to define a ‘landing point’ on Γ to which they are asymptotically
attracted. Although the ω-limit set of a point y0 ∈ R

2 would clearly be the entire orbit
Γ, by looking at the sequence defined by advancing for multiples of the period T we
can identify a single limit point p∞(y0). Specifically we write the time-evolution map
for the ODEs as φt(y0) := y(t) where y(t) solves the ODEs (3) subject to the initial
condition y(0) = y0. Then we define the sequence {pn}n≥0 by

pn = φnT (y0), and p0 = y0.

and the limit point

p∞(y0) := lim
n→∞

φnT (y0).
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Note that p∞(y0) ∈ Γ always, and that if y0 ∈ Γ then p∞(y0) = y0.
We can now define the asymptotic phase ϕ(y0) of a point near, but not necessarily

on, the limit cycle by setting

ϕ(y0) := θ(p∞(y0)). (47)

So that if y0 ∈ Γ, then ϕ(y0) = θ(y0), and curves on which ϕ(y0) is constant cross
through Γ at these points. We can use ϕ(y0) to consider the influence of noise, which
pushes trajectories off the limit cycle, causing time advances or delays, as illustrated
in figure 8. This concept has been explored recently for a more general class of limit
cycles in [19], whose approach we follow here. It is analogous to the noise-induced
drift observed in various ecological models including invasions [22] and the evolution of
altruism [5]; see [23] for an introduction.

The three-fold rotation symmetry of the problem suggests that it is enough to focus
on the interval ϕ ∈ [−π/3, π/3].

boundary

limit cycle

Figure 8: Illustration of the idea of the asymptotic phase of small perturbations, using the lower part
of Γ as shown in the (y1, y2) plane. Each of the three black points lies on the limit cycle Γ: trajectories
evolve along Γ from left to right in the figure. Perturbations of these points (in green) towards the
boundary lead to trajectories that have longer periods than Γ has, hence the green arrows indicate the
asymptotic convergence of trajectories back to the limit cycle to points that lie to the left of the black
dots. In contrast, perturbations (red dots) towards the interior of Γ lead to states that are accelerated
by trajectories and converge asymptotically to points on Γ that are ahead of the black dots.

5.3. A stochastic differential equation for ϕ

Since ϕ is a function on the phase space, we can derive an SDE for the evolution of
ϕ using (42) and Ito’s formula [6]. We obtain

dϕ(x) =







∑

i

Ai(x, t)∂iϕ(x) +
1

2N

∑

i,j

[B(x, t)]ij ∂i∂jϕ(x)







dt

+
1√
N

∑

i,j

Gij(x, t)∂iϕ(x)dWj(t). (48)

Note that our notation ϕ(x) really means ϕ(y(x)) since ϕ is defined by (47) which uses
the coordinates y defined in (46). The advection vector A and the matrix B ≡ GGT

are those given previously in (44) and (45).
Although analytic expressions for ϕ and its first and second derivatives in phase

space, i.e. ∂aϕ, ∂bϕ, ∂
2
aϕ, ∂a∂bϕ, and ∂2

bϕ are unknown, they can be estimated nu-
merically. Since we are interested in the behaviour of perturbations near Γ, we have
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estimated these derivatives at points on Γ and then used them to define two functions
of ϕ:

ω∞(ϕ(x)) :=
∑

i

Ai(x, t)∂iϕ(x), and

ω1(ϕ(x)) := −µ

2

∑

i,j

[B(x, t)]ij ∂i∂jϕ(x). (49)

Note that we have included in the definition of ω1 a prefector of µ. This is necessary since
the stochastic slowdown effect is stronger for smaller µ, as indicated by the previous
stochastic analysis, and shown numerically in the left panel of figure 10. We can conclude
that, curiously, whilst the noise itself has negligible strength (order 1/N) in region II,
the noise-induced slowdown has an order one impact on the dynamics. Specifically, the
leading order form of equation (48) in large N and small µ is simply

d

dt
ϕ = ω∞(ϕ) − 1

Nµ
ω1(ϕ), (50)

which enables us investigate the contributions to the period of the limit cycle of the
advection term A and the fluctuation-related contribution B, separately.

Figures 9 and 10 show numerically-computed approximations to the two functions
ω∞(ϕ) and ω1(ϕ), respectively. We observe that ω∞ remains positive as ϕ increases,
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Figure 9: Numerically-computed function ω∞(ϕ) for five different values of µ from 5 × 10−5 up to
8× 10−4.

with a maximum near, but not exactly at, ϕ = 0. This shows that points on Γ move
in the direction of increasing ϕ; there is no reason for any symmetry about ϕ = 0 due
to the cyclic nature of the dynamics. The shape of the curve ω∞(ϕ) varies little with µ
except near the equilibrium points in the corners, near ϕ = ±π/3. Figure 10 shows the
variation in ω1(ϕ) as µ increases. Note that the definition of ω1 in (49) contains a factor
of µ: including this factor of µ yields curves for ω1(ϕ) that are extremely close to each
other even as µ increases by a factor of 16. Note also that the curves tend to zero at both
ends, indicating that the changes in µ do not change the contribution from ω1(ϕ) to the
time spent near each equilibrium point. In the first part of the plot, ω1(ϕ) is negative,
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Figure 10: Left: Numerically-computed functions
∑

i,j
[B(x, t)]

ij
∂i∂jϕ for five different values of µ.

Right: Numerically-computed function ω1(ϕ), the data collapse visible here justifies the inclusion of the
explicit factor of µ in the defintion (49). Note that ω1 appears to cross through zero close to ϕ = ±π/3.

indicating that the angular velocity here overall, from (50), is increased, so that the
period of the orbit would be decreased. But this effect is more than compensated for
by the behaviour in the second part of the plot where ω1(ϕ) becomes more strongly
positive, leading to a decrease in the overall angular velocity here, and hence a larger
increase in the period of the orbit. The combined effect is therefore to increase the
period of the orbit, and this increase is driven directly by the fluctuations described by
the matrix B in the original SDE.

Equation (48) can be used to quantify these contributions to the period of the orbit
since the expected period of the limit cycle can be computed from the SDE (48) by
writing

TSDE = 3

∫ π
3

−π
3

dϕ

ϕ̇
= 3

∫ π
3

−π
3

dϕ

ω∞(ϕ)− 1
Nµω1(ϕ)

, (51)

which, considering the case N ≫ 1, can be approximated by

TSDE = 3

∫ π
3

−π
3

dϕ

ω∞(ϕ)
+

3

Nµ

∫ π
3

−π
3

ω1(ϕ)

ω2
∞(ϕ)

dϕ+O

(

1

N2

)

.

The first integral on the right hand side corresponds to the ODE approximation TODE ≈
3 ln(1/µ), valid for larger µ; we infer that ω∞(ϕ) depends (relatively weakly) on µ. The
second integral contains the leading-order N -dependent behaviour and shows that this
is a contribution to the period that scales as T ∝ 1/(Nµ). Although ω∞ depends on
µ, as observed above, this dependence is visible most obviously near to the equilibrium
points at which points ω1(ϕ) is close to zero. Overall we might therefore expect the
µ-dependence of the second integral to be evn weaker than than lnµ dependence of the
ω∞(ϕ) function itself. If this were the case, we would be left with just the T ∝ 1/(Nµ)
dependence that would come to dominate the expression for TSDE for small µ.

In this way we observe that the SDE is able to capture the effects of fluctuations
near the limit cycle and yields an expression for the period of oscillations that indicates
that the period increases as µ decreases, leading into region III-type scaling at small µ.
Moreover, at larger µ (and larger N at fixed µ) we observe that the period of oscillations
is given by the deterministic expression computed for region I. Hence this analysis of
region II is able to capture the cross-over in scalings for the periodic orbit as we move
between regions I and III.
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6. Discussion

We have presented a detailed analysis of the simple Rock–Paper–Scissors game,
played in a well-mixed population, where the effects of cyclic competition and mutation
lead to oscillatory dynamics. In the mean-field ODE model where the strategy mix
in the population is described by replicator equations, there is a stable limit cycle,
produced in a Hopf bifurcation, when the mutation rate µ is small enough compared
to the asymmetry β in the pay-off matrix. For large finite population sizes N , the
dynamics of the finite population, as given by stochastic ‘chemical reactions’ between
the species, closely follow the ODE dynamics. Here we investigated a specific chemcial
reaction scheme that was chosen to be straightforward to implement in the parameter
regime we are interested in. It should be noted that this choice is not unique and may
well not be optimal; for example, it does not allow for the possibility of β < 0.

Stochastic simulations in the regime of very small mutation rates shows qualitatively,
and quantitatively, different dynamics for the oscillations, with the system remaining at
corners for most of the time. Mutations are rare, but an essential part of the dynamics.
We presented a detailed description of the dynamics in this regime using a Markov chain
model for the dynamics on the boundary of phase space, and then arguing that in this
regime the assumption that the dynamics took place on the boundary was valid, and
led to a self-consistent picture.

Our third approach to the problem was to construct a stochastic differential equa-
tion, which, according to a theorem of Kurtz [15] approximates the individual-based dy-
namics for large but finite populations. This was successful in capturing the cross-over
between the mean-field and fully stochastic regimes as the mutation rate µ decreased
for a fixed population size. In general the effects of noise on nonlinear oscillators are
complex and topic of significant current research interest, see [19]. Our work here has
concentrated on understanding the cross-over between regions I and III. The cross-over
occurs when µN lnN ≈ 1, and the period of the oscillations changes from the mean-
field approximation TODE ∼ 3 ln(1/µ) to the stochastic approximation TSSA ∼ 3/(Nµ).
Figure 11 summarises these three regions of the behaviour, plotting the period of the
oscillations as a function of µN lnN , comparing the expected period of stochastic sim-
ulations with N = 217 with the theoretical results presented above.

Our main conclusion is that as demographic fluctuations become more important
(i.e. at small mutation rates and for small population sizes) the period of the cyclic
oscillations increases significantly above that which would be predicted on the basis of
the mean-field ODE model.

To fully assess the importance of this effect in real populations will require further
work. The presence of three-body interactions in our chemcial reaction scheme could
be viewed as less biologically realistic, and some theorists would prefer a stochastic
description in terms of a birth-death process with fitness and weak selection. Similarly,
we considered here a model with fixed population size, yet, in the wild, population size
is of course variable. One promising route to addressing these modelling concerns has
recently been presented in [4], providing a robust mapping from Lotka-Volterra popu-
lation models with two-body interactions and varying populations into their stochastic
dynamics in frequency space. We would argue, however, that the salient features of the
stochastic slowdown we observed should be common to all reasonable model specifica-
tions: in region I the dynamics are dominated by waiting for rare mutation events, and
in regions II and III the format of the noise is subdominant to the deterministic features
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Figure 11: A summary of the three regions for the dynamics, comparing the theoretical predictions for
the mean period T of oscillations each region with the results of stochastic simulations for N = 217.

of the limit cycle. A more exciting direction for future work is to explore the role of the
spatial distribution of populations, for example, one might ask if stochastic slowdown
also affects spiral waves (see e.g. [28, 29]).

Our very detailed work here should also provide a basis for investigation of many
similar, more complex, kinds of cyclic interaction. We also intend to examine situations
where the mean-field behaviours are known to produce more complicated dynamics, for
example through the occurrence of heteroclinic networks, or other bifurcations from the
heteroclinic cycles involved. This work then will provide a starting point to guide the in-
vestigation of these situations when stochastic effects due to large but finite populations
of individuals become important.
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