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Robust heteroclinic cycles occur naturally in many classes of nonlinear differential equations with invariant
hyperplanes. In particular they occur frequently in models for ecological dynamics and fluid mechanical
instabilities. We consider the effect of small-amplitude time-periodic forcing and describe how to reduce the
dynamics to a two-dimensional map. In the limit where the heteroclinic cycle loses asymptotic stability,
intervals of frequency locking appear. In the opposite limit, where the heteroclinic cycle becomes strongly
stable, the dynamics remains chaotic and no frequency locking is observed.
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I. INTRODUCTION

The behavior that emerges out of cooperative or competi-
tive interactions modeled by nonlinear differential equations
is widely recognized to be difficult to predict and subtle to
characterize. In the case of competitive interactions one
might typically expect a single state to dominate after tran-
sients have decayed—the “winner-take-all” scenario. Recent
work in game theory and evolutionary biology suggests that
many scenarios are closer to a kind of “winnerless competi-
tion” rather than winner take all �1�. A standard example of
winnerless competition is the playground game of rock-
paper-scissors �2�. Dynamics due to winnerless competition
has been inferred in many contexts, for example, the popu-
lation dynamics of the lizard Uta stansburiana �3� and the
dynamics of sensory neurons �4,5�.

Mathematically, winnerless competition corresponds to
the existence of a robust heteroclinic cycle in the state space.
A heteroclinic cycle is a topological circle of saddle-type
equilibria and connecting orbits; it is said to be robust if the
topology survives under perturbations that preserve the flow
invariance of the hyperplanes containing the connecting or-
bits. Robust heteroclinic cycles organize the dynamics in a
wide range of systems: ecological models of competing spe-
cies �6,7�, thermal convection �8–11�, intermittent bursts in
boundary layers �12�, coupled oscillator networks �13�, and
neurodynamics �5�. A detailed review of the mathematical
theory and applications from many fields is given by Krupa
�14�. Although robust heteroclinic cycles are well known in
the symmetric dynamics literature �15,16� there appear to be
very few discussions of the effects of time-periodic forcing,
possibly only the papers �17,18�.

An archetypal example of a robust heteroclinic cycle oc-
curs in the following three-dimensional system, first studied
for �=0 by May and Leonard �7� and also by Busse and
Heikes �9�:

ẋ = x�1 − X − cy + ez� + ��1 − x�sin2 �t , �1�

ẏ = y�1 − X − cz + ex� , �2�

ż = z�1 − X − cx + ey� , �3�

where X=x+y+z and c ,e�0. With the forcing term re-
moved ��=0� each of the equilibrium points on an axis is of
saddle type, and the existence of connecting orbits has been
proved by �19�. Moreover, if c�e then the heteroclinic cycle
is asymptotically stable. For higher-dimensional cycles sta-
bility turns out to be a subtle issue, and it is useful to define
notions of stability that are weaker than asymptotic stability
�20–23�.

In this paper we examine the system �1�–�3�, which is
equivalent to the example studied by Rabinovich et al. �17�,
and answer two questions about the dynamics. First, how can
the dynamics be reduced systematically to a dynamical sys-
tem of lower dimension? And second, is the dynamics one
dimensional and thus equivalent to a circle map? We empha-
size that the results of our calculations are of far wider inter-
est than the specific problem studied in �17� due to the ubiq-
uity of robust heteroclinic cycles, and the importance of
understanding the effects of different classes of perturba-
tions.

In what follows we first discuss the construction of local
and global maps that we compose to produce a two-
dimensional �2D� return map to a Poincaré section; this an-
swers the first question. We proceed to a show numerically
that the dynamics of the two-dimensional return map is simi-
lar to a circle map if the ratio c /e is close to unity. Overall,
there are important differences between the dynamics of
�1�–�3� and the standard picture of frequency-locked periodic
orbits, and Arnol’d tongues.

II. RETURN MAP

With the addition of small time-periodic forcing
0���1, the invariant plane x=0 disappears. Trajectories of
�1�–�3� are still, however, observed to spend long periods of
time near the points P1= �1,0 ,0� which remains an equilib-
rium point, P2= �0,1 ,0�, and P3= �0,0 ,1�. These long peri-
ods are expected to be proportional to ln�1/�� and are long
compared to the rapid transitions between neighborhoods of
the Pi. As in many problems of this type, this motivates an
analysis based on splitting the dynamics into local behavior
near the Pi and global maps between neighborhoods of the Pi
�see Fig. 1�.
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The local maps are given by analytical integration of the
linearisation of �1�–�3� around each of the Pi. This is
straightforward even when ��0. Near P1 we integrate the
linearization of �1�–�3� from the plane H1

in��z=h� to
H1

out��y=h�, and define H2
in, H2

out, H3
in and H3

out similarly. We
compose these local maps with global maps from one neigh-
borhood to another. The global maps are given, in the case
�=0, by linearizing around the unstable manifold of each of
the Pi; thus they always introduce into the return map coef-
ficients that are in principle computable �numerically�, but
which in practice are usually left undetermined since they do
not affect the qualitative behavior of the return map. In the
present case the problem is more severe since the global
maps are time dependent. The global maps P1→P2 and
P3→P1 in addition take into account the invariance of the
planes x3=0, and x2=0, respectively. As long as h is small
enough, the resulting return map does not depend on the
value of h; we fix h=0.2. Full details of the construction will
appear elsewhere.

Composition of the local and global maps, keeping only
the leading order terms in the forcing amplitude �, leads to a
return map H3

in→H3
in of the form

xn+1 = �1xn
d + ��2�1 − a1 cos 2�gn − b1 sin 2�gn� + �f�xn,tn� ,

�4�

tn+1 = gn −
��2

xn
�1 − a2 cos 2�tn + b2 sin 2�tn� , �5�

where we define xn to be the x coordinate on H3
in and tn to be

the time at which we arrive there. We also define gn= tn
+�3−�1 ln xn, �1= �e2+ce+c2� /e3, �2= �e2+ce+c2� / �2e4�,
a1=c2 / �c2+4�2�, b1=2c� / �c2+4�2�, a2=e2 / �e2+4�2�, b2

=2e� / �e2+4�2�, and d= �c /e�3. We assume d�1 since oth-
erwise the heteroclinic cycle is unstable in the absence of
forcing, and trajectories move rapidly away from it. As dis-
cussed above, the coefficients �1 ,�2 ,�3 and the function
f�xn , tn� arise from the global maps and are undetermined by
the reduction procedure, although they are in principle com-
putable numerically. Importantly, these coefficients, and
f�xn , tn�, depend on �; determining the dependence on � is a

crucial part of producing a quantitatively accurate return
map. We now discuss the behavior of �4� and �5� in the limits
of large and small �.

In the limit �→	 the effect of the forcing term on tra-
jectories is given by the averaged value 1

2��1−x�. A per-
turbed heteroclinic cycle usually produces a nearby periodic
orbit, i.e., a fixed point for �4� and �5�. Suppose that in the
limit �→	 the function f�xn , tn� tends to a constant C0.
Then, assuming d
1 we approximate �4� by x=���2+C0�;
from �5� the period of the periodic orbit T= tn+1− tn is given
approximately by

T = �3 − �1 ln ���2 + C0� −
�2

C0
� C1 − �1 ln � . �6�

Comparison with numerical integrations �not shown� shows
that the relationship between T and ln � very closely follows
�6�; we find C1=−32.4 for �c ,e�= �0.25,0.2�, and this pro-
vides direct confirmation of the return map calculation. Note
that the dashed lines in Fig. 5 also confirm the expression for
the slope �1.

For small � we fix a functional form for f�xn , tn� and fit
the coefficients �i to the dynamics of the ordinary differen-
tial equations �ODEs� for one particular set of parameter val-
ues: c=0.25, e=0.2, �=10−6. We show in the next section
that this single set of coefficients describes the dynamics
over a range of values of c, not just for the value c=0.25
used in the fitting process. We take f�xn , tn� in the form

f�xn,tn� = �2a1�1 − �4�cos 2�gn +
1

2
��5 + �6a1� + �7a1

2�2� ,

�7�

and fix the coefficients �1 , . . . ,�7 for the remainder of the
paper to take the values �1=1, �2=26.8, �3=52, �4=2.42,
�5=70, �6=200, �7=12 300. Figure 2 shows that excellent,
and detailed, agreement over the range 0���0.1 is ob-
tained between numerical integrations of the ODEs and the
2D map.

III. RESULTS AND DISCUSSION

We have compared the results of integrating the ODEs
�1�–�3� and iterating the map �4� and �5� for several collec-
tions of parameter values �c ,e ,��, without adjusting the co-
efficients in �7�; these results confirm that the map remains
accurate over a wide range of parameter space. By way of
illustration, Fig. 3 compares the results of the ODEs and the
map for c=0.205; there is very good agreement without ad-
justment of the parameters �1 , . . . ,�7.

The general features of the dynamics are a sequence of
frequency-locking intervals within which there is a stable
periodic orbit of period T=k� /� for integer k. Thus the
curved lines in Figs. 2 and 3 lie on hyperbolas indexed by k.
Within these intervals there are sometimes subintervals
where the periodic orbit undergoes a period-doubling bifur-
cation. At the ends of the frequency-locking intervals the
periodic orbit disappears in a saddle-node bifurcation; this is
confirmed by plotting tn+1 against tn for fixed � �see Fig. 4�.

FIG. 1. �Color online� The arrangement of the Poincaré sections
Hi

in and Hi
out transverse to a typical trajectory �thick line�. The het-

eroclinic cycle for �=0 is indicated by the thin �red� lines. For
��0 the plane x=0 is no longer flow invariant.
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More precisely, in this figure we plot tn mod � /� since the
2D map is periodic in tn. The figure shows that the 2D map
has essentially one-dimensional dynamics; this supports, at
least for c=0.25, the natural hypothesis of circle map-like
dynamics.

Figure 5 illustrates the scaling of the bifurcation structure
with �. The dashed lines in Fig. 5 take the form
y=−1−k� / ���1 ln 10� for k=1, . . . ,4 showing the scaling of
the intervals of frequency locking �the factor of ln 10 is
needed only because of the log10 used on the vertical axis�.
Note also the repeated appearance of new windows of
period-doubled orbits at small 1 /� as � decreases.

For c /e close to unity the dynamics of the 2D map appear
close to those of a circle map; the curve in the plot corre-
sponding to Fig. 4 is monotonically increasing and becomes
linear for c /e very close to unity. Further numerical results,
not shown here, indicate that the widths of the frequency-
locking intervals do not tend to zero rapidly as c /e→1+.

Figure 6, reminiscent of the Hénon map, illustrates the
case c=1.0. For c=1.0 the cycle is strongly attracting in the

absence of forcing. But in the presence of forcing, the dy-
namics of the map, and also of the original ODEs, are clearly
far from one-dimensional; we observe that c /e large en-
hances the nonlinearity present in the 2D map.

FIG. 2. �a� Period T of trajectories of the ODEs �1�–�3� return-
ing to H3

in as a function of �, after transients have decayed. Param-
eters: c=0.25, e=0.2, �=10−6. Line segments indicate frequency
locking resulting in a periodic orbit with period k� /� for succes-
sive integers k. �b� Period tn+1− tn for iterates of the 2D map �4� and
�5�.

FIG. 3. �a� Period T of trajectories of the ODEs �1�–�3� return-
ing to H3

in as a function of �. Parameters: c=0.205, e=0.2,
�=10−6. �b� Period tn+1− tn for iterates of the 2D map �5� and �7�.

FIG. 4. Circle-map-like dynamics: �tn� against �tn+1� where
�tn�� tn mod � /�, for �=0.042 58. This corresponds to a saddle-
node bifurcation point at the end of an interval of frequency lock-
ing. Other parameter values are as for Fig. 2: c=0.25, e=0.2,
�=10−6.
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In conclusion we have presented a careful and quantita-
tively accurate analysis of the dynamics of a robust hetero-
clinic cycle subjected to time-periodic forcing. The dynamics
are well described by a two-dimensional map over a wide
range of the eigenvalue ratio c /e. In the limit c /e→1+ the
dynamics exhibits a sequence of frequency-locking windows
which often contain smaller period-doubling windows, and
intervals of chaotic dynamics; this behavior is similar to the
dynamics of a circle map. In the limit c /e
1 there are no
windows of frequency locking and the dynamics is chaotic
for all �. These aspects of the dynamics are puzzling at first

sight, and we intend to pursue them further and report de-
tailed results in future.

Since the form of the forcing breaks both the permutation
symmetry and the invariance of the x=0 plane in �1�–�3�,
dynamics similar to that which we have described is ex-
pected to occur generically near periodically forced robust
heteroclinic cycles.
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FIG. 5. Bifurcation structure scaling with �. log10�
+ �tn+1− tn� /200 �vertical axis� plotted against 1 /� �horizontal axis�,
for �=10−n, 3�n�8. Other parameter values are as for Fig. 2:
c=0.25, e=0.2.

FIG. 6. Complex dynamics in the map �5�–�7� for c=1.0. Other
parameter values are �=0.042 58, e=0.2, and �=10−6.
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