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Localized States in a Model of Pattern Formation in a Vertically Vibrated Layer∗

J. H. P. Dawes† and S. Lilley‡

Abstract. We consider a novel asymptotic limit of model equations proposed to describe the formation of local-
ized states in a vertically vibrated layer of granular material or viscoelastic fluid. In physical terms,
the asymptotic limit is motivated by experimental observations that localized states (“oscillons”)
arise when regions of weak excitation are nevertheless able to expel material rapidly enough to reach
a balance with diffusion. Mathematically, the limit enables a novel weakly nonlinear analysis to be
performed which allows the local depth of the granular layer to vary by O(1) amounts even when
the pattern amplitude is small. The weakly nonlinear analysis and numerical computations provide
a robust possible explanation of past experimental results.
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1. Introduction. It has long been recognized that many externally driven and internally
dissipative physical systems spontaneously form patterns with lengthscales determined by
balances between physical processes taking place in the bulk of the medium rather than by
the precise experimental boundary conditions used. Many examples of such systems are given
in the review by Cross and Hohenberg [12], the more recent article by Aranson and Tsimring
[1], and the books by Hoyle [21] and Pismen [27]. In the case that such pattern-forming
instabilities are supercritical, one expects an almost regular domain-filling structure to arise.
The selection between different planforms is necessarily due to nonlinear effects, and progress
can be made in many cases through weakly nonlinear analysis near the onset of the instability.

In the case that the pattern-forming instability is subcritical, bifurcation-theoretic results
in one space dimension [22, 33] indicate that generically one should expect localized states to
arise as well as small-amplitude unstable patterned solutions. Although such localized states
are also unstable near the pattern-forming instability, they persist to finite amplitude and
can become stable over an open region of parameter space. The overall typical bifurcation
structure observed is known as “homoclinic snaking” and persists to a great extent even in
finite domains [4, 15].

Detailed results for the Swift–Hohenberg equation, often proposed as a canonical model
equation for pattern formation, have been given by many authors, including Sakaguchi and
Brand [29], Crawford and Riecke [11], Hiraoka and Ogawa [20], and Burke and Knobloch [6,
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7]. In variational systems (of which Swift–Hohenberg is an example) a central part of our
understanding of the existence of stable localized states over intervals in parameter space
near the “Maxwell point” is given by the locking, or “pinning,” that arises between the
short lengthscale of the pattern and the long lengthscale of the modulating envelope. The
analysis of these pinning effects demands intricate calculations of the exponentially small
terms in the weakly nonlinear analysis. Such calculations for the one-dimensional Swift–
Hohenberg equation have been carried out recently by Kozyreff and Chapman [23, 8], although
the corresponding qualitative geometrical insights were identified by several earlier authors
[28, 3, 10].

Renewed recent interest in the mathematical structure of localized states in pattern-
forming systems has also resulted in the reconsideration of past experimental work where
localized states were observed. This paper is motivated in particular by experimental obser-
vations of “oscillons” in large-aspect-ratio circular layers of sinusoidally vertically vibrated
material. Umbanhowar, Melo, and Swinney [31] investigated pattern formation in a layer of
granular material (bronze spheres of diameter approximately 0.15–0.18mm). In such an ex-
periment the primary control parameters are the frequency of vertical oscillation f (typically
in the range 10–40Hz) and nondimensional acceleration Γ = 4π2Af2/g, where the vertical dis-
placement of the layer is given by z = A sin 2πft and g is the usual gravitational acceleration.
As Γ is increased, an initially flat layer undergoes a pattern-forming instability, producing
standing-wave patterns of squares (at lower frequencies) or stripes (at higher frequencies)
which oscillate subharmonically with respect to the driving frequency. In both cases there is
substantial hysteresis, indicating a subcritical bifurcation.

For intermediate frequencies 20 < f < 35Hz, Umbanhowar, Melo, and Swinney [31]
reported the existence of stable localized states, which they called oscillons, in a region of the
(f,Γ) plane far below the linear instability to periodic patterns (either stripes or squares).
These oscillons took the form of a radially symmetric subharmonically oscillating heap of
grains; after one cycle of the driving frequency the heap becomes a crater in the surface
of the granular layer, and after two cycles of the driving frequency the heap is reformed.
Detailed observations indicated that oscillons are formed in the bulk of the medium rather
than by boundary effects and are long-lived coherent structures [31]. Interestingly, the authors
observed oscillons with a diameter typically of 30 particles extending up to a maximum height
of around 15 particles in a layer of uniform depth (when at rest) of 17 particles. These
observations indicate that the local disturbance to the layer height near an oscillon is an O(1)
effect; in the bottom of a crater the layer height is reduced to one third, or perhaps even less,
of its value in the undisturbed parts of the layer away from the oscillon.

Oscillon states in vertically vibrated fluid, rather than granular, layers were observed by
Lioubashevski and coworkers [24, 25]. In the second of these two papers the working fluid used
was a non-Newtonian colloidal suspension of clay particles. The regime diagram in the (f,Γ)
plane is qualitatively very similar to that measured by [31] in the granular case in that the
pattern-forming instability is markedly subcritical, and the oscillons exist, in both cases, in a
region that is even more subcritical than the region of stable finite-amplitude patterns. That is,
at the linear instability the system jumps rapidly to a finite-amplitude pattern which persists
as the forcing is reduced (Γ decreases), but then there is a clear lower stability boundary
for the patterned state below which it does not persist, but below which oscillons are stable.
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There is another boundary, at even lower forcing, below which the oscillons can no longer
persist, but this is clearly distinct from the lower boundary of the existence region of the
patterned states. In terms of the usual, Swift–Hohenberg-based, picture of the formation of
localized states, this presents a serious difficulty, in that localized states are usually anticipated
to persist over an interval of parameter values that contains the Maxwell point of the system,
and both the Maxwell point and the whole interval of parameter values over which localized
states exist are found to lie above the saddle-node bifurcation point at which the patterned
state turns around and restabilizes, not below it. In this paper we investigate a resolution of
this apparent contradiction.

Given the difficulty in constructing accurate continuum models for granular media, the
proposition of phenomenological equations such as those used by Tsimring and Aranson [30]
and Winterbottom, Cox, and Matthews [32] is an entirely reasonable modeling approach. Our
aim in this paper is to show that it is possible to extend the analysis carried out by these
authors to allow the layer height to vary by large (i.e., order unity) amounts within a weakly
nonlinear framework. This approach enables us to attempt a mathematical description of lo-
calized states for a model equation for oscillons that nevertheless reconciles the requirements
of analyzing dynamics near the pattern-forming instability, but where the layer height under-
goes large spatial variations. The phenomenological approach has similarities with the work
of Eggers and Riecke [17], who determined a pair of model equations constructed on more
physical grounds and showed numerically that an oscillon solution existed. We suspect that a
detailed study of the Eggers–Riecke model would show a bifurcation structure similar to that
of the model we consider here.

The structure of the paper is as follows. In section 2 we introduce the phenomenological
model proposed by Tsimring and Aranson [30] and summarize the asymptotic scalings intro-
duced by Winterbottom, Cox, and Matthews [32] in their analysis. This provides a useful
point of contrast with the scalings we employ. In section 3 we set out the details of our
alternative weakly nonlinear analysis, which leads to a novel Ginzburg–Landau-like equation
that captures more details of the nonlinear terms. The results of numerical investigations of
the original Tsimring–Aranson model are presented in section 4. Section 5 concludes.

2. Model equations. Tsimring and Aranson [30] proposed that pattern formation in a
vertically vibrated (granular) medium could be described by two local scalar variables: the
height of the free surface H(x, y, t) and the local density ρ(x, y, t). The height H(x, y, t)
oscillates subharmonically in the instability and so can be written as H = ψ(x, y, t)eiπft+
c.c., introducing the complex-valued order parameter ψ, and where (here and subsequently)
c.c. denotes the complex conjugate. After making simplifying assumptions concerning the
coupling between ψ and ρ, they are led to the following pair of coupled PDEs:

ψt = γψ̄ − (1− iω)ψ + (1 + ib)∇2ψ − ψ|ψ|2 − ρψ,(2.1)

ρt = α∇ · (ρ∇|ψ|2) + β∇2ρ.(2.2)

The amplitude equation (2.1) for ψ is well known to describe pattern formation in systems
which form dispersive waves when they are subjected to parametric forcing; see [9, 5] and
references therein. Conservation of mass implies that the PDE for ρ must take the form of a
conservation law. The terms on the right-hand side of (2.2) describe the ejection of particles
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from more active regions and the local diffusion of particles, respectively. The coupling term
−ρψ in (2.1) describes, in as simple a form as possible, the damping effect that an increase
in the local density has on the initial instability. As Tsimring and Aranson [30] discuss, this
term is more generally of the form −g(ρ)ψ for some function g(ρ) that saturates at large ρ.
They remark that taking g(ρ) to be linear is appropriate for the case of thin granular layers
which we will consider here.

We suppose that the initial state with ψ ≡ 0 has a constant layer density ρ = ρ0. The real
parameter γ represents the strength of the external periodic forcing, and we will use γ as our
primary bifurcation parameter; the trivial solution ψ = 0, ρ = ρ0 is linearly stable when γ is
sufficiently negative. We suppose implicitly that (2.1)–(2.2) are to be solved in a finite spatial
domain with periodic boundary conditions on ψ and ρ. The choice of boundary conditions
(within reason) is not expected to unduly influence the formation of localized states, although
it may affect some of the details of the bifurcation diagrams [15].

In this paper we will restrict our analysis to one space dimension: this is sufficient to
contrast the present approach with previous work. We will leave consideration of axisym-
metric, or indeed fully two-dimensional, structures to be the subject of future work. Our
analysis of steady states (∂/∂t ≡ 0) of (2.1)–(2.2) restricted to one space dimension begins by
integrating (2.2) to obtain

ρ(x) = K exp

(
−α
β
|ψ|2

)
.

The constant K can be determined from the conservation of ρ. Denoting the spatial average
of a function f(x) by 〈f(x)〉 ≡ 1

L

∫ L
0 f(x)dx, we have

ρ0 = 〈ρ(x)〉 = K

〈
exp

(
−α
β
|ψ|2

)〉
,

and hence, eliminating K, we have

ρ(x) = ρ0
exp

(− α
β |ψ|2

)
〈
exp

(− α
β |ψ|2

)〉 .(2.3)

So one-dimensional steady states of (2.1)–(2.2) are identical to steady states of the single
nonlocal ODE

0 = γψ̄ − (1− iω)ψ + (1 + ib)ψxx − ψ|ψ|2 − ρ0ψ
exp

(− α
β |ψ|2

)
〈
exp

(− α
β |ψ|2

)〉 .(2.4)

It is straightforward to investigate steady solutions of (2.4) using the continuation package
AUTO [16]. We solve (2.4) as a boundary-value problem in a finite domain of length L = 32π
with periodic boundary conditions. Figure 1 shows the resulting bifurcation diagram for
typical parameter values; the solution measure on the vertical axis is defined to be

N2 =

(
1

L

∫ L

0
|ψ|2 + |ψx|2 dx

)1/2

.
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Figure 1. Typical snaking bifurcation diagram for (2.4) showing the spatially periodic pattern branch which
bifurcates at lowest γ, and the two intertwining branches of localized states, which bifurcate from it. Stability is
not indicated. (a) The pattern branch stabilizes at a saddle-node bifurcation at γsn, and the branches of localized
states exist for γ well below γsn. (b) is an enlargement of (a) showing the usual intertwining bifurcation curves
associated with homoclinic snaking. Parameter values are α = ω = 4, b = β = ρ0 = 1, domain size L = 32π,
using periodic boundary conditions.

Figure 1(a) shows the location of the periodic pattern branch that bifurcates first as the driving
parameter γ increases. For the parameter values of Figure 1 this pattern-forming instability is
subcritical, and the initially unstable periodic branch turns around in a saddle-node bifurcation
at γsn and becomes stable at larger amplitude. Due to finite domain size effects, the two
branches of modulated patterns do not bifurcate from ψ = 0 at exactly γc = 3

√
2, but emerge

in a secondary bifurcation from the periodic pattern branch. The two branches correspond
to odd-symmetric and even-symmetric states, in agreement with symmetry arguments [15]
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Figure 2. Steady-state solution profiles at the saddle-node points a–f indicated in Figure 1(b). Solid and
dashed lines give the real and imaginary parts of ψ, respectively.

and exponential asymptotics [23, 8]. Localized solution profiles are shown in Figure 2 at
the saddle-node points a–f indicated in Figure 1(b). Timestepping the PDEs (2.1)–(2.2)
confirms, as in investigations of the Swift–Hohenberg equation and its extensions [6, 14], that
the localized states are stable on the parts of the curves in Figure 1 that have a positive
gradient. We anticipate that cross-link (“ladder”) branches of asymmetric states connect the
odd-symmetric and even-symmetric branches, as has been observed numerically for the Swift–
Hohenberg equation [6, 15]. This is argued to be the case on general bifurcation-theoretic
grounds by Beck et al. [2].

2.1. Linear and weakly nonlinear analysis. We now briefly summarize the linear stability
of the state ψ = 0 before turning to weakly nonlinear analysis. To determine the linear stability
it is enough to set ρ = ρ0 and, writing ψ = U + iV , we take real and imaginary parts of the
linearized version of (2.1). We obtain

∂

∂t

(
U
V

)
= L̃

(
U
V

)
≡

(
(γ − 1)U − ωV + Uxx − bVxx − ρ0U
ωU − (γ + 1)V + bUxx + Vxx − ρ0V

)
.
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Substituting (U, V ) = (U0, V0)e
σt+ikx in the usual fashion, we observe that if ωb− 1− ρ0 < 0,

then the most dangerous mode is k = 0, and instability occurs at γ0 =
√
ω2 + (1 + ρ0)2. In

the present situation we will concentrate on the alternative case, where ω is sufficiently large
so that ωb− 1− ρ0 > 0 and therefore the most unstable mode has a nonzero wavenumber kc
and critical parameter value γc given by

k2c =
ωb− 1− ρ0

1 + b2
and γc =

ω + (1 + ρ0)b√
1 + b2

.(2.5)

It can be easily verified that γ0 ≥ γc with equality only at the codimension-two point ωCT =
(1 + ρ0)/b, γCT = (1 + ρ0)

√
1 + b2/b.

The most natural weakly nonlinear calculation to perform to determine the nature of this
instability is to fix the values of ω, b, α, β, and ρ0. We write

γ =
ω + (1 + ρ0)b√

1 + b2
+ ε2γ2, X = εx,

set ∂/∂t ≡ 0, and expand ψ in powers of ε by writing

(
U
V

)
= ε

(
U1

V1

)
+ ε2

(
U2

V2

)
+ ε3

(
U3

V3

)
+ · · · .

On substitution into (2.4) at O(ε) we obtain the solution

(
U1

V1

)
=

(
c
1

)
A(X)eikcx + c.c.,

where for convenience we define the coefficient c = b+
√
1 + b2 and as usual introduce the am-

plitude A(X) whose behavior is determined by a solvability condition obtained at higher order.
The solution at O(ε2) is straightforward to obtain. At third order we require contributions
from the nonlocal term in (2.4). From (2.3) we obtain

ρ = ρ0
1− α

β ε
2(U2

1 + V 2
1 ) +O(ε3)

〈1− α
β ε

2(U2
1 + V 2

1 ) +O(ε3)〉 ,

= ρ0 +
αρ0
β
ε2

(〈U2
1 + V 2

1 〉 − U2
1 − V 2

1

)
+O(ε3).

In this expression and what follows below, the interpretation of the average 〈f〉 is modified to
take into account the multiple scales in the expansion. We define

〈f(x,X)〉 = kc
2πL

∫ L

0

∫ 2π/kc

0
f(x,X) dx dX,

where 0 ≤ X ≤ L is the size of the domain, on the scale of the long variable X.
Hence the leading order nonlinear contribution from −ρψ arises at O(ε3) and is given by

−ε3αρ0
β

(
U1

V1

)(〈U2
1 + V 2

1 〉 − U2
1 − V 2

1

)
.
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The complete equation at O(ε3) is therefore

L̃
(
U3

V3

)
=

( −γ2U1 − 2U2xX + 2bV2xX + U1(U
2
1 + V 2

1 )
−γ2V1 − 2V2xX − 2bU2xX + V1(U

2
1 + V 2

1 )

)

+
αρ0
β

(
U1

V1

)(〈U2
1 + V 2

1 〉 − U2
1 − V 2

1

)
.(2.6)

By applying the solvability condition, we deduce the amplitude equation for A(X) in the
usual way. In practice this amounts to identifying the terms on the right-hand side of (2.6)
which contain eikcx and taking an inner product with the row vector (−c 1) which is the left
(adjoint) eigenvector corresponding to the eigenvalue 0. We obtain the amplitude equation

0 = a0AXX + γ2A+ 3(φ− 1)(1 + c2)A|A|2 − 2φ(1 + c2)A〈|A|2〉,(2.7)

where we introduce the parameter combinations

a0 =
2(1 + b2)(ωb− 1− ρ0)

b(ω + b(1 + ρ0))
and φ ≡ αρ0

β
,

for notational convenience, following Winterbottom, Cox, and Matthews [32]. This equation
corresponds exactly (after a rescaling) to that derived by [32] for stripe patterns. In their
analysis they worked with the original system (2.1)–(2.2), expanded ψ as above, and wrote

ρ = ρ0 + ε2C(X,T ) + other terms at O(ε2) +O(ε3),(2.8)

where T = ε2t is a new slow timescale. From solvability conditions at O(ε3) and O(ε4),
respectively, they obtained the coupled amplitude equations

AT = A+AXX −A|A|2 −AC,(2.9)

1

σ
CT = CXX +

μ

σ
(|A|2)XX ,(2.10)

where μ/σ = 2φ/(3−φ). The equivalence of these two calculations can be easily seen: starting
from (2.9) and (2.10), one can set ∂/∂T ≡ 0 and integrate (2.10) to obtain

C(X) =
2φ

3− φ

(〈|A|2〉 − |A|2)

and hence obtain the nonlocal amplitude equation

0 = A+AXX +
3(φ− 1)

3− φ
A|A|2 − 2φ

3− φ
A〈|A|2〉,

which is equivalent to (2.7) after rescalings of A and X.
Returning to (2.7), we observe that the uniform straight roll pattern has amplitude |A0|2 =

γ2/[(3−φ)(1+c2)] and hence bifurcates supercritically when 0 < φ < 3 and subcritically when
φ > 3. Moreover, testing for modulational instability by setting A = A0(1 + aei�X) (taking
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A0 to be real) indicates that supercritical straight roll patterns (with the critical wavenumber
kc) are unstable to long wavelength modes when φ > 1; in the limit → 0 we obtain

0 = a(γ2 + 9(φ− 1)A2
0 − 2φA2

0) +O(a2) = a

(
6(φ− 1)

3− φ

)
+O(a2),(2.11)

showing that the coefficient of the linear term changes sign when φ passes through unity.
This calculation has a slightly formal nature since, by considering only steady states from the
beginning, we have not properly derived the ∂A/∂T term which would be expected to lie on
the left-hand side of (2.7). However, the result is in complete agreement with the analytic and
numerical work carried out by [32] on the equivalent (but time-dependent) system (2.9)–(2.10).

Work by Matthews and Cox [26] on systems with conservation laws leads us to suspect
that strongly modulated solutions to (2.7) exist, indicating that in large enough domains,
localized states might be observed. It is straightforward to see that (2.7) posed on an infinite
domain has a family of exact, sech-profile solutions given implicitly by

Aloc(X) =

(
4φ(1 + c2)〈A2

loc〉 − 2γ2
3(φ− 1)(1 + c2)

)1/2

sech

(
2φ(1 + c2)〈A2

loc〉 − γ2
a0

)1/2

X.(2.12)

After squaring and integrating this solution over −∞ < X < ∞, we obtain an explicitly
soluble relationship between 〈A2

loc〉 and γ2 given by

9(φ− 1)2(1 + c2)2〈A2
loc〉2 − 32a0φ(1 + c2)〈A2

loc〉+ 16a0γ2 = 0.

This expression is valid only when a modulation instability giving rise to solutions of the
form (2.12) exists, i.e., when φ ≥ 1. In the case φ = 1 the uniform solution A = A0 coincides
with the sech solution A = Aloc. For φ > 1 the curve of Aloc(X) solutions in the (γ2, 〈A2〉)
plane begins in γ2 > 0 at small 〈A2〉 before moving into γ2 < 0 at larger amplitude and
remaining there, with 〈A2〉 monotonically increasing as γ2 becomes increasingly negative. In
large but finite domains with periodic boundary conditions the sech profile is replaced by
an elliptic function, and the localized branch bifurcates in a secondary bifurcation from the
uniform solution A = A0, but the monotonic increase of 〈A2〉 as γ2 becomes increasingly
negative remains.

Overall this behavior is suggestive of the capacity of the original coupled system’s ability
to sustain localized states, but indicates that within the scalings adopted in this analysis
the effects of the nonlinearity are not captured sufficiently well to enable the formation of
strongly nonlinear localized states at larger amplitudes. In the next section we will introduce
new scalings to produce a novel amplitude equation containing a more complicated nonlocal
nonlinearity.

3. The “weak diffusion” limit. The physical intuition behind the formation of localized
states discussed in the introduction is extremely similar to the physical mechanisms identified
in magnetoconvection which stabilized large-amplitude convection cells even at high magnetic
field strengths due to a balance between magnetic flux expulsion from the eddy and diffusion of
the magnetic field [13, 14]. A similar physical intuition appears to contribute to the formation
of oscillons: localized states are stabilized when the rate of horizontal diffusion of the granular
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material is slow compared to the rate of expulsion of material from more active to less active
regions of the granular layer. Mathematically this corresponds to taking the ratio α/β to be
large. Considering (2.3), the appropriate balance is clearly ψ ∼ ε, α/β ∼ ε−2, so that the
full form of the nonlinearity is retained. Hence this limit is one in which the nonlinear rate
of expulsion of material balances the diffusion coefficient β, even when the amplitude of the
pattern is small. In order to keep the leading order problem tractable, it is therefore necessary
to also rescale the coefficient ρ0 ∼ ε2. This does not introduce a difficulty since the coefficient
ρ0 is only an adjustment to the order unity damping term provided by the real part of the
term −(1− iω)ψ in (2.4). By rescaling ρ0 to be small, we do not alter the qualitative structure
of the linear terms.

In summary we propose the scalings

α

β
=

1

ε2
, ρ0 = ε2h, X = εx,

and recompute the linear and weakly nonlinear analysis of the previous section. As before,
we write ψ = U + iV and expand in powers of ε:

(
U
V

)
= ε

(
U1

V1

)
+ ε2

(
U2

V2

)
+ ε3

(
U3

V3

)
+ · · · .

At O(ε) we have the slightly modified linear problem

∂

∂t

(
U
V

)
= L

(
U
V

)
≡

(
(γ − 1)U − ωV + Uxx − bVxx
ωU − (γ + 1)V + bUxx + Vxx

)
.

On substituting (U, V ) = (u0, v0)e
σt+ikx, we find that a pattern-forming instability occurs at

γ∗ = (ω + b)/
√
1 + b2 with critical wavenumber given by k2∗ = (ωb − 1)/(1 + b2). As before,

we assume that ω is sufficiently large (i.e., ω > 1/b) that the initial instability is at nonzero
wavenumber. We write γ = γ∗ + ε2γ2 and compute the solutions at O(ε) and O(ε2), which
are easily found to be

(
U1

V1

)
=

(
c
1

)
A(X)eik∗x + c.c.,

where c = b+
√
1 + b2 as before, and

(
U2

V2

)
= 2ik∗

(1 + b2)3/2

ω + b

(
0
1

)(
AXeik∗x − ĀXe−ik∗x

)
.

It is enough, in fact, to consider A(X) to be real in what follows, since the instability of the
uniform pattern that gives rise to modulated states is amplitude-driven rather than phase-
driven. At O(ε3) we obtain

L
(
U3

V3

)
=

⎛
⎝ −γ2U1 − 2U2xX + 2bV2xX + U1(U

2
1 + V 2

1 ) + hU1
exp(−U2

1−V 2
1 )

〈exp(−U2
1−V 2

1 )〉

−γ2V1 − 2V2xX − 2bU2xX + V1(U
2
1 + V 2

1 ) + hV1
exp(−U2

1−V 2
1 )

〈exp(−U2
1−V 2

1 )〉

⎞
⎠ ,
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from which we extract an amplitude equation for A(X) by taking an inner product with the
row vector (−c 1) and then multiplying by (k∗/π) cos(k∗x) and integrating over one spatial
period 2π/k∗. The resulting amplitude equation takes the form

0 = (c2 − 1)γ2A+
4k2∗(1 + bc)(1 + b2)3/2

ω + b
AXX − 3(c2 − 1)(1 + c2)A3 +

1

2
I(X),(3.1)

where I(X) denotes the contribution from the final terms in the entries in the column vector
on the right-hand side:

I(X) =
k∗
π

∫ 2π/k∗

0
(1− c2)2A cos2 k∗x exp[−(1 + c2)4A2 cos2 k∗x]K dx,

where, as previously, we define K = h/〈exp(−α
β |ψ1|2)〉. We define the rescaled amplitude

B(X) =
√

2(1 + c2)A and observe that the integral can be written more compactly as a
derivative with respect to B:

I(X) =
k∗
√
2(1− c2)K

π
√
1 + c2

∫ 2π/kc

0
−1

4

d

dB

[
exp

(−2B2 cos2 k∗x
)]

dx.(3.2)

A further simplification can be made by writing 2 cos2 k∗x = 1 + cos 2k∗x and rescaling the
integration variable by writing y = 2k∗x. We then obtain

I(X) =

√
2(c2 − 1)K

2π
√
1 + c2

d

dB

[
e−B2

∫ π

0
exp

(−B2 cos y
)
dy

]
.

The y-integral is now in a standard form: it is a modified Bessel function of the first kind; see
section 8.431 of [19]. More precisely, we have (by definition) that

I0
(−B2

)
=

1

π

∫ π

0
exp

(−B2 cos y
)
dy

is the modified Bessel function of the first kind of order zero. I0(z) is closely related to the
usual Bessel function of the first kind, J0(z): I0(z) = J0(iz). In contrast to J0(z), I0(z) is
a monotonically increasing function when z is real. Note that I0(−B2) = I0(B

2) (this can
be shown easily by changing the direction of integration by introducing ỹ = π − y), and that
I0(0) = 1. Hence the nonlinear nonlocal term I can be compactly written as

I(X) =

√
2(c2 − 1)K

2
√
1 + c2

d

dB

[
e−B2

I0
(
B2

)]
.

After similar manipulations we have a similarly compact expression for the integral K:

K =
h〈

e−B2
I0 (B2)

〉 .
Hence (3.1) can be further tidied up by introducing the rescaled amplitude B(X) which results
in the amplitude equation

0 = γ2B + a1BXX − 3

2
B3 + h

d
dB

[
e−B2

I0(B
2)
]

2
〈
e−B2I0(B2)

〉 ,(3.3)

where the coefficient a1 = 2(1 + b2)(ωb− 1)/[b(ω + b)].
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3.1. Small-amplitude periodic and localized states. Although a full analytic study of the
solutions of (3.3) is beyond the scope of this paper, we can deduce that it has several features
in common with (2.7). At small amplitude, solutions of (3.3) are given approximately by
solving

0 = a1BXX +B(γ2 − h− h〈B2〉) + 3

2
(h− 1)B3 +O(B5).

As in the previous section, it is straightforward to examine both the uniform-amplitude and
the modulated solutions of this equation. Uniform solutions B = B0 satisfy

0 = γ2B0 − 3

2
B3

0 + h

(
−B0 +

1

2
B3

0

)
+O(B5

0),

indicating that, similar to (2.7), the bifurcation to spatially periodic states is supercritical if
h < 3 and subcritical if h > 3. On an infinite domain, modulated solutions with a sech profile
satisfy the implicit relation

Bloc(X) =

(
4(h− γ2 + h〈B2

loc〉)
3(h − 1)

)1/2

sech

(
h− γ2 + h〈B2

loc〉
a1

)1/2

X.

After squaring and integrating, as before, we obtain the quadratic relation

9(h− 1)2〈B2
loc〉2 − 64a1h〈B2

loc〉+ 64a1(γ2 − h) = 0.

In the special case h = 1 we again see that the uniform solutions coincide with the sech ones.
When h > 1 we can compute that the curve in the (γ2, 〈B2〉) plane on which Bloc(X) solutions
exist for small amplitudes exists in γ2 > h before moving into γ2 < h at larger 〈B2〉. As noted
toward the end of section 2.1, in a finite domain with periodic boundary conditions the sech
solution is replaced by one which can be written in terms of an elliptic function.

3.2. Larger-amplitude localized states. At larger amplitude the localized states resemble
a section of uniform-amplitude spatially periodic pattern confined between two fronts connect-
ing the pattern envelope to the trivial zero state. In this section we derive an approximate
form for these wider localized states and show that this approximate expression agrees very
well with numerical bifurcation diagrams computed using AUTO.

We begin by observing that the nonlocal amplitude equation (3.3) can be integrated after
multiplying through by BX . This gives the “energy-like” expression

E =
γ2
2
B2 +

a1
2
(BX)2 − 3

8
B4 +

h

2

[
exp(−B2)I0(B

2)

〈exp(−B2)I0(B2)〉 − 1

]
,(3.4)

where the −1 has been introduced for convenience so that the solution B(X) ≡ 0 lies in the
set of solutions with E = 0. Suppose now that we consider solutions of (3.3) for which the
localized state occupies a given fraction /L of the domain 0 ≤ X ≤ L and has a constant
amplitude B = Bf , before dropping rapidly to zero for the remaining part of the domain, of
width L − . We approximate by assuming that this “wide” localized state has a piecewise
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constant amplitude, and ignore terms containing derivatives of B. The integral term in (3.3)
can be approximated by

〈
e−B2

I0(B
2)
〉
≈ 

L
e−B2

f I0(B
2
f ) +

L− 

L
≡ I�.

There are two criteria that must be satisfied in order to construct a wide localized state. First,
the value of Bf must satisfy the amplitude equation when the nonlocal term has the value I�,
i.e.,

0 = γ2Bf − 3

2
B3

f +
h

2

2Bfe
−B2

f (I1(B
2
f )− I0(B

2
f ))

I� ,

where I1(z) ≡ I ′0(z) is the modified Bessel function of the first kind of order 1. Second, the
value of E must be constant along such a solution, i.e., E|B=Bf

= E|B=0, which implies

γ2
2
B2

f −
3

8
B4

f +
h

2

⎡
⎣e−B2

f I0(B
2
f )

I� − 1

⎤
⎦ =

h

2

[
1

I� − 1

]
.

Eliminating h/I� between these two expressions gives a relation between γ2 and Bf which is,
rather surprisingly, “universal” in the sense that it does not depend on any other parameters
in the problem:

γ2 =

3
2B

2
f

[
eB

2
f + 1

2B
2
f I1(B

2
f )− (1 + 1

2B
2
f )I0(B

2
f )
]

eB
2
f +B2

fI1(B
2
f )− (1 +B2

f )I0(B
2
f )

≡ F(B2
f ).(3.5)

For small Bf we can derive an intuitive feel for the function F(B2
f ) by computing its Taylor

series:

F(B2
f ) = 1 +

10

9
B2

f +
115

1296
B4

f +
349

116640
B6

f −
25567

8398080
B8

f − 57859

211631616
B10

f +O(B12
f ).

It turns out that the above approximation is numerically very useful: it is accurate to better
than 0.01% for the O(1) values of Bf that arise for typical parameter values used in numerical
simulation.

The function F(B2
f ) defines the “Maxwell curve” for the system where a solution consisting

of a localized active state of length , along with a higher material density outside this active
region, has the same energetic value as the trivial state. It therefore should give a prediction
of where localized states should be found. Figure 3 compares the curve (3.5) with solutions
of the amplitude equation (3.3) and shows that it correctly predicts the location of the upper
half of the curve of localized states, when the localized states have become broad enough to
be accurately represented by the piecewise constant ansatz proposed just after (3.4) above.
Numerical results indicate that shorter localized states always exist underneath and to the
right of the Maxwell curve since they must reconnect to the uniform solution near γ2 = h > 3.
Although we have not ruled out their existence in γ2 < 1, we do not observe this numerically
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Figure 3. Comparison of the “universal” Maxwell curve (3.5) (dashed line) with solutions of (3.3) (solid
lines). The constant solution of (3.3) represents the spatially periodic pattern and bifurcates subcritically. As
in Figure 1, the branch of localized states bifurcates from this branch at small amplitude and extends further to
the left (i.e., it is more subcritical). The agreement between the location of the larger-amplitude localized states
and the Maxwell curve is excellent. Parameters are ω = h = 4, b = 1. Domain size 0 ≤ X ≤ 20, with periodic
boundary conditions.

and propose that γ2 = 1 provides a lower bound on the location of the center of the snaking
curve. Transforming γ2 = 1 back into the original unscaled variables implies a lower bound
γmin = γ∗ + β/α. This estimate, of course, cannot take into account the width of the snaking
region which arises through pinning between the periodic pattern and its envelope. Therefore
it is not directly an estimate of γlb, although it is useful to make this comparison; see Figure 4.
For the parameter values used in Figure 1 we have γmin = 5/

√
2 + 1/4 ≈ 3.685, which is

consistent with the observed location of the snaking in Figure 1. Given this expression for
γmin, we might expect the location γlb of the left-most saddle-node bifurcation on the snaking
curve to follow a similar scaling γlb − γ∗ ∼ α−1. This scaling is confirmed by Figure 4, which
indicates that γlb does indeed approach γ∗ in this way, in the limit ε → 0. Comparisons
between the curves in Figure 4 for domain sizes L = 24π, 32π, 64π indicate that the deviation
of the slope from −1 at large α appears to be due to finite domain size effects: at large α
the localized states at γlb become broader and can be correctly captured only in increasingly
large domains.
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Figure 4. Location of the left-most saddle-node bifurcation γlb on the snaking curve for (2.4) as α increases
(solid line), in the limit ε → 0, setting ρ0 = 4/α so that αρ0/β = 4 is kept constant, as is required for the
“weak diffusion” limit. Curves for three domain sizes are shown: L = 24π (dashed), L = 32π (dash-dotted),
and L = 64π (solid). The dash-triple-dotted line is the curve γmin = γ∗ + β/α, which has slope −1, for
comparison. The horizontal dotted line indicates α = 4, used in Figures 1 and 2. Other parameter values are
ω = 4, b = β = 1.

4. Numerical results. In this section we discuss a brief selection of numerical results
which illustrate how the localized states evolve as first γ and then ω is varied. We then
present, in section 4.3, numerical results showing that the turns in the homoclinic snaking
curves disappear in some parameter regimes, although the localized states persist; we refer to
this novel behavior as “smooth snaking.”

4.1. Further up the snaking curves. Although the discussion above indicates that local-
ized states appear well below the saddle-node bifurcation on the periodic pattern branch at
γ = γsn (see Figure 1) when ω = 4, it is clearly of substantial interest to try to see how the
bifurcation structure evolves away from ω = 4. This is in general a complex issue, which is
discussed in detail elsewhere for simpler pattern-forming systems; for example, the change in
the most unstable wavenumber (2.5) as ω varies not only gives rise to changes in the order
and locations in which periodic pattern branches bifurcate from the trivial solution ψ = 0,
but also affects the snaking structure and how it may, in a finite domain, reconnect with the
periodic branches at large amplitude [4, 15]. In fact, in the present case this reconnection is
not always observed: for the parameter values of Figure 1 the localized states develop kinks
which fill the domain outside the localized state, as shown in Figure 5. It is striking that the
wavelength within the localized states in Figure 5 increases rapidly as we move away from the
snake. Figure 5(d) shows the development of a kink outside the original localized state. As a
result of the kink, the density ρ(x) in the quiescent region near the endpoints of the domain
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Figure 5. Evolution of the localized states as γ increases, above the snaking regime, near the labels odd and
even in Figure 1(a). Parameters are (a) γ = 4.243, (b) γ = 4.3434, (c) γ = 4.408, (d) γ = 4.559. For all plots
α = ω = 4, b = β = ρ0 = 1, domain size L = 32π with periodic boundary conditions. Solid and dashed lines
indicate the real and imaginary parts of ψ(x), respectively.

has an unphysically high value. We have not investigated the stability of these states; even
if they are stable within the model (2.1)–(2.2) they are highly unlikely to be relevant to the
interpretation of experimental results.

4.2. Evolution as ω varies. Figure 6 plots the continuation in ω of a number of key
bifurcation curves in an attempt to convey the region of existence of the localized states
shown in Figures 2 as ω moves away from ω = 4.

Near ω = 4 we see that the curves of saddle-node bifurcations on the snake remain almost
horizontal, and far below γsn. Even though γsn refers only to the saddle-node on a single one
of the many branches of periodic patterned states (it corresponds to the branch that bifurcates
first as γ increases for ω = 4), experience suggests that saddle-nodes on the other periodic
branches will extend by similar amounts into values of γ below the linear instability at γc.
Thus, over a range of ω, periodic patterns are stable down to γ− (ω+(1+ ρ0)b)/(1+ b

2)1/2 ≈
−0.06, while localized states are stable below this, down to γ − (ω + (1 + ρ0)b)/(1 + b2)1/2 ≈
−0.2. Hence the model equations (2.1)–(2.2) are capable of generating the clear separation of
localized and patterned regimes seen experimentally in the papers discussed in section 1.

As ω decreases, the location in γ of the left-most saddle-node bifurcations in Figure 1
decreases, following the linear stability boundary γc(ω). As the most unstable wavenumber kc
associated with γc(ω) decreases, it is not surprising that the wavenumber within the localized
states also decreases dramatically, as shown in Figure 7. Such wide, almost domain-filling, lo-
calized states are unlikely to have physical relevance for the same reason as those states higher
up the snake, discussed in section 4.1; the density ρ(x) outside the localized state becomes
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Figure 6. Continuation of bifurcation curves in the (ω, γ − (ω + (1 + ρ0)b)/(1 + b2)1/2) plane. Along the
dashed curve γ0 the trivial state is unstable to perturbations with zero wavenumber. Along the solid curve γc
given by (2.5(b)) the trivial state first becomes unstable to nonzero wavenumber perturbations as γ is increased.
The black dot marks the codimension-two point ω = ωCT , γ = γCT where these curves intersect. The dotted
curve γsn marks the location of the saddle-node bifurcation on the periodic branch for the wavenumber which is
most unstable for ω = 4. Other solid and dash-dotted curves indicate the evolution of the location of saddle-node
bifurcations from the three saddle-node bifurcations labeled a (blue dash-dotted line), c (black solid line), and
e (red dash-triple-dotted line) in Figure 1(b), whose profiles are shown in the corresponding parts of Figure 2.
Other parameters are α = 4, b = β = ρ0 = 1, with a domain size L = 32π and periodic boundary conditions.

unphysically large, an order of magnitude greater than that inside the layer. Continuation
of these localized states in γ indicates that they grow not by the addition of further periods
of a periodic pattern, but by developing kinks, producing solutions similar to Figure 5(d).
The development of these kinks also produces the rather wild meandering of the saddle-node
curves seen in the vicinity of the point (3.2, 1.35) in Figure 6. As these saddle-node curves
(at finite amplitude) move into the region above γc, they fill the domain and hence become
physically irrelevant. We have not determined their ultimate fate, which appears to depend
sensitively on the domain size.

As ω increases above ω = 4, we find that many of the saddle-node bifurcations disappear
in cusp bifurcations (for example, at the point (5.0,−0.18) in Figure 6). This is indicative of
a “smoothing out” of the snaking curves in a manner very similar to that to which we will
turn our attention in the following section.

4.3. Smooth snaking. One of the major effects of the nonlocal term in (2.4) is to introduce
a tilt to the usual homoclinic snaking bifurcation diagram. Without a nonlocal term, for
example in the quadratic-cubic or cubic-quintic Swift–Hohenberg equation, the saddle-node
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Figure 7. Evolution of the localized state shown in Figure 2(e) at its saddle-node point as ω is decreased
from ω = 4.0. (a) ω = 3.0, (b) ω = 2.0, (c) ω = 1.5, (d) ω = 1.0. Solid and dashed lines indicate the real and
imaginary parts of ψ(x), respectively.

bifurcations on successive turns of the snake are aligned vertically and asymptote to limiting
values which correspond to the boundary of a region where a front between the patterned
state and the trivial state is pinned and held stationary.

With a nonlocal term, the snake tilts because, as the width of the localized state increases,
the background state also evolves since it collects the material expelled from the localized
active region. As the influence of the snake width on the background state (i.e., the coefficient
of the nonlinear coupling term in (2.2)) increases, one might conjecture that the snake becomes
tilted and distorted further, until, with extreme tilting, the saddle-node bifurcations on the
snaking curves disappear in pairs at cusp points, leading to a monotonic snaking curve without
saddle-node bifurcations. Although this behavior was not found in previous work [18, 14] on
an extension of the Swift–Hohenberg equation that gave rise to tilted (or “slanted”) snaking,
it does arise in this problem; see Figure 8.

Clearly, as α increases, the left-hand endpoint of the snake moves to lower amplitude and
into a weakly nonlinear regime. Figure 9 shows the smooth evolution of the localized state
along the branch shown in Figure 8. Figure 10 shows, in a different limit with h kept fixed as
α increases, that the saddle-nodes disappear in cusp bifurcations one-by-one as α increases;
they are independent bifurcation events. In this limit the location of the left-most saddle-
node bifurcation appears to scale as γlb − γ∗ ∼ α−1/2, rather than ∼ α−1 as in Figure 4. It
makes sense physically that the weakly nonlinear limit is approached more slowly in this case
since we are increasing only the coefficient α of the “material expulsion” term in (2.2) without
simultaneously decreasing the average density ρ0 of the layer which is an additional effect that
reinforces the effects of any absolute fluctuation in spatial density.
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Figure 8. Bifurcation diagram in a “smooth snaking” regime. Branches of localized states bifurcate at
small amplitude from the spatially periodic pattern and exist for γ below γsn as in Figure 1. (Only the branch
of odd-symmetric states is shown here.) The branch reconnects to the periodic pattern at large amplitude and
is composed entirely of localized states, but contains only two saddle-node bifurcations. The solutions at labels
a–j are shown in the corresponding parts of Figure 9. Parameters are ω = 4, b = β = 1, α = 16, and ρ0 = 0.25
so that, as in Figure 1, h = 4. The domain size is L = 32π, and periodic boundary conditions are imposed.

5. Discussion. In this paper we have provided a detailed analysis of model equations
proposed by Tsimring and Aranson [30] relevant to experimental work on layers of vertically
vibrated granular material [31] and non-Newtonian fluid [24, 25]. We introduced a novel
distinguished limit in order to derive a new amplitude equation for the weakly nonlinear
pattern-forming behavior. This new amplitude equation is of Ginzburg–Landau type but
with a considerably more complicated, nonlocal, nonlinear term. The new amplitude equation
captures the behavior of the system over a wider region of parameter space than the traditional
scalings, and provides insight into the role played by the conservation law for the material in
sustaining localized states over a much wider range of forcing parameters than is usually the
case in such subcritical pattern-forming problems.

Our major conclusion is that even a weak coupling to a second field variable obeying a
conservation law dramatically enhances localization and enables oscillons to persist in a region
of parameter space below the lower limit of periodic domain-filling patterns (Figures 1 and 6).
This provides a possible explanation for the experimentally determined regime diagrams (for
example, Figure 2 in [31] and Figure 2 in [25]).

In section 4.3 we presented a novel bifurcation diagram for (2.1)–(2.2) as it moves closer
to our novel distinguished asymptotic limit. For the parameter values we used we observed
that all except one of the saddle-nodes on the snaking branch had disappeared through a
cusp bifurcation, leaving a monotonic curve of oscillons with no hysteresis between oscillons
containing different numbers of pattern wavelengths. This rather extreme version of slanted
snaking we called “smooth snaking.” It was not observed in the related model problems
discussed by Dawes [14] or Firth, Columbo, and Scroggie [18].
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Figure 9. Odd-symmetric steady-state solution profiles at the labels a–j indicated in Figure 8. (a) γ =
3.7074; (b) γ = 3.6946; (c) γ = 3.6809; (d) γ = 3.6732; (e) γ = 3.6858; (f) γ = 3.7071; (g) γ = 3.7329; (h)
γ = 3.7619; (i) γ = 3.7869; (j) γ = 3.7192. Other parameters are as in Figure 8.
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Figure 10. (a) Cusp bifurcations in the (γ, α) plane as saddle-node bifurcations on the (odd-symmetric)
snaking branch disappear as α increases. (b) is a replotting of the data in (a). Points b, d, and f on the line
α = 4 in (b) correspond to the labels in Figure 1(b) and the corresponding parts of Figure 2. Continuation is
carried out in α, keeping all other parameters constant: ω = h = 4, b = β = 1, domain size L = 32π.

We have confirmed that the simple oscillon states, for example those on the parts of the
snaking curves with positive gradients in Figure 1, very similar in profile to those shown in
Figure 2, are stable in time by solving (2.1)–(2.2) using a timestepping code. We do not expect
that the other localized states found are necessarily stable, and even if this were the case,
their physical relevance would be highly dubious. In addition, we point out that the system
(2.1)–(2.2) is not variational, and as a result it is possible that oscillons undergo additional
oscillatory instabilities leading to quasi-periodic localized states. We have not investigated
this possibility.

Two obvious lines of further enquiry present themselves: first, to treat axisymmetric solu-
tions in two dimensions, which should correspond much better, perhaps even quantitatively,
with experimental observations; second, to return to models derived on more physical grounds
such as that proposed by Eggers and Riecke [17] and probe the bifurcation structure of the
oscillon states found numerically in that work.
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