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Abstract

The forecasting of sudden, irreversible shifts in natural systems is a
challenge of great importance, whose realisation could allow preemptive
action to be taken to avoid or mitigate catastrophic transitions, or to help
systems adapt to them. In recent years there have been many advances in
the development of such early warning signals. However, much of the cur-
rent toolbox is based around the tracking of statistical trends and therefore
does not aim to estimate the future timescale of transitions or resilience
loss. Metric-based indicators are also difficult to implement when systems
have inherent oscillations which can dominate the indicator statistics. To
resolve these gaps in the toolbox, we use additional system properties to
fit parsimonious models to dynamics in order to predict transitions. Here
we consider nearly-one-dimensional systems–higher dimensional systems
whose dynamics can be accurately captured by one-dimensional discrete
time maps. We show how the nearly-1D dynamics can be used to produce
model-based indicators for critical transitions which produce forecasts of
the resilience and the time of transitions in the system. A particularly
promising feature of this approach is that it allows us to construct early
warning signals even for critical transitions of chaotic systems. We demon-
strate this approach on two model systems: of phosphorous recycling in
a shallow lake, and of an overcompensatory fish population.

Keywords: early-warning signal | critical transition | model-based indicator |
global bifurcation | data requirements
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1 Introduction

When undergoing a slow change in conditions, ecological systems can make
abrupt shifts to different dynamical regimes. Regime shifts can take place in a
wide variety of scenarios, regardless of whether the initial regime is an equilib-
rium or shows more or less regular oscillations. They are characterised by their
suddenness, difficulty to anticipate, and their irreversibility [1, 2, 3, 4]. Animal
populations [5] or fisheries can collapse [6], species compositions can radically
alter [7], and lakes can switch from an oligotrophic to a eutrophic state [8], often
with disastrous and long-enduring consequences. Much recent research has been
dedicated to developing the ability to predict regime shifts [9, 10, 11] in order
to allow potential negative effects to be alleviated and transitions to be reversed
more quickly, or even avoided altogether. In order to do this, decision makers
ideally need a reliable [12] and timely warning that a regime shift is coming
[13, 14, 15], a prediction of when it is expected, and an estimate of the system
resilience and any critical thresholds in the meantime [16, 17, 18, 19]. The pro-
vision of effective early warning signals for regime shifts is a major challenge
faced by researchers in ecology and many other disciplines.

At present, most of the toolbox for anticipating critical transitions is based
on the tracking of early warning indicators. These are statistical measures which
may show measurable trends as a system approaches a regime shift caused by
disturbances or stressors, and can therefore provide warning that resilience may
be declining in a system. For example, some systems close to a regime shift
may exhibit critical slowing down: a slow response to perturbations [20] which
can cause variance and autocorrelation to rise as a system approaches a tipping
point [21, 9, 22, 23, 24], or trends in other statistical properties [25]. If multiple
time series are available, these indicators can be complemented or improved by
approaches based on multivariate time series analysis [26, 27, 28]. Statistical
trends such as these have been observed in diverse systems in the run up to
regime shifts [29, 7, 5, 30], and there is evidence that they are robust to the
time scale on which data is sampled [31]. However, because there is no absolute
interpretation of such indicators they do not tell us how resilient a system is, or
give actual forecasts of when the transition will come [32, 33, 34, 24] unless an
independent control system is also monitored for comparison [15]. Furthermore,
more complicated critical transitions such as basin-boundary bifurcations of
chaotic attractors and homo-/heteroclinic bifurcations of limit cycles [35, 36,
37, 38, 39, 40] are poorly indicated by such methods [41, 42], both because of
the difficulty in separating noise-driven fluctuations from those inherent to the
dynamics, and because critical slowing down can only be observed in certain
regions of the state space, which are often only visited for a short time in each
cycle [43, 24].

In order to improve the efficacy of early warning signals, there have been calls
to combine generic metric-based indicators with model-based indicators (con-
sisting of the fitting of parsimonious models with general assumptions [32, 44]),
more system-specific models and details, and expert opinion [45]. But there are
also properties which are shared by wide classes of systems which can be used
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to obtain more information about transitions in such systems without needing
to completely consider system-specific detail. One such property is nearly one
dimensionality [46, 47]. Systems which are nearly-one-dimensional can be well
described by 1D maps that can be constructed from a single time-series, even
though they show complex dynamics and have multiple state variables. Here
we show that in such cases we can anticipate critical transitions by fitting par-
simonious models with time-dependent parameters to the nearly-1D dynamics.
From these models, we can anticipate the resilience of the system in the future
and the time at which regime shifts may occur. Furthermore, in this way we
can obtain model-based indicators for nonlocal bifurcations: when oscillatory
dynamical regimes such as chaotic attractors or limit cycles collide with the
basin boundary of an alternate regime and are destroyed.

The paper is structured as follows. Firstly, an overview of the method is
presented, which outlines the main idea and details the techniques used. Then
in the next two sections, ‘Application to a saddle-node bifurcation’ and ‘Ap-
plication to a boundary crisis’, we expand on the details of the method by
demonstrating its use in two particular cases: a saddle-node bifurcation in a
model of phosphorous concentration in a lake, and a global bifurcation of a
chaotic attractor in a discrete-time model of a harvested population. In the
section ‘Data requirements’ we investigate how the effectiveness of the method
depends on the quantity and timing of the available data by evaluating the
performance of the method in both cases for calibration windows of different
lengths and start times. Finally, in the Discussion the approach is summarised,
its assumptions are discussed and its prospects are considered.

2 Method overview

Many systems in ecology and epidemiology have been found to be nearly 1D
[46, 48, 49, 47], including various two- and three-species food web models [50, 47]
as well as time series taken from measles epidemics [46], Lynx fur returns and
from the Nicholson blowfly experiment [47]. Even though such systems are mul-
tidimensional and continuous in time, their dynamics can be well-represented
by a 1D difference equation, even in cases where they show complex dynam-
ics such as chaos. This approximation may be obtained in two ways: firstly,
from time series of a single variable using techniques derived from properties of
Poincaré maps of the system (maps obtained by tracking the consecutive points
where the system trajectories pass through a given plane in the space of state
variables) such as the presence of next maximum or peak-to-peak maps [49, 47],
where each peak in the time series of a state variable is approximately given by a
certain function of the previous peak; secondly from phase space reconstruction
techniques such as delay embedding [51], whereby the dynamics of a system can
be obtained from time-lagged observations of one or more system variables by
making use of the fact that all of the system variables are linked together by the
same mechanism that generates the dynamics. In its simplest case, the system
dynamics can be approximated from one of its state variables by expressing the
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present value of this variable at time t as a function of its past value at time
t − τ . The precise shape of the nearly-1D map which best approximates the
dynamics, and the requirements which we need to consider, depend on the type
of attractor of the system: for equilibria we can fit a simple generic map such
as a quadratic map as in [12]. For chaotic attractors, the map may need to be
more complicated, but in many cases the folding of the attractor yields a simple
unimodal (“hump-shaped”) curve in the peak-to-peak map [47]. Potentially,
multiple models can be proposed and the best fitting model picked using model
selection techniques such as the Akaike information criterion [52], which takes
into account both the likelihood of a given model to fit the available data and
how parsimonious/simple the model is, as measured by the number of model
parameters.

Consider a system with slowly changing external conditions which under-
goes a bifurcation-driven regime shift (also known as a B-tipping point [53])
involving an attractor colliding with the boundary of the basin of a different at-
tractor. This is a wide class of bifurcations, including local bifurcations such as
saddle-node bifurcations, but also nonlocal bifurcations such as basin-boundary
crises of limit cycles and of chaotic attractors. Because of the continuity of
the construction of the nearly-1D dynamics [54], corresponding bifurcations can
also generally be seen there. If we can track changes in the approximate 1D
map by fitting a generic map with linearly time-dependent parameters, then
we can form a model-based resilience indicator for a regime shift because we
can straightforwardly infer future system states, thresholds and tipping points
from it. Although autocorrelation-based methods are often designated metric-
based indicators, they can also be seen as a particular example of this class of
model-based indicators: autocorrelation-at-lag-1 can be obtained by fitting a
linear map in the single-delay coordinates. The main difference is that since
the AR(1) map is linear, it cannot provide any information on thresholds in the
system.

In this paper we consider two kinds of systems undergoing critical transitions.
Firstly, in systems at equilibrium which are close to undergoing a saddle-node
bifurcation (see the example in Fig 1), and whose dynamics in the presence of
noise can be represented by a one-dimensional map through delay embedding,
a quadratic map can be fitted to the 1D delay coordinates as in Fig 2. The
equilibria can be found for such a map at each time, and used to produce a
resilience profile (Fig 3) in which we can see any saddle-node bifurcations taking
place due to the time-dependence of the parameters. The time at which this is
anticipated to happen gives an estimate of the time at which a regime shift will
take place in the original system. Secondly, we consider systems exhibiting more
complicated behaviour such as a chaotic attractor (see the time series in Fig 4),
this will be reflected in the nearly-1D dynamics. If the basin of attraction is
bounded, the boundary should show up here as an unstable equilibrium, but
tracking changes in the attractor is not so simple because it covers a range of
values, and not a single point (Fig 5). However, in a unimodal map we can find
the minimum value of an attractor easily by iterating from the maximum of the
map (see Electronic supplementary material, Appendix B). Using this technique
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to produce a resilience profile of the system, we can check if this minimum value
will pass the unstable equilibrium forming the threshold of the regime, at which
point a regime shift takes place through a boundary crisis (Fig 6).

3 Application to a saddle-node bifurcation: Lake
water eutrophication model with ramped nu-
trient loading

To demonstrate how nearly-1D dynamics can be used to provide early warning
signals for regime shifts, we consider a simplified model of phosphorous cycling
in a lake with a slowly linearly ramped inflow of phosphorous from surrounding
groundwater (see Appendix A) [55].

A typical simulated time series for the phosphorous concentration in this
stochastic differential equation is shown in Fig 1. Initially the system is at an
equilibrium of low-phosphorous concentration. As ramping of the phosphorous
inflow increases, this equilibrium concentration increases with very slow accel-
eration, until the system suddenly jumps to a eutrophic state via a saddle-node
bifurcation at t ≈ 2800. This regime shift is hard to anticipate because of its
sudden nature, but it has been shown by Brock and Carpenter [55] to be ac-
companied by a clear increase in variance. To construct an early warning signal
for this transition, we consider only the time series data points between times
0 and 1250 as calibration ‘data’, shown by the grey region in Fig 1. Although
no experimental data is considered in this paper, throughout the applications
sections we shall refer to simulated time series and their ‘data points’ simply as
‘time series’ and ‘data’ for the sake of brevity.

To obtain a one-dimensional discrete-time map we can use delay embedding
with a single delay variable. This entails plotting the phosphorous level at each
time t with the phosphorous level at a previous time t − τ . For τ = 40 this
is shown by the coloured points in Fig 2 (the results are robust to variations
in the choice of τ). We can then fit a simple map with linearly time-varying
parameters to the delay points (xt−τ , xt) in the calibration window: for a non-
autonomous map f (xt, t;a), we aim to find the parameter set a which minimises
the sum of square residuals

∑
ŷt

2, where ŷt := xt − f (xt−τ , t;a). In this case a
time-dependent quadratic map of the form

xt = (α0 + α1t)x
2
t−τ + (β0 + β1t)xt−τ + (γ0 + γ1t) , (1)

is a natural, parsimonious choice to capture the saddle-node bifurcation and
outperforms a linear map considerably when the Akaike Information Crite-
rion (AIC) is applied. (At first glance, this may be surprising since it seems
that a straight line ought to give a better fit than the pronounced quadratics
shown, because the data points lie close to the diagonal, but it makes more
sense when we keep in mind the time dependence of the maps as well as the
transversal response of the system to noisy perturbations that can be seen in
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Figure 1: Simulated time series of the lake phosphorous concentration with
linear ramping in phosphorous inflow. The system undergoes a saddle-node
bifurcation at t ≈ 2800. The grey region highlights the calibration window used
to fit a 1D map to the delay coordinates.
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Figure 2: Snapshots of the fitted time-delay map from the lake phosphorous
time series with delay τ = 40, taken at times t = 0 (dark blue dashed curve)
and t = 3000 (dark red dashed curve). Time series data points before the
transition are shown coloured according to the corresponding time t, with a
close-up of these data points shown in the inset. The stable (filled black circle)
and unstable (open black circle) equilibria of the map at t = 0 are also shown.

the inset.) Extrapolation of this map beyond the times within the calibra-
tion window produces a prediction of the future system states. For the given
time series and calibration window, we obtain best-fitting parameters α0 =
1.4710, α1 = 6.7954 × 10−5, β0 = −3.2617, β1 = −4.4833 × 10−4, γ0 = 2.4913
and γ1 = 7.4680×10−4. Snapshots of the fitted map at the start and end of the
time series, t = 0 and t = 3000, are plotted in Fig 2. In the fitted maps in Fig
2, at time t = 0 we have a low-phosphorous stable equilibrium corresponding to
the initial equilibrium in the original model (filled circle) and a higher unstable
equilibrium forming a threshold concentration above which eutrophication will
be triggered. At t = 3000 the map is forecast to have shifted completely above
the identity line, causing the two equilibria to come together and disappear in a
saddle-node bifurcation, triggering a regime shift to the eutrophic state (which
is not captured by the approximate discrete time map).

By tracking the equilibria of the time-dependent map along with their sta-
bility, extended beyond the calibration window, we can produce predictions for
the system state, the boundary of its basin of attraction, and any bifurcations
inducing a regime shift. Fig 3 shows such a forecast for the lake eutrophica-
tion model, with the original time series plotted alongside for comparison. The
blue curve tracks the phosphorous concentration of the noneutrophic state of
the system. The dashed orange curve tracks the threshold concentration: if the
phosphorous concentration passes above this level, a shift to the eutrophic state
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Figure 3: Forecast resilience profile from the lake phosphorous model– predicted
stable (blue, solid line) and unstable (orange, dashed line) equilibria, alongside
the time series generated by the model (grey). The calibration window lies
between t = 0 to t = 1250.

8



will be triggered. Based on the calibration data up to t = 1250, a regime shift
is indicated at around 2600. This closely precedes the transition in the actual
system at t ≈ 2800.

4 Application to a boundary crisis: Overcom-
pensatory population with ramped harvesting

While saddle-node bifurcations and other shifts from a regime at equilibrium
are well studied, and many metric-based resilience indicators have been devel-
oped for them, non-local bifurcations such as basin-boundary crises are generally
much more challenging to predict. Since nearly-1D dynamics can be obtained
from time series of many systems with low-dimensional chaos in ecology and
related disciplines, they offer a possible route for developing early warning sig-
nals for some of these transitions. For simplicity of presentation, we consider a
one-dimensional discrete-time system: a fishery model given by the Hassell map
[56], with linearly ramped constant yield harvesting (see Appendix A). Since
the dynamics of this system are already 1D, a 1D map can be fitted directly
to the set of consecutive points in the time series. For nearly-1D systems in
general this is not possible, peak-to-peak coordinates need to be taken (or a
similar technique needs to be used) in order to fit a 1D map.

A time series obtained from this model is shown in Fig 4. The Hassell map is
known to display chaotic dynamics through overcompensation, and this is seen
in the fish population cycles: they are irregular and show sensitivity to initial
conditions. As the harvesting yield per season is ramped, the oscillations take
place at lower population levels, with occasional ‘periodic windows’ in which
the dynamics become more regular temporarily, until there is a collapse of the
fish stock at time t ≈ 2500 due to a boundary crisis of the chaotic attractor.
Essentially, as the population cycles are shifted to lower values by the increased
fishing, a harvesting-driven Allee effect arises when an unstable equilibrium close
to zero appears and acts as a minimum viable population level. Eventually, the
minimum population level reached in the population cycles drops below this
level and the fish stock collapses.

Again we consider a calibration window consisting of time points up to t =
1250, but as the data is already in discrete form, we do not need to perform
delay-embedding or consider peak-to-peak maps. We can plot the xt+1 data
against the xt data, and fit a map with parameters linearly depending on time–
here we fit a Ricker map shifted in both vertical and horizontal directions:

xt+1 = [xt − (a0 + a1t)] exp

[
(r0 + r1t)

(
1− xt − (a0 + a1t)

K0 +K1t

)]
+ (b0 + b1t) , (2)

which is chosen as a parsimonious representation of a unimodal functional form.
The best fit for such a map to this time series and calibration windows is given
by the parameters r0 = 2.580, r1 = 2.549× 10−6,K0 = 0.9743,K1 = −2.1676×
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Figure 4: Simulated time series from the fishery model with linearly ramped
harvesting (calibration window shown in grey). Subplots show stretches of the
time series for which the deterministic dynamics are periodic and chaotic, re-
spectively.

Figure 5: Simulated data points from the fishery model time series, coloured
according to the time at which they are observed, plotted with snapshots of
the time-dependent Ricker map fitted to the calibration window from t = 0 to
t = 1250 taken at t = 0 (dark blue dashed curve) and t = 6000 (dark red dashed
curve).
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Figure 6: Predicted resilience profile for the harvested fish stock time series –
critical threshold and attractor minimum. Time series plotted in grey. The
calibration window lies between t = 0 and t = 1250.

10−6, a0 = −0.0023, a1 = 1.4098× 10−6, b0 = 0.0130, and b1 = −9.6577× 10−5.
Snapshots of this map, together with data points from before the transition,
are shown in Fig 5. From the time dependence we can extend the map beyond
the calibration window and compute the critical threshold in the dynamics at
each time, by finding the lowest equilibrium in the map, as well as the minimum
point possibly reached in the chaotic cycles. To do this we use the hump shape
of the map which implies that the minimum of the cycles can only be reached
by starting from the maximum of the map and iterating once (see Electronic
supplementary material, Appendix B). Note that both of these extremes are
computed from the maps fitted to the entire range of dynamics, instead of
considering values near to the critical level alone. The difference between the
minimum in the population cycles and the critical population threshold gives
us the resilience of the system at each time, and tells us if a boundary crisis is
possible.

By tracking the change in the population cycle minimum and the critical
population threshold in time, we can obtain a resilience profile for the system
as shown in Fig 6. The orange dashed curve shows the critical threshold of the
population level, which is predicted to increase with time, and the blue curve
shows the minimum population level reached by the attractor, which is predicted
to steadily decrease with time. Where these two curves cross at t ≈ 3850, we
see a boundary crisis in the fitted time-dependent map. A corresponding criti-
cal transition in the original system leading to extinction of the fish population

11



is predicted at this time. In fact, this actually happens earlier in the sample
time series because noise drives the fish stock below the extinction threshold, a
consequence of the resilience loss in the system. The resilience is given by the
distance between the attractor minimum and the critical threshold and repre-
sents the smallest perturbation that could trigger a critical transition. However,
in this case such a perturbation would need to be timed to take place when the
population is at its lowest level in the chaotic cycle in order to induce a collapse.

5 Data requirements

In order to gain some insight into how the characteristics of the data set avail-
able affect the ability of nearly-1D maps to predict critical transitions, we can
consider how the error in the predicted transition time changes for different
windows of calibration data. A calibration window is a range of times [t1, t2] to
which the time-dependent model is fitted, where t1 < t2 < tc for a transition
taking place at time tc. Two key properties of a calibration window are its
length t2− t1, and the time at which it starts, relative to the transition, t1− tc.
The heat maps in Fig 7 show the prediction error as a function of the start time
and the length of the calibration window, averaged over 10 realisations of the
lake phosphorous model, for noise intensities of σR = 0.005 and σR = 0.01. Here
blue regions indicate more accurate predictions, and red/orange ones indicate
calibration windows giving less accurate predictions, or for which the method
failed to predict a transition at all. Although we could consider that the in-
dicator has ‘failed’ in the latter case, a considerable loss of resilience is still
often predicted. Throughout the figure, a pattern of diagonal ‘streaks’ showing
similarly accurate predictions is visible in spite of the averaging over multiple
replicates. Since these diagonals correspond to calibration windows ending at
the same time, the latest data points used for calibration have a particular
significance for the accuracy of the method.

To examine the reliability of the prediction depends on the length of avail-
able calibration data and its closeness to the transition, in Figure 8 we plot the
proportion of predicted transitions within 500 time points of the actual transi-
tion seen in the time series, both as a function of the length of the calibration
window, t2− t1, and its start time relative to the transition time, t1− tc. Figure
8(a) shows that the length of the calibration window has a strong effect on the
reliability of predictions. In order to have a greater than even chance to an-
ticipate the saddle-node bifurcation in the lake phosphorous model, we need to
have a sufficiently long calibration window available, with the required length
depending on the noise intensity: around 1400 time units with σR = 0.5%, 1500
for σR = 1% and 2000 for σR = 2%. A similar length of calibration window is
necessary to reliably avoid false positives when applied to a time series without
a transition (Electronic supplementary material, Appendix C). We also see a
slight tendency for more accurate predictions the closer to the transition the
time series starts (Fig 8(b), also visible in the shift to more prevalent blue re-
gions in Fig 7), but this is not as strong as one might expect. Note that the
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Figure 7: Accuracy of the predictions of the transition in the lake phosphorous
system as a function of the length t2−t1 and start time relative to the transition,
t1− tc of the window of calibration data [t1, t2]. The noise intensities considered
are (a) σ = 0.5%, and (b) σ = 1%. The colours represent the average absolute
error in the forecast time of total resilience loss compared to that seen in the
time series used for calibration. Blue regions correspond to accurate predictions
and red regions to inaccurate predictions, or cases where no transition was
predicted at all. Errors are averaged over 10 realisations of the model, with
missed transitions being assigned an error of 5000 time points.

Figure 8: The dependence of the reliability of the predictions on the length and
start time of the window of calibration data for different noise levels σR in the
lake phosphorous system. The proportion of predicted times of total resilience
loss which are within 500 time points of the actual transition time tc (a) given a
fixed length t2−t1 of the calibration window and averaged over start times t1−tc
for t1 ∈ [0, 600] (b) given a fixed start time t1 − tc and averaged over window
lengths t2 − t1 ∈ [0, 1100]. Each set of results is averaged over 10 independent
realisations of the system.
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reason for the low proportion of acceptable predictions is that the length of the
calibration window needs to be limited in order to explore a significant range of
start times within the whole time series. This also holds for Fig 9(b).

Figure 9: The dependence of the reliability of the predictions on the length and
start time of the window of calibration data for different noise levels σ in the
fishery system. The proportion of predicted times of total resilience loss which
are within 500 time points of the actual transition time tc (a) given a fixed
length t2 − t1 of the calibration window and averaged over start times t1 − tc
for t1 ∈ [0, 500] (b) given a fixed start time t1 − tc and averaged over window
lengths t2 − t1 ∈ [0, 500]. Each set of results is averaged over 10 independent
realisations of the system.

The dependence of the frequency of successful predictions on the window of
calibration data for the fishery model is shown in Fig 9. For this system we
take the error in the predicted transition time relative to the boundary crisis
seen in the deterministic time series, rather than the stochastic time series from
which the prediction is generated. This is a more fitting comparison since the
fitting of a time-dependent nearly-1D dynamics to the time series can only track
the resilience loss caused by changes in the deterministic skeleton, while the
precise time of the transition itself depends on extrinsic perturbations. Indeed,
the simulated perturbations in the stochastic system essentially guarantee a
considerably earlier collapse than in the deterministic case: in all the stochastic
time series considered here, the crisis takes place around t = 2500 rather than
T̂det = 3718 in the deterministic system, so that the deterministic case gives an
upper bound on the time to the tipping point. Tipping points that are triggered
by perturbations or noise are referred to as N-tipping points [53]. Prediction of
transitions including N-tipping would involve the addition of a noise term to the
time-dependent nearly-1D map, which can be done relatively straightforwardly.
The data requirements for the fishery time series are similar to those of the
lake phosphorous time series: the calibration window needs to be of a certain
length if the method is to successfully anticipate the transition within a given
accuracy, while the closeness of the calibration data to the transition has a far
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weaker effect.

6 Discussion

In the class of systems in which the dynamics are nearly one dimensional and
can be well approximated by one-dimensional discrete time systems, there is
the possibility to construct new model-based indicators for the loss of resilience
and a shift to a different regime. Significantly, this can be done for challeng-
ing systems which show complicated dynamics such as chaos, as well as the
more commonly studied case of systems starting at equilibrium. The approach
is centred around fitting generic, parsimonious models with time-dependent pa-
rameters to the approximate 1D map in order to track how the system dynamics
are changing. By doing so, we can obtain a prediction of the state of the system
or its extreme values, and the thresholds beyond which the system cannot be
perturbed without triggering a regime shift. This yields two important pieces
of information: it tells us if and moreover when a regime shift can be expected,
and it allows us to forecast the future resilience of the system, in the sense of
the maximum disturbance that can be tolerated without triggering a shift. Such
forecasts can either be made continuously using a moving calibration window
as with metric-based early warning signals, or incorporated into an iterative
forecasting framework [57].

Most existing early warning signals take metric-based approaches, in that
they use trends in statistical properties of the times series, such as an increase
in variance due to critical slowing down of the response to perturbations, as in-
dicators that the system may be losing resilience or approaching a regime shift.
Such indicators have many benefits in that they are generic and require no
knowledge of the system monitored, at least in principle. However, these statis-
tical trends generally do not yield quantitative estimates of the resilience of the
system or forecasts of the time at which a system should undergo a transition
[33, 24]. One way to rectify this is to develop model-based approaches such as
the one presented here to supplement metric-based indicators [32]. Model-based
techniques could be applied to systems which are flagged by metric-based indi-
cators as possibly losing resilience or approaching a critical transition, both in
order to corroborate the early warning signal from the indicator and to provide
extra information about the resilience loss and predict how it is likely to unfold.
Although model-based methods involve the fitting of models rather than the
monitoring of statistical trends, the two groups of indicators share many com-
mon assumptions. In particular, both assume a basic separation of timescales
between fast state variables and slowly changing environmental conditions or
parameters, as well as a distinction between intrinsic deterministic dynamics
and external stochastic perturbations.

In order for the model-based approach presented here to anticipate tran-
sitions successfully, the system and the available data must satisfy additional
requirements beyond the presence of nearly-1D dynamics. The assumption of a
clear time-scale separation between slowly changing parameters and faster dy-
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namical variables implies that the approaches will fail in the presence of rapidly
changing conditions [53]. Similarly, a particular dependence of parameters on
time is required–here a linear dependence on time is assumed. Stressors in
real-world systems are unlikely to increase at a precisely linear rate, but linear
ramping may serve as a valid first-order approximation so long as the ramping
is broadly unidirectional. When ramping in system drivers is nonlinear, pre-
dictions beyond a certain time scale will likely be inaccurate, with this time
scale becoming shorter with more nonlinear ramping. Additionally, noise with
too large a variance can overwhelm the time-dependence of the dynamics and
cause the ‘signal’ of the gradual change in the structure of the system to become
indiscernible [33]. On the other hand, in the case of systems at equilibrium such
as the lake phosphorous model, sufficient noise is needed to reveal the system
structure and its changes: negligible noise levels are insufficient for the system
response to reveal the nearly-1D dynamics away from the equilibrium. Further-
more, a sufficiently long data set is needed to adequately fit the time-dependent
nearly-1D map, as the plots in Figs 8 and 9 show. This remains a particular
challenge to forecasting critical transitions in ecology, where data availability is
limited.

Unlike the system properties used by many metric-based indicators, nearly-
1D dynamics are not universal. There is, however, evidence that they are
widespread in ecology [49, 47], epidemiology [46], physiology [58, 59], electronics
[60] and chemical systems [61, 62]. Nearly-1D dynamics are often not immedi-
ately recognisable in time series without using delay-embedding or considering
peak-to-peak maps, but there are certain types of system in which they are
more common. In particular, dynamics which follow low-dimensional chaotic
or quasiperiodic cycles are frequently nearly-1D. Deterministic periodic systems
exhibit nearly-1D dynamics which consist of jumps between a finite number of
points, making the interpolation and tracking of a 1D map difficult. However,
sufficient noise can change this by displacing the state from the periodic orbit
and revealing more of the nearly-1D dynamics in a surrounding invariant region,
even to the point of inducing stochastic chaos [63, 64, 65]. In deterministic sys-
tems at equilibrium, nearly-1D dynamics will always be given by a single point
and it remains an open question for which systems noise can reveal a full nearly-
1D map in this case. Some multidimensional systems show fast-slow dynamics
which imply nearly-1D dynamics, but arguably they should also be seen in many
more systems near tipping points: the centre manifold theorem guarantees that
critical slowing down only takes place in the direction of the centre manifold
[66] which will be a 1D curve for saddle-node and other types of bifurcation.
Observed data points should be primarily distributed along this curve, because
perturbations perpendicular to it will return more quickly than those tangent
to it [67]. Time-series analysis techniques such as delay embedding may reflect
this by returning nearly-1D dynamics, although the success of such techniques
with substantial noise is not guaranteed [68]. Overall, however, there remains
the need for similar methods for higher dimensional systems without nearly-1D
dynamics. The framework presented here may be extended to such systems by,
e.g. approximating their dynamics from time series using current methods such
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as those found in [69, 70].
The additional information which we can gain by considering the nearly-1D

dynamics of a system means that they can play an important role in bringing
existing early warning signals closer to management decisions with the view of
taking action to manage a transition or prevent it completely. Firstly, timescale
is an important factor in most management strategies, because they rely on
the gradual effect of physical or biological processes, the development of new
technology, or simply need time to be organised [8, 13]. In ecology, life-history
effects and delay mean that biological interventions may only be effective on
the timescale of one or more lifespans of the organisms involved [71]. The
time requirements and monetary cost of management actions can necessitate
estimates of the time left available in order to decide which transitions can
be reversed, and which management strategies will be effective. Estimates of
the resilience and critical thresholds in the run up are also useful to inform a
decision as to which management measures are necessary or cost-effective—for
instance, whether to take short term measures such as keeping the state away
from the threshold or longer-term measures such as moving the threshold itself
[4], or whether it is even worth trying to mitigate the regime shift rather than
allowing it to take place and concentrate on helping the system adapt [72, 73].

Another prospect for the use of nearly-1D dynamics to guide early warning
signals lies in their ability to anticipate regime shifts caused by nonlocal bifur-
cations, before which the system is not at equilibrium, but instead undergoes
periodic or chaotic cycles. Such regime shifts are particularly challenging to
anticipate, and many of the standard approaches in the early warning signals
toolbox cannot be applied effectively at all. While these bifurcations do exhibit
critical slowing down in a sense [43], statistical trends are usually lost among
the intrinsic fluctuations already present, especially if they are chaotic or if the
system is only close to a threshold for a small part of each cycle. The use of
nearly-1D dynamics finally opens up the prospect of constructing early warning
signals for these types of regime shift in certain cases.
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Appendix A - Models used to produce simulated
data

Lake phosphorous model

The dynamics of phosphorous in lake water are described by the following equa-
tion from [55]:

dx

dt
= c1U (t)− c2x+ c3mF (x) + σRmF (x)

dW

dt
,

F (x) =
xq

cq4 + xq
.

x is the concentration of phosphorous in the water in gm−2. c1 = 0.00115 is
the phosphorous inflow from groundwater, c2 = 0.85 the outflow coefficient,
c3 = 0.019 the recycling rate, c4 = 2.4 the recycling half-saturation coefficient,
m = 200gm−2 the concentration of phosphorous in the lake sediment, q = 8
the recycling function exponent, and σR the standard deviation of stochastic
perturbations to recycling (σR = 0.5% unless specified otherwise). The mass of
phosphorous in the watershed soil is given by the linear function U (t) = U0+U1t,

where U0 = 600gm−2 and U1 = 1/6gm−2 〈t〉−1
. W is a standardised Wiener

process.

Fishery model

The model for a harvested fish population with overcompensatory dynamics is
given by the following equation, based on the Hassell model [56] with constant
yield harvesting and multiplicative environmental noise:

xt+1 = (1 + σξ)

[
rxt

(1 + axt)
β
− h (t)

]
,

r = 13.5 is the basic growth rate, a = 0.03 the rate of density-dependent
saturation, β = 90 the compensation parameter, σ is the standard deviation of
the noise (σ = 2% unless specified otherwise) and ξ is a normally distributed
random variable with mean of 0 and variance of 1. Note that in the limit
β = 1

a →∞, this model convergences to the Ricker map. The harvesting yield
is given by h (t) = h0 + h1t, where h0 = 0, and h1 = 1× 10−4.
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and L. Grüne, eds.), (Berlin), pp. 255–268, Springer, 2002.

[61] S. K. Scott and A. S. Tomlin, “Period doubling and other complex bifur-
cations in non-isothermal chemical systems,” Phil Trans R Soc A, vol. 332,
pp. 51–68, 1990.

[62] V. Petrov, S. K. Scott, and K. Showalter, “Mixed-mode oscillations in
chemical systems,” J Cheml Phys, vol. 97, pp. 6191–6198, 1992.

[63] A. Hastings, C. L. Hom, S. Ellner, P. Turchin, and H. C. J. Godfray, “Chaos
in Ecology: Is Mother Nature a Strange Attractor?,” Annu Rev Ecol Syst,
vol. 24, pp. 1–33, 1993.

[64] S. P. Ellner, P. Turchin, and A. de Roos, “When can noise induce chaos
and why does it matter: A critique,” Oikos, vol. 111, no. 3, pp. 620–631,
2005.

[65] T. Tél, Y.-C. Lai, and M. Gruiz, “Noise-induced chaos: a consequence of
long deterministic transients,” Int. J. Bifurcation Chaos, vol. 18, no. 02,
pp. 509–520, 2008.

[66] Y. Kuznetsov, Elements of Applied Bifurcation Theory. New York:
Springer, 2004.

[67] C. Kuehn, “A mathematical framework for critical transitions: Bifurca-
tions, fast–slow systems and stochastic dynamics,” Physica D, vol. 240,
pp. 1020–1035, 2011.

[68] M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space recon-
struction in the presence of noise,” Physica D, vol. 51, no. 1, pp. 52–98,
1991.

[69] W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, “Predicting
catastrophes in nonlinear dynamical systems by compressive sensing,” Phys
Rev Lett, vol. 106, p. 154101, 2011.

23



[70] F. Kwasniok, “Forecasting critical transitions using data-driven nonstation-
ary dynamical modeling,” Phys Rev E, vol. 92, p. 062928, 2015.

[71] A. Hastings, “Timescales and the management of ecological systems,” Proc
Natl Acad Sci USA, vol. 113, pp. 14568–14573, 2016.

[72] T. M. Lenton, “Early warning of climate tipping points,” Nature Clim
Change, vol. 1, pp. 201–209, 2011.
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