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We investigate the dynamics of pattern-forming systems in large domains near a
codimension-two point corresponding to a ‘strong spatial resonance’ where competing
instabilities with wavenumbers in the ratio 1:2 or 1:3 occur. We supplement the
standard amplitude equations for such a mode interaction with Ginzburg–Landau-type
modulational terms, appropriate to pattern formation in a large domain. In cases where
the coefficients of these new diffusive terms differ substantially from each other, we show
that spatially periodic solutions found near onset may be unstable to two long-
wavelength modulational instabilities. Moreover, these instabilities generically occur
near the codimension-two point only in the 1:2 and 1:3 cases, and not when weaker
spatial resonances arise. The first instability is ‘amplitude-driven’ and is the analogue of
the well-known Turing instability of reaction–diffusion systems. The second is a phase
instability for which the subsequent nonlinear development is described, at leading order,
by the Cahn–Hilliard equation.
The normal forms for strong spatial resonances are also well known to permit

uniformly travelling wave solutions. We also show that these travelling waves may be
similarly unstable.
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1. Introduction

Bifurcation theory aims to characterize the possible qualitative changes in the
long-time behaviour of a dynamical system as parameters are varied
(Guckenheimer & Holmes 1986; Kuznetsov 1997; Wiggins 2003). In recent
decades, this has lead to an almost complete theoretical treatment of low-
codimension cases; roughly speaking, the codimension of a bifurcation is the
typical number of parameters that must be varied in order to explore all different
dynamical behaviours that occur nearby.

The systematic study of bifurcation points of higher codimension is important
owing to their role as ‘organizing centres’ for the overall bifurcation structure in
a given dynamical system. In the context of pattern-forming instabilities in
continuum physical systems, such higher codimension bifurcations are often
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Figure 1. Marginal stability curves in the (k, m)-plane illustrating the competition between
instabilities that leads to a resonant mode interaction. m denotes a system control parameter. (a)
The unconstrained case: modes near to k c and 2k c may generate additional sideband instabilities.
(b) The constrained case: a mode interaction occurs only in domains of length close to LZ2p/k c.
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referred to as ‘mode interactions’ (Golubitsky et al. 1988; Cross & Hohenberg
1993; Hoyle 2006). Many authors, beginning with Dangelmayr (1986), have
investigated the dynamics of a number of such mode interaction problems in
spatially extended pattern-forming systems in two or three dimensions, involving
various combinations of steady-state and oscillatory instabilities.

In this paper, we return to one of the longest studied of these problems
(Dangelmayr 1986; Armbruster et al. 1987; Jones & Proctor 1987; Proctor &
Jones 1988; Porter & Knobloch 2001) and point out the existence of a new class
of instabilities that destabilize spatially periodic ‘mixed-mode’ equilibrium states
in very similar ways to that in which the well-known Turing mechanism
destabilizes a spatially homogeneous equilibrium in a pair of coupled reaction–
diffusion equations (Murray 2002). We find that the instabilities may be either
amplitude-driven or phase-driven, and occur directly as a result of a ‘strong
spatial resonance’ in the mode interaction; they do not occur generically near the
mode interaction point in cases of weak, or non-existent, spatial resonance. We
consider the 1:2 and 1: 3 resonances in detail. The new instabilities, although
steady state in nature, are related to the two kinds of oscillatory instability (one
leading to travelling waves and another to standing waves) that are present in
the normal form ordinary differential equations (ODEs) for these resonant mode
interactions. Since neither of these latter instabilities occurs in the weakly
resonant or non-resonant cases (i.e. in the simple case of coupled Stuart–Landau
equations, where the phases of the modes are not strongly coupled), neither new
instability is possible either.

An important distinction in the general set-up of mode interaction problems is
between the ‘unconstrained’ case, where two separate minima in the marginal
stability curve for the initial homogeneous state occur for the same value of the
control parameter (figure 1a), and the ‘constrained’ case where the smallness of
the horizontal domain fixes the wavenumber (figure 1b). This paper is concerned
with the unconstrained case; we consider a domain that is formally large
compared with the pattern wavelength and so may be modulated over large
scales. Computations in the constrained case have been carried out by Cox
(1996) and Prat et al. (2002); although the normal form for the spatial resonance
is identical, in this case, the effect of a large horizontal domain would be to allow
patterns to evolve into structures on entirely different scales and the mode
Proc. R. Soc. A (2008)



925Strong spatial resonance
interaction at wavenumber kc would no longer play a central role in organizing
the long-time dynamics. However, mode interactions in the unconstrained case
arise naturally in many physical problems; for example, the two-layer thermal
convection problem discussed in Proctor & Jones (1988) and the multiple
instabilities of mushy layers near a solid–liquid interface in solidification
problems (see fig. 5 of Worster 1997). The coincidence of the minima of the
curves in figure 1a at the same value mZmc implies that this is a codimension-two
bifurcation point. The further requirement that the wavenumber ratio is exactly
1:2 or 1: 3 demands, generically, that a third independent parameter must also
be varied to observe this bifurcation; a strong spatial resonance is therefore
mathematically a codimension-three bifurcation point.

This paper is laid out as follows. In §2 we briefly summarize the computation
of the conditions for Turing instabilities in the general case and indicate the
relation to spatially uniform oscillatory instabilities; this makes the subsequent
presentation entirely self-contained and straightforward. In §3 we discuss the
general form of the ‘Ginzburg–Landau’-type equations that describe the
dynamics at a strong spatial resonance in a large domain, and investigate
the two new kinds of instability (referred to as the ‘amplitude instability’ and the
‘phase instability’) of the mixed-mode equilibrium. These calculations are
illustrated with reference to previous work contained in Proctor & Jones (1988)
and Dawes et al. (2004). The nonlinear development of the instabilities is
examined in §4; for the phase instability, we derive, at leading order, a Cahn–
Hilliard equation for the subsequent nonlinear evolution. Numerical simulations
confirm the typical dynamics that are expected on theoretical grounds. Section 5
notes the existence of Turing instabilities of uniform travelling wave solutions
and §6 concludes.
2. General formulation of Turing instabilities

In this section, we briefly summarize the general theory of Turing instabilities
for parabolic partial differential equations (PDEs) of reaction–diffusion type.
Consider the pair of scalar PDEs in one spatial dimension,

At ZFðA;BÞCk1Axx and Bt ZGðA;BÞCk2Bxx ; ð2:1Þ
where A(x, t) and B(x, t) are suitably smooth real-valued functions defined on the
real lineKN!x!N, and subscripts denote partial derivatives. The r.h.s. F(A, B)
and G(A, B) are typically polynomial functions of their arguments, but it is
necessary only that they be sufficiently differentiable for what follows. Naturally,
we assume that k1, k2O0. We also suppose that there exists a uniform (spatially
independent) mixed-mode steady state A(x, t)ZA0s0, B(x, t)ZB0s0, and we
investigate its stability. Let the Jacobian matrix of partial derivatives of F and G,
evaluated at (A0, B0), be

J Z
F1 F2

G1 G2

" #
: ð2:2Þ

We suppose stability to uniform disturbances, so that

F1CG2!0 and D2hF1G2KG1F2O0: ð2:3Þ
Proc. R. Soc. A (2008)
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Figure 2. Region of stability of the uniform mixed-mode equilibrium (A0, B0) in the (g,Tr)-plane,
for fixed DO0 and F1!0. Above the curve marked Turing, the mixed mode is Turing-unstable;
above the line marked Hopf, it is unstable to a spatially uniform oscillation.
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We look for instability to perturbations proportional to cos kx. The dispersion
relation

s2KsðF1 CG2Kðk1 Ck2Þk2ÞCD2Kðk2F1 Ck1G2Þk2 Ck1k2k
4 Z 0

shows that instability is possible for wavenumbers k such that

D2Kðk2F1Ck1G2Þk2Ck1k2k
4!0;

which can be achieved if

F1 Cg2G2O2gD; ð2:4Þ
where gZ

ffiffiffiffiffiffiffiffiffiffiffi
k1=k2

p
. It is clear that the first inequality of (2.3), together with (2.4),

can only be simultaneously satisfied if F1 and G2 have opposite signs and gs1.
There are thus two cases,

F1!0; G2O0 : instability if gO
1

G2

DC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2KF1G2

q� �
O1;

F1O0; G2!0 : instability if gK1O
1

F1

DC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2KF1G2

q� �
O1:

In either case, the critical wavenumber kcrit for the onset of the instability, when
equality holds in the above expressions, is given by k2critZD=

ffiffiffiffiffiffiffiffiffi
k1k2

p
.

The Turing instability is associated with a (spatially uniform) Hopf
bifurcation that occurs when F1CG2 changes sign. To understand the relation
between them, we fix DO0 and F1!0 and plot regions of stability of (A0, B0) in
the (g,Tr)-plane, where TrZF1CG2 (figure 2). For large g, the Turing
instability occurs before the uniform Hopf instability when increasing Tr. For
small g, the reverse is true. The Turing instability is ‘associated with’ a Hopf
instability in the following sense: suppose that the system is at a Hopf bifurcation
point, i.e. F1CG2Z0 and DO0, and (without loss of generality) suppose that
F1!0. Then we see that (2.4) holds for all sufficiently large gO1 and hence
(A0, B0) is Turing-unstable for all sufficiently large g. Now, for large fixed g, we
Proc. R. Soc. A (2008)



927Strong spatial resonance
may reduce G2 (keeping D fixed) so that the uniform state (A0, B0) is below the
Hopf bifurcation line but still above the Turing instability line, i.e. F1CG2!0
but (2.4) is still satisfied. Hence, just before a Hopf bifurcation from the mixed
mode a Turing instability will arise, for g sufficiently far from unity. The
dynamics near the codimension-two point where the Hopf and Turing
instabilities occur simultaneously was investigated by De Wit et al. (1996).

3. 1:2 and 1:3 resonance with O(2) symmetry

The strong spatial resonances we consider are more completely referred to as 1:n
resonant steady-state/steady-state mode interactions with O(2) symmetry. The
ODE normal form was initially derived by Dangelmayr (1986) and analysed by
Armbruster et al. (1987) and Jones & Proctor (1987) (for a more general
reference containing this material, see Golubitsky et al. 1988, ch. XX, section 1).
We focus here on the specific cases nZ2 and 3. In these cases, and in the absence
of any additional symmetry restrictions, new coupling terms appear at the
second and third order, respectively, in the amplitude equations.

It is the presence of these new coupling terms that allows the much richer
bifurcation structure investigated by these earlier authors. When nZ1, the
generic steady-state mode interaction problem is a Takens–Bogdanov bifurcation
and has rather different dynamics; we do not consider this case here. We also do
not consider the cases of ‘weak spatial resonance’ corresponding to nR4 since the
coupling terms appear at order 4 or higher. Since, however, the coupling terms
are the only terms that involve the phases of the modes, they are still of great
importance, and in order to analyse aspects of the mode interaction dynamics
one can justify ignoring ‘Landau’-type coupling terms at intermediate orders and
including only the resonant coupling terms (e.g. Higuera et al. 2004).

In a large domain, it is appropriate to include the effects of modulation of the
spatially periodic solutions over long length scales. Our underlying ansatz for
instabilities with wavenumbers in the ratio 1:n, allowing for such spatial
modulation, is

wðx; tÞZ 3 AðX ;TÞeix CBðX ;TÞeinx
� �

Cc:c:COð32Þ;
where w(x, t) is a variable describing the instability of the initially uniform state.
XZ3x and TZ32t are the usual scaled length and time variables and A(X, T ) and
B(X, T ) are complex-valued mode amplitudes that, in the absence of spatial
resonance, would evolve according to coupled Ginzburg–Landau equations. In
the resonant case, the governing amplitude equations, when truncated at the
third order, take the form (Dawes et al. 2004)

_AZm1AKAjAj2K l1AjBj2 Ca1B �A
nK1

Ck1AXX ; ð3:1Þ

_B Zm2BKBjBj2K l2BjAj2 Ca2A
n Ck2BXX ; ð3:2Þ

where m1,2 are the bifurcation parameters and a1,2, l1,2 and k1,2 are real
coefficients. We assume that the coefficients take generic values and that none
vanishes. Solutions of (3.1) and (3.2) with A and B constant correspond to
exactly spatially periodic patterns. In the case nZ3, all the nonlinear terms in
(3.1) and (3.2) naturally arise together at the cubic order in the weakly nonlinear
theory. In the case nZ2, the quadratic terms are formally one order in 3 larger
Proc. R. Soc. A (2008)
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Figure 3. Sketches of the fluid motion for a double-layer Rayleigh–Bénard convection problem, in
which the mode AeixCc.c. corresponds to convection predominately in the lower layer and the
mode BeinxCc.c. corresponds to convection predominately in the upper layer. (a) nZ2, MC: rising
fluid coincides, (b) nZ2, MK: falling fluid coincides, (c) nZ3, MC: rising and falling fluid coincides
and (d ) nZ3, MK: no coincident rising or falling fluid.
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than the cubic terms; to justify this mixing of quadratic and cubic terms, we
further assume that the coefficients of the quadratic terms are themselves small,
of order 3. This situation would arise if, for example, an additional symmetry
that prohibited even-order terms were weakly broken.

To find spatially periodic, uniform amplitude, mixed-mode solutions, we write
AZReiq and BZSeif and ignore the spatial derivative terms in (3.1) and (3.2).
We obtain

_RZm1RKR3K l1RS
2 Ca1SR

nK1 cos c; ð3:3Þ
_S Zm2SKS3K l2SR

2 Ca2R
n cos c; ð3:4Þ

_cZK na1SR
nK2Ca2R

nSK1
� �

sin c; ð3:5Þ

where chfKnq describes the relative phase of the two amplitudes. From (3.5),
we see that for mixed-mode equilibria we require cZ0 or p. The mixed-mode
amplitudes satisfy

0Zm1RKR3K l1RS
2Ga1SR

nK1;

0Zm2SKS3K l2SR
2Ga2R

n;

where the ‘G’ are either both ‘C’ (cZ0) or both ‘K’ (cZp). We refer to these
solutions as MC and MK, respectively. When cZ0 or p, there is always one
mixed-mode equilibrium for which qZ0 and fZ0 or p (respectively), i.e. A0 and
B0 may both be taken to be real and A0 may be taken to be positive.

Figure 3 illustrates the mixed modes MG for nZ2 and 3, in the context of a
double-layer convection problem as originally investigated by Proctor & Jones
(1988). The flow structures in all four cases are distinct, showing that no two
mixed modes are related by symmetry.

To investigate the stability of a mixed mode, we writeAZA0Ca1e
ikxC �a2e

Kikx ,
and similarly for B, and linearize. The 4!4 linear system then isotypically
decomposes (using the x -reflection symmetry of the system) into two 2!2 blocks,
Proc. R. Soc. A (2008)
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Figure 4. Regions of amplitude and phase instability of MC in the (m1, m2)-plane for nZ2. Shadings
indicate regions of stable existence (S), phase instability (P) and both phase and amplitude
instabilities (B). Dashed and dot-dashed lines indicate instabilities of MC to travelling and
standing waves, respectively. Coefficients are l1Z2/5, l2Z0, a1Z1=

ffiffiffi
5

p
and a2ZK

ffiffiffi
5

p
,

corresponding to fig. 4 of Proctor & Jones (1988) and fig. 1 of Dawes et al. (2004). (a) gZ1.5,
(b) gZ3, (c) gZ10: note the slender region of stable MC and (d ) gZ100.
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given conveniently in terms of the variables PZa1Ca2, QZb1Cb2, YZi(a1Ka2)
and ZZi(b1Kb2). The factors of i are introduced for consistency with §5. The
(P, Q) block is

ðnK2Þa1B0A
nK2
0 K2A2

0K k1k
2 a1A

nK1
0 K2l1A0B0

na2A
nK1
0 K2l2A0B0 K2B2

0Ka2A
n
0B

K1
0 K k2k

2

" #
; ð3:6Þ
Proc. R. Soc. A (2008)
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while the (Y, Z ) block is

Kna1B0A
nK2
0 K k1k

2 a1A
nK1
0

na2A
nK1
0 Ka2A

n
0B

K1
0 K k2k

2

" #
: ð3:7Þ

The dynamics described by the P and Q variables concern disturbances to the
amplitudes of the modes, while theY and Z variables describe modulations of their
spatial frequencies. We deal with each of these types of disturbance in turn.
(a ) Amplitude (Turing ) instability

The linearization (3.6) fits into the general scheme for Turing instability,
discussed in §2, on setting

F1 Z ðnK2Þa1B0A
nK2
0 K2A2

0; F2 Za1A
nK1
0 K2l1A0B0;

G1 Zna2A
nK1
0 K2l2A0B0; G2 ZK2B2

0Ka2A
n
0B

K1
0 :

The region of parameter space that is of interest (stability to non-modulated
disturbances and potential Turing instability) corresponds to simultaneously
satisfying the conditions F1CG2!0, F1G2!0 and F1G2KF2G1>0. We note that
these inequalities cannot be satisfied if a1Za2Z0 and so the resonant coupling
terms are essential. For weak resonances (nR4), the resonant terms can lead to
instability only when the amplitudes are large; in this case, the normal form
equations are no longer asymptotically justifiable.
(b ) Phase instability

The second 2!2 block, equation (3.7), corresponds to

F1 ZKna1B0A
nK2
0 ; F2 Za1A

nK1
0

G1 Zna2A
nK1
0 ; G2 ZKa2A

n
0B

K1
0 :

This is a degenerate case of the analysis presented in §2 since D2h
F1G2KF2G1Z0; the degeneracy arises from the x -translational invariance of
the governing equations. The region of interest in parameter space is therefore
where F1CG2!0 (for unmodulated stability) and F1G2!0 (for potential phase
instability). The phase instability is a long-wavelength mode, occurring first at
arbitrarily small k, and may occur for a1 and a2 arbitrarily close to zero. The pair
of inequalities defining the region of interest can be simplified to yield

AnK2
0 BK1

0 na1B
2
0 Ca2A

2
0

� �
O0; ð3:8aÞ

a1a2!0: ð3:8bÞ
For a given value of gh

ffiffiffiffiffiffiffiffiffiffiffi
k1=k2

p
, we see, from (2.4), that phase instability occurs

if AnK2
0 BK1

0 ðna1B
2
0Cg2a2A

2
0Þ!0. Subtracting (3.8a) from this inequality yields

An
0B

K1
0 ðg2K1Þa2!0; for a given g, this, together with (3.8b), indicates the

relevant quadrant of the (a1, a2)-plane in which instability occurs.
Figures 4 and 5 illustrate these results in the case nZ2. The coefficients are

set to the values used in earlier work, enabling direct comparisons with fig. 4 of
Proctor & Jones (1988) and fig. 1 of Dawes et al. (2004). We recall from Proctor &
Jones (1988) that twomixed-mode equilibria, denotedMG, exist in disjoint regions
Proc. R. Soc. A (2008)
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Figure 5. Regions of amplitude and phase instability of MK in the (m1, m2)-plane for nZ2. Shadings
indicate regions of stable existence (S) and phase instability (P). Coefficients are l1Z2/5, l2Z0,
a1Z1=
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and a2ZK
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p
, corresponding to fig. 4 of Proctor & Jones (1988) and fig. 7 of Dawes et al.

(2004). (a)gZ3.0, (b)gZ0.7, (c)gZ0.3 and (d )gZ0.1: note the small regionof stableMKnear (0,K0.8).
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of parameter space nearm1Zm2Z0. For the coefficient values used here,MC exist in
the quadrant m1!0 and m2O0, and MK exist in the quadrant m1O0 and m2!0.
Figure 4 shows that as g increases, the mixed-mode solution in the quadrant m1!0
and m2O0 becomes unstable to both amplitude and phase instabilities. The
amplitude instability appears in figure 4c,d; it was not observed for gZ3. For large
g, the phase instability is found throughout the region where MC exist and are
stable to non-modulational instabilities.

As we expect from the analysis of §2 and figure 2, with increasing g the new
phase instability appears first near the bifurcation to travelling waves, and the
new amplitude instability appears first near the bifurcation to standing waves.

For the two-layer convection problem analysed by Proctor & Jones (1988), we
estimate gz10 based on the neutral stability curve shown in fig. 2 of that paper;
thus, figure 4c has a direct physical relevance to this fluid mechanical situation.
Proc. R. Soc. A (2008)
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Figure 6. Regions of amplitude and phase instability of the mixed modes MG in the (m1, m2)-plane
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Shadings indicate regions of stability (S), amplitude instability (A), phase instability (P) and
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Figure 5 shows the onset of phase instability for the MK equilibrium. We
observe that, because MG occur in different quadrants, MG are phase unstable
for opposite signs of g2K1 (i.e. MK are stable for all gO1 whereas MC are stable
for all g!1 here).

For the nZ2 case, it should be noted that many of the complicated features of
the bifurcation structure involve secondary codimension-two bifurcation points
away from m1Zm2Z0. In any specific physical system, it is therefore not clear
how much of the dynamics near these points will actually occur in the dynamics
of the original system; only the behaviour near m1Zm2Z0 is guaranteed to relate
back to the original underlying system via the weakly nonlinear multiple-scales
ansatz outlined at the start of §3.
Proc. R. Soc. A (2008)
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We note that in figure 4c,d, the phase instability region does indeed extend
down to m1Zm2Z0, whereas it does not in figure 4a,b. Hence, for large enough g,
we anticipate that the phase instability would certainly occur in the original
system. Moreover, to examine the genesis of the new instabilities, it is essential to
present the bifurcation structure away from m1Zm2Z0. We note that even more
complicated dynamics exist in these normal forms further away from the origin
(see Porter & Knobloch 2000, 2001).

Figure 6 presents similar illustrative figures for the case nZ3, again for an
indicative collection of parameter values. The presence of only linear and cubic
terms in the truncated normal form implies that existence and stability
depend only on the ratio m2/m1 and bifurcations occur only on straight lines.
MC and MK exist stably only in the subregions of m2O0 and m2!0, respectively;
the relevant mixed mode is stable in regions labelled S. For g!1, there is a
slender region of amplitude instability (A) ofMC in the quadrant m1!0 and m2O0
(this is only just visible in figure 6b), and a much larger region of phase instability
(P) ofMK in the quadrant m1O0 and m2!0. For gO1,MC in the quadrant m2O0
exhibits phase instability, and for gZ10 (figure 6d ) there is a subregion (B) of
simultaneous instability of MC. MK appears to remain stable to the new
instabilities when gO1.
4. Nonlinear development of the instabilities

(a ) Amplitude instability

The evolution of the instabilities discussed previously for any particular
physical problem will naturally depend on nonlinear terms in the perturbation
equations. The amplitude instability is of steady-state type, and has an
asymptotically small, but non-zero, wavenumber compared with the original
periodic pattern. It is therefore a pattern-forming instability of the usual kind for
(3.1) and (3.2). Near the instability a universal description is provided by the
Swift–Hohenberg equation (Swift & Hohenberg 1977; Iooss & Pérouème 1993;
Proc. R. Soc. A (2008)
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Hoyle 2006; Pismen 2006) on the long length scales X and T. The instability may
be subcritical or supercritical. In the subcritical case (figure 7), we find, as
anticipated, both hysteresis and localized states. Alternatively, a further
reduction of (3.1) and (3.2), to a Ginzburg–Landau equation involving yet
asymptotically longer space and time scales, would be straightforward (but
algebraically tedious) in order to determine the subcritical or supercritical nature
of the instability. It is interesting to note (from figure 7) the much larger
amplitude spatial oscillation in jAj compared with jB j, which remains close to
its value for the uniform mixed mode. Figure 7b shows a localized state that
coexists with the uniform mixed mode for m1Z0.5 and m2ZK0.26. Such
localized states are well known to be generic near a subcritical pattern-forming
instability (Sakaguchi & Brand 1996; Coullet et al. 2000; Dawes 2007) and the
complete bifurcation structure, often referred to as ‘homoclinic snaking’, is
complicated but theoretically well understood (Woods & Champneys 1999;
Kozyreff & Chapman 2006). The phases of A(X, T ) and B(X, T ) remain
identically zero for both solutions in figure 7; the instability does not alter the
wavelength of the underlying pattern w(x, t), it provides a modulation of only the
pattern amplitude.
(b ) Phase instability

The phase instability of the mixed-mode equilibrium occurs in several regions
of figures 4–6. In particular, the phase instability occurs for the parameter
values corresponding to the two-layer convection problem discussed in Proctor &
Jones (1988).

Figures 8 and 9 indicate the nonlinear evolution of the phase instability, in the
supercritical case. The final state has an adjusted wavenumber, as indicated by
the regular spatial oscillation of the phases q and c, and this induces a small
spatial variation in the amplitudes jAj and jB j (figure 8a). Figure 9 indicates that
the initial evolution is towards a state with a shifted wavenumber and new
(mean) values of jAj and jB j; on a much slower time scale, there is a relaxation
towards an exactly spatially periodic structure.
Proc. R. Soc. A (2008)



200(a)

150

100

50

X

0

(b) 200

X

150

100

50

0

(c) 200

X

150

100

50

0

(d ) 200

X

150

100

50

T
0 2000 4000 6000 8000 10000

Figure 9. Space–time plots of (a) jA j, (b) jB j, (c) chfK2q and (d ) q, showing the nonlinear
development of the phase instability of the mixed mode in the case nZ2, for coefficients l1, l2, a1
and a2 as in figure 4. Parameters are m1ZK0.08, m2Z0.5 and gZ3.0. A spatial domain 0%X%200
was used with periodic boundary conditions.

935Strong spatial resonance
Writing AðX ;TÞZRðX ;TÞeiqðX ;TÞ, we anticipate that the weakly nonlinear
development of the phase instability can be described by a single equation for
the phase q(X, T ). As usual, we may deduce the general form of the equation by
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the application of symmetry arguments; after this brief general discussion,
we present the multiple-scales analysis that derives the coefficients in this
specific instance.

First, the equation must be of the general form _qZFðqX ; qXX ;.Þ, since
neither X nor an undifferentiated q can appear explicitly due to the translational
invariance (and hence the existence of a group orbit of mixed-mode equilibria).
The form of the amplitude equations (3.1) and (3.2) implies that the phase
equation is equivariant under the two operations ðA;B;XÞ/ð �A ; �B ;KXÞ and
ðA;B;XÞ/ðA;B;KXÞ. The first of these is the usual X-reflection symmetry: in
polar coordinates, this operation changes the signs of the phases of A and B. The
second operation reflects the fact that the wavenumbers of the instabilities of the
basic state are exactly in the ratio 1:n and the marginal stability curves of growth
rate against wavenumber are parabolic near these wavenumbers. Hence, (3.1) and
(3.2) contain only terms with even numbers of X-derivatives. An important
consequence of this is that the term qXqXX cannot appear and so the resulting
phase equation is not of the generic Eckhaus type. Symmetry considerations lead
instead to the canonical form

_qZKnqXXK qXXXX Cbq2XqXX C/; ð4:1Þ
where n is the bifurcation parameter, and the sign of b determines whether the
bifurcation is supercritical (bO0) or subcritical (b!0). Ignoring higher-order
terms, (4.1) is the well-known Cahn–Hilliard equation (Novick-Cohen 1998). The
sign of b, on which the qualitative dynamics solely depends, may be determined
from perturbation theory, as we now discuss. We assume that the parameter
values lie on the bifurcation curve for the phase instability. Writing AZReiq and
BZSeif, as before, transforms (3.1) and (3.2) into

_RZm1RKR3K l1RS
2Ca1SR

nK1 cos cCk1ðRXXKRðqXÞ2Þ; ð4:2Þ

_S Zm2SKS3K l2SR
2 Ca2R

n cos cCk2ðSXXKSðfXÞ2Þ; ð4:3Þ

_qZa1SR
nK2 sin cCk1R

K2ðR2qXÞX ; ð4:4Þ

_fZKa2R
nSK1 sin cCk2S

K2ðS2fXÞX ; ð4:5Þ

where we have again introduced the phase difference cZfKnq. We now introduce
a new small parameter 3, and new scaled length and time scales x and t, by writing
vXZ3vx and vTZ34vt. With these scalings, (4.2)–(4.5) become

34Rt Zm1RKR3K l1S
2RCa1SR

nK1 cos cC32k1ðRxxKRq2xÞ; ð4:6Þ

34St Zm2SKS3K l2R
2SCa2R

n cos cC32k2ðSxxKSf2
xÞ; ð4:7Þ

34qt Za1SR
nK2 sin cC32k1R

K2ðR2qxÞx; ð4:8Þ

34ft ZKa2R
nSK1 sin cC32k2S

K2ðS2fxÞx: ð4:9Þ
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We expand R, S and f in powers of 32,

ðR;S;fÞZ ðR0; S0;nqÞC32ðR2;S2;f2ÞC34ðR4; S4;f4ÞCOð36Þ:
At O(32), the two phase equations yield

0Za1S0R
nK2
0 f2 Ck1qxx; ð4:10Þ

0ZKa2R
n
0S

K1
0 f2Cnk2qxx: ð4:11Þ

These equations are self-consistent provided that k1a2R
2
0Cnk2a1S

2
0Z0; which

determines the linear stability boundary. Taking this condition as satisfied, we can
now solve for f2 in terms of qxx. Then, turning to the amplitude equations (4.6) and
(4.7) at O(32), we find R2ZKRq

2
x and S2ZKSq

2
x, where

KR Z
1

D
Kk1R0ð2S 2

0Ca2R
n
0S

K1
0 ÞCn2k2S0ð2l1R0S0Ka1R

nK1
0 Þ

� �
; ð4:12Þ

KS Z
1

D
Kn2k2S0ð2R2

0KðnK2Þa1S0R
nK2
0 ÞCk1R0ð2l2R0S0Kna2R

nK1
0 Þ

� �
ð4:13Þ

and

DZ ð2R2
0KðnK2Þa1S0R

nK2
0 Þð2S 2

0Ca2R
n
0S

K1
0 Þ

Kð2l1R0S0Ka1R
nK1
0 Þð2l2R0S0Kna2R

nK1
0 Þ: ð4:14Þ

Making these substitutions in the phase equations (4.4) and (4.5), at Oð34Þ we
obtain

qt Za1S0R
nK2
0 f4K k1ðSK1

0 KS CðnK2ÞRK1
0 KRK4RK1

0 KRÞq2xqxx; ð4:15Þ

nqt ZKa2R
n
0S

K1
0 f4Knk2 nRK1

0 KRKSK1
0 KSK4SK1

0 KS

� �
q2xqxx

K
k2k1

a1S0R
nK2
0

qxxxx: ð4:16Þ

Eliminating f4 between these two results in the Cahn–Hilliard equation

c1qt ZKnqxxCbq2xqxxK k2k1qxxxx; ð4:17Þ
where

c1 Za2R
n
0=S0 Cna1S0R

nK2
0 ;

bZ 6a2k1R
n
0ðRK1

0 SK1
0 KRKSK2

0 KSÞ:

Note that the coefficient c1O0 by our assumption of stability to non-modulated
perturbations: F1CG2!0. The coefficient b of the nonlinear term in (4.17)
can take either sign, depending on the parameters, and no simple characterization
of the stable region appears possible. The linear term in n is not calculated here:
it is linearly related to the (small) distance from the instability boundary;
nO0 corresponds to the region where the uniform mixed-mode solution is
linearly unstable.
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Figure 9 shows space–time contour plots of the evolution of the phase
instability, for parameter values in the phase unstable region P of figure 4b. In
this case, we have confirmed analytically that the nonlinear term is stabilizing. It
is clear that the amplitudes jA j and jB j adjust quickly and then become slaved to
the phases that evolve on a longer time scale.
5. Turing-type instability of travelling waves

In this section, we discuss the existence of a similar instability of uniform
travelling wave solutions to (3.1) and (3.2) in the case nZ2. A uniform travelling
wave solution is an X-independent solution, with cZconst:s0;p. From (3.5),
we observe that, for uniform states,

_cZK 2a1SCa2R
2SK1

� �
sin c

and hence for a travelling wave we deduce the constraint 2a1S
2Ca2R

2Z0. The
values of R, S and c are now determined by finding an equilibrium solution to
(3.3) and (3.4) that in addition satisfies the constraint.

It is well known that the travelling wave solution undergoes a Hopf bifurcation
to so-called ‘modulated waves’. In the case nZ2, this is discussed by Proctor &
Jones (1988) (see their eqn (5.15) and the curve G in their figures 4 and 5). In the
case nZ3, Porter & Knobloch (2000) note the existence of travelling waves and
give a similar condition for the Hopf bifurcation to modulated waves (which they
refer to as ‘modulated travelling waves’). This instability, together with the
analysis in §2, indicates that it is highly probable that travelling waves may also
undergo Turing-type instabilities if g is sufficiently far from unity. It is
straightforward to extend the analysis to this case, although, since the Jacobian
matrix does not isotypically decompose into 2!2 blocks, analytic criteria for
instability are substantially more complicated to obtain than for the mixed
modes discussed above. In this section, we set out the Jacobian matrix for
reference and present numerical results (figure 10). As expected, for sufficiently
large g, travelling waves are found to be unstable near where they bifurcate from
Turing-unstable mixed modes (figure 10c,d ) and near the Hopf bifurcation to
modulated waves (figure 10d ).

Uniform travellingwaves take the formAZR0e
iuT andBZS0 expðiðnuTCc0ÞÞ,

where R0 and S0 satisfy (4.2) and (4.3), respectively, after fixing the relative phase
chfKnq to take the value cZc0s0, p. The evolution equation for c (combining
(4.4) and (4.5)) takes the form

_cZKðna1SR
nK2Ca2R

nSK1Þsin cCnðk2K k1ÞqXX Ck2cXX

C2k2S
K1SXðcX CnqXÞK2nk1R

K1RXqX ; ð5:1Þ
which implies that na1S

2Ca2R
2Z0 is a necessary condition for the existence of

travellingwaves.We define the frequencyuZa1SR
nK2 sin c0; the individual phases

q and f evolve according to n _qZ _fZnu.
To examine the stability of the travelling wave state, we write AZR0e

iuTC

a1e
ikXC �a 2e

KikX and BZS0 expðiðnuTCc0ÞÞCb1e
ikXC�b2e

KikX in the usual way.
After substitution and linearization in the (complex) amplitudes a1, a2, b1 and b2, we
form the sumand difference combinationsPZa1Ca2,QZb1Cb2,YZi(a1Ka2) and
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ZZi(b1Kb2) as before, and derive the 4!4 real Jacobian matrix

K2R2
0 CðnK2ÞûK k1k

2 K2l1R0S0 C û
R0

S0

Knu u
R0

S0

n2û
S0
R0

K2l2R0S0 K2S 2
0CnûK k2k

2 n2u
S0

R0

Knu

ð2KnÞu Ku
R0

S0

KnûK k1k
2 û

R0

S0

Kn2u
S0

R0

nu Kn2û
S0

R0

nûK k2k
2

2
666666666666664

3
777777777777775

;

where ûhu cot c0. It is easily checked that this matrix has a zero eigenvalue
due to the underlying translational symmetry, as discussed earlier.

Figure 10 shows the regions of existence and stability of travelling waves for
the same values of l1, l2, a1 and a2 as in figures 4 and 5. The dashed line (on the
left-hand boundary of the shaded region) corresponds to the bifurcation from the
mixed-mode equilibrium in which travelling waves are created. For gZ1
(figure 10b), where no instability is possible, we find that travelling waves exist
stably in two disjoint regions (S) above and below a region where they are
unstable to modulated waves, as found by Proctor & Jones (1988). For g
sufficiently far from unity, travelling waves in both regions may become unstable,
in the quadrants where mixed-mode equilibria are also destabilized; for g!1
(figure 10a), we have instability in m1O0 and m2!0 as in figure 5d, and for gO1
(figure 10c,d ), we have instability in m2O0 as in figure 4c,d.

From earlier results (Dawes et al. 2004, fig. 14), we have observed that, in
the case gZ1, spatio-temporal chaos (STC) coexists the stable travelling
waves. A discussion of the (probably spatio-temporally complicated) dynamics
resulting from this new instability of travelling waves would therefore have
to discern carefully between new STC states arising from unstable travelling
waves and those that remain even when gZ1. We will leave this point for
future investigations.
6. Discussion

In this paper we have discussed new instabilities that arise when modulational
terms are introduced into the normal forms for the 1 : 2 and 1 : 3 spatial
resonances. Over long length scales the spatially periodic equilibrium and
travelling wave states may be destabilized in ways that cannot occur in the
absence of strong spatial resonance, and which arise only when the coefficients of
the second derivative terms differ sufficiently from each other. These new Turing-
like instabilities are therefore additional and novel features of these codimension-
three bifurcation problems.

We have shown that mixed-mode equilibria may be unstable separately to
either ‘amplitude modes’ or ‘phase modes’ of instability. For travelling waves, it
appears that this clear distinction cannot be made, but similar instabilities
certainly occur. We remark that the use of asymptotic analysis and Ginzburg–
Proc. R. Soc. A (2008)
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Landau-type modelling loses some fine detail that would arise in experimental
work, or in direct numerical simulations, for example the locking of fronts to the
phase of the underlying periodic pattern.

Also, we have shown that, as is well known in problems of this type, the
occurrence of Turing instabilities is linked to the existence of spatially uniform
oscillatory instabilities. For the mixed-mode equilibrium, the corresponding
spatially uniform instability is the generation of standing wave amplitude
oscillations. For the travelling waves, the Turing instability is linked to the
generation of spatially uniform so-called modulated waves.

In this paper we have focused on interactions between modes with exactly
integer wavenumbers. The amplitude equations (3.1) and (3.2) also admit

steady solutions of the form A(X )ZA0e
iKX and BðX ÞZB0e

2iKX ; these exist over
a similar but shifted region in the (m1, m2)-plane. We have not considered the
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941Strong spatial resonance
stability of these solutions further, conjecturing that, although additional
instabilities (e.g. of Eckhaus type if jK j is sufficiently large) may exist, no
qualitatively new features will arise.

Mode interactions do not, however, in general give rise to exact strong spatial
resonances; the ratio of wavenumbers need not be close to a ratio of small integers.
Such departures from a strong resonance motivated the analysis of Dawes et al.
(2004) of instabilities generated near to, rather than exactly at, the 1:2 spatial
resonance. This earlier paper fixed gZ1 so as to remove the Turing-type
instabilities discussed here, and found that the mixed modes became unstable to
modulations (of Eckhaus type) if the frequency mismatch q was sufficiently large.
In contrast, in this paper we have shown that there is instability in the exactly 1:2
resonant case (qZ0) if g is sufficiently far from unity. Investigating the
interactions between these two quite distinct mechanisms for instability will be
the subject of a future study. It seems clear on continuity grounds, however, that
for wavenumber ratios sufficiently close to 1 : 2, Turing-type bifurcations to
modulation should still occur as g varies away from unity. For example, the
interaction of the phase instability governed by equation (4.1) would be modified
by the inclusion of a quadratic term of Eckhaus type,

_qZKnðg; qÞqXXK qXXXX CdðqÞqXqXX Cbq2XqXX ;

where the coefficient d(q) is a function of q, the (scaled) departure, in wavenumber,
from exact resonance. The linear stability boundary nZ0 is now, of course,
dependent on both q and g. For sufficiently small d(q), corresponding to small
deviations from exact resonance, the subcritical or supercritical nature of the phase
instability is again determined by the sign of b. We expect the range of parameters
over which the instability is supercritical to be reduced since the new term with
coefficient d(q) serves only to make the bifurcation more subcritical, regardless of
the sign of d(q) itself.
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