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A growing literature considers the Sustainable Development Goals (SDGs) as a interlinked network, con-
nected by co-benefits and trade-offs between pairs of SDGs. Such network descriptions naturally prompt
important questions concerning the emergence and identification of system-level features.
This paper develops mathematical techniques to address, quantitatively, the extent to which these

interlinkage networks point to the likelihood of greater progress on some SDGs than on others, the sen-
sitivity of the networks to the addition of new links (or the strengthening or weakening of existing ones),
and the existence of implicit hierarchies within Agenda 2030.
The methods we discuss are applicable to any directed network but we interpret them here in the con-

text of three interlinkage matrices produced from expert analysis and literature reviews. We use these as
three specific examples to discuss the quantitative results that reveal similarities and differences
between these networks, as well as to comment on the mathematical techniques themselves. In broad
terms, our findings confirm those from other sources, such as the Sustainable Development Solutions
Network: for example, that globally SDGs 12–15 are most at risk.
Perhaps of greater value is that analysis of the interlinkage networks is able to illuminate the underly-

ing structural issues that lead to these systemic conclusions, such as the extent to which, at the whole-
system level, the structure of SDG interlinkages favours some SDGs over others. The sensitivity analyses
also suggest ways to quantify possible improvements to an SDG interlinkage network, since the sensitiv-
ity analyses are able to identify the modifications of the network that would best improve outcomes
across the whole of Agenda 2030. This therefore indicates possibilities for informing policy-making, since
the interlinkage networks themselves are implicitly descriptions of the overlaps, co-benefits and trade-
offs that are anticipated to be likely to arise from a set of existing or proposed future policy actions.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The United Nations’ Sustainable Development Goals (SDGs),
agreed by the UN General Assembly in September 2015 (United
Nations, 2015) are recognised as providing a blueprint for a pros-
perous, sustainable, and equitable future for humanity and as a
result set out an ambitious and wide-ranging agenda across all
fields of human endeavour. The SDGs are purposefully described
as a single ‘integrated and indivisible’ agenda (United Nations,
2015, Declaration, paragraph 6), with universal applicability,
rather than as a collection of independent ambitions across the
three dimensions (economic, social and environmental) of sustain-
able development. This integrated perspective therefore demands,
from the outset, research programmes and policy analysis that can
establish how different aspects of the SDG agenda influence each
other, and whether actions taken to meet one specific SDG are
likely to result in additional improvements towards other Goals
(‘co-benefits’), or to work antagonistically (‘trade-offs’).

As Nilsson et al. (2016) remark "Implicit in the SDG logic is that
the goals depend on each other – but no one has specified exactly
how.” Indeed, the implied dependence between pairs of SDGs, or
even between pairs of targets, depends on how precisely the
underlying policy agenda is constructed and implemented. It
therefore in general should be expected to vary from one country
to another and to vary over time. The extent to which national pol-
icy enables co-benefits or inhibits trade-offs is therefore a measure
of ‘policy coherence’ that is itself part of the SDG agenda: target
17.14 is precisely to "Enhance policy coherence for sustainable
development”. But the challenge of policy coherence is broader,
since it shapes the entire worldview that the SDGs introduce;
hence the calls for cohesive strategies, capacity-building initiatives
and enabling environments for sustainable development that
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Table 1
The seven-point scale proposed by Nilsson et al. (2016) for scoring the influence of
one specific SDG or target on another.

Score Name Explanation

+3 Indivisible Inextricably linked to the achievement of another
goal

+2 Reinforcing Aids the achievement of another goal
+1 Enabling Creates conditions that further another goal
0 Consistent No significant positive or negative interactions
-1 Constraining Limits options on another goal
-2 Counteracting Clashes with another goal
-3 Cancelling Makes it impossible to reach another goal
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appear, for example, in paragraphs 63 and 87 of the original Reso-
lution adopted by the UN General Assembly (United Nations,
2015). Moreover, this is situated in the context of a yet wider
debate on the nature of sustainable development and the extent
to which it requires a global paradigm shift. This lies far beyond
the scope of this paper but the dual policy ambitions to combine
the achievement of minimum standards in social provision while
ensuring that planetary boundaries are respected lies at the heart
of the ‘doughnut economics’ movement (Raworth, 2017).

From the outset then, a study of interlinkages in the SDGs is
therefore, at least to some extent, a study of policy coherence.
Indeed, as discussed by Allen et al. (2018) the policy challenge
set by sustainable development is to find policy interventions that
are tangible, straightforward to implement, and which have high
potential to effect transformational change. Many such interven-
tions may have in fact a relatively low degree of transformational
effect but nevertheless result in ‘spillover’ effects. Such spillovers
can therefore be described in terms of either positive or negative
influences on one or more of the SDGs in addition to the one for
which the original policy action was designed. When these spil-
lovers are positive the system demonstrates policy coherence: ‘the
systematic promotion of mutually reinforcing policy actions . . .cre-
ating synergies towards achieving the defined objective’ as defined
by the OECD and quoted by Breuer et al. (2019).

Pham-Truffert et al. (2020) distinguish in their introduction
between three levels of "SDG interaction”: (i) interactions at the
policy level resulting from conflicting global viewpoints and polit-
ical priorities; (ii) interactions due to resource limitations; and (iii)
systemic interactions that give rise to unintended consequences.
They frame their study, and by implication the GSDR interlinkage
matrix that they construct, and we study later in this paper, in
terms of this third set of systemic interactions. But it seems diffi-
cult to draw precise boundaries between these different kinds of
interaction: resource allocations are themselves policy decisions,
and policy actions can be used to control unintended conse-
quences, at least once the unintended consequence has come to
light. It seems simpler instead to consider interlinkages as reflect-
ing business-as-usual policy actions and to contrast this with the
effects that novel, disruptive actions might lead to.

In practice, interlinkages under business-as-usual scenarios are
more often inferred rather than explicitly set out in policy terms.
To give just one example, Weitz et al. (2018) state that the con-
struction of their cross-impact matrix of interactions was guided
by the question ‘‘If progress is made on target x (rows), how does this
influence progress on target y (columns)” (Weitz et al., 2018, page
536). The policy mechanism that would give rise to that linkage
remains implicit. All methodologies for the identification of inter-
linkages proposed in the literature have drawbacks; in our exam-
ples of interlinkage matrices used later in this paper we focus on
the use of expert analysis but this should not be taken as excluding
interlinkage networks built from other data sources: the method-
ologies we propose would apply equally to these and we encourage
other researchers to apply and build on these methods in their
work. In particular Lusseau and Mancini (2019) point to two addi-
tional common and contrasting methodologies for the inference of
interlinkages: historic analysis of time series of relevant data, for
exampleWorld Bank indicators, or the identification of shared con-
cepts in the underlying definitions of policy objectives.

There are at least four aspects to the identification of interlink-
ages; all four aspects themselves vary over time and geography,
and all are challenging for the characterisation of a specific inter-
linkage: (i) its strength, (ii) its directionality (one way or in both
directions), (iii) whether or not, over time, it is reversible, and
(iv) the overall level of uncertainty (Nilsson et al., 2016). For exam-
ple, the use of historical correlations in indicator timeseries might
result in a reassuringly quantitative measure of the strength of an
2

interlinkage, while being less able accurately to determine its
directionality or its variations in strength over time.

But such measures also need not be quantitative; the major
contribution of the paper by Nilsson, Griggs and Visbeck is the pro-
posal of their seven-point scale, from þ3 (‘Indivisible’) to �3 (‘Can-
celling’), set out here in Table 1 for immediate reference, which
provides a systematic scale, originally of a qualitative nature,
around which evidence and decision-making can be organised.
This scale was employed, for example, by the International Council
for Science (known as ICSU after their original name: the Interna-
tional Council of Scientific Unions) in their 2017 report
(International Council for Science (ICSU), 2017) that focussed on
four SDGs (numbers 2, 3, 7 and 14).

In general one might hope to be able to draw on a sufficiently
diverse collection of interlinkage networks, constructed indepen-
dently, from which the most robust conclusions could be drawn,
or differences between them be understood; this might, for exam-
ple reveal how interlinkage strengths had evolved over time.
Recent work in the area shows that this project has been initiated
in the academic literature but it is far from concluded.

More fundamentally, the relation between the SDG interlinkage
literature and policy studies for sustainable development also
deserves more detailed scrutiny. In the public policy literature
there is a central distinction between policy instruments (or tools,
or techniques) and policy goals (outcomes). In terms of SDG inter-
linkages, the policy goals are made much more explicit than the
policy instruments that might influence them; the mechanisms
or inputs required to achieve the SDGs are often, as noted above,
only described implicitly. The discussion of the relation between
policy instruments and policy goals stretches back at least to the
work of Tinbergen (1952) who proposed that if n independent pol-
icy goals were to be achieved, then a set of at least n policy instru-
ments would in general be required (Tinbergen, 1952; Schaeffer
and Willardsen, 2019). But of course, any degree of alignment or
coherence between policy goals might enable a reduction in the
number of policy instruments required. In the context of agro-
forestry and the SDGs, van Noordwijk et al. (2018) point to the
meeting point of the SDGs in land use, where a small number of
policy instruments could, at least in theory, help to achieve both
environmental and resource extraction goals, as well as addressing
issues of governance and inequalities. A set of seventeen separate
policy instruments to achieve the SDGs would seem both
unachievable and completely at odds with the call for policy coher-
ence, yet the pursuit of someminimal number of policy ‘tasks’ does
appear to lie at the root of various proposals, such as the Six Trans-
formations proposed by the Sustainable Development Solutions
Network (SDSN) (Sachs et al., 2019; Sachs et al., 2020) to which
we will return in the final part of this paper, or the six ‘Entry points’
listed by the Global Sustainable Development Report 2019
Independent Group of Scientists appointed by the Secretary-
General (2019). To sum up, when we refer to ‘interlinkages
between SDGs’ we have in mind something closer to ‘interactions
between policy actions to address SDGs’ although for brevity we
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will continue to speak of ‘SDG interactions’ even though this is, in a
very technical sense, a phrase that on its own lacks meaning.

We now introduce briefly the networks that we use as examples
in the paper. Shortly after the launch of the SDGs, the International
Council for Science and the International Social Science Council
(ISSC) published an expert analysis of the formulation and struc-
ture of, and interlinkages between, the SDGs in 2015
(International Council for Science (ICSU), 2015). ICSU and ISSC
merged in 2018 to form the International Science Council (ISC)
but for historical consistency in this paper we will refer to the
2015 report (International Council for Science (ICSU), 2015) as
the ‘ICSU report’. The ICSU report (International Council for
Science (ICSU), 2015; see also (Le Blanc, 2015)) analyses, from a
‘science perspective’ both the framing of the individual Goals,
and targets within them, and the ecosystem of linkages between
different Goals. The expert commentary suggests links between
each Goal and specific targets within other Goals, and gives a sense
of both the direction of influence and whether it is a reinforcing
link or a negative trade-off between them. This report is particu-
larly valuable for several reasons. Most importantly, while SDG
17 is not considered, the report does provide an expert analysis
of SDGs 1–16 and the interlinkages between all of these, in a uni-
form manner. In the policy sense, then, these interlinkages are
described in terms of the most typical and natural outcomes of pol-
icy implementation, and the report takes a global view in the
knowledge that regional or national implementations may well
depart from the policy agenda that is implicitly assumed in that
report. The ICSU report is notable since few reports cover such a
large subset of the SDGs; for example the later report
(International Council for Science (ICSU), 2017) presents detailed
analysis of interlinkages focusing on just four Goals: 2 (Zero Hun-
ger), 3 (Healthy Lives), 7 (Energy) and 14 (Life Below Water), and
the analyses of Blanc et al. (2017) and Singh et al. (2018) focus
squarely on SDG 14.

A quantitative interaction network was derived from the expert
analysis presented in the ICSU report previously by Dawes (2020).
This quantitative version of the interlinkage network provides a
clearer theoretical understanding of how the SDGs fit together,
and allows system-level insights and conclusions to be drawn. At
a system level, the work presented in Dawes (2020) showed that
these SDG interlinkages promote faster progress on the first three
SDGs (No Poverty, Zero Hunger, and Healthy Lives) compared to
the remainder, and point to only very weak progress on Goal 15
(Life on Land) and indeed to negative progress on Goal 14 (Life
Below Water), due to trade-offs in the system. The present paper
extends this previous work through the comparisons with two
other networks, the discussion of the sensitivity of these results
to perturbations in the network, and the analysis of hierarchy
between nodes that the network implies.

As an expert analysis, the ICSU report is complementary to the
recent quantitative literature, much of which is based either on
(historical) correlations in SDG indicators (e.g. Spaiser et al.,
2016; Pradhan et al., 2017; Ranganathan et al., 2017;
Ranganathan and Bali Swain, 2018; Bali and Ranganathan, 2021)
or on Integrated Assessment Models, (e.g. Pedercini et al., 2019;
van Soest et al., 2019). As we have noted above, all approaches
have limitations; for example data-driven studies deriving from
the analysis of historical correlations cannot uncover the direction-
ality of influences, or underlying causation, e.g. the extent to which
intended policy coherence directly resulted in the historically
observed correlation. On the other hand, the ICSU report is limited
by the relatively small group of authors, the need to find a consen-
sus view that might end up not being applicable to any individual
region or country, and the difficulty in quantifying precisely the
strength of any interlinkage proposed.
3

The second expert analysis and literature review that we use as
an example is the Global Sustainable Development Report
(Independent Group of Scientists appointed by the Secretary-
General, 2019) The Future is Now: Science for Achieving Sustainable
Development, the first of the quadrennial reports produced for the
UN’s High-Level Political Forum on Sustainable Development by an
independent group of scientists, while the third is a survey-based
analysis of the coverage of Integrated Assessment Models (IAMs)
carried out by van Soest et al. (2019) which we refer to as the
‘IAM survey’. While in some aspects the most sophisticated of
the kinds of model we consider, Integrated Assessment Models suf-
fer from not being able to represent sufficiently well many of the
socially-relevant SDGs, in particular SDG 5 (Gender Equality) and
SDG 10 (Reduced Inequalities); we discuss this further in Section 4.

The GSDR 2019 Report contains a broader-based literature
review carried out in early 2018, using keyword searches on the
ISI Web of Science and Scopus databases, looking for articles that
referred to both ‘SDG’ and ‘interaction’ or closely related terms
(Pham-Truffert et al., 2020). From this analysis, the authors identi-
fied a collection of 65 global assessments (including UN reports)
and a further 112 published scientific articles. The literature review
extracted data at the target level (i.e. interactions between individ-
ual targets) which was then summarised at Goal level (see Box 1–2
on page 6 of Independent Group of Scientists appointed by the
Secretary-General (2019)), and also in (Pham-Truffert et al., 2020,
Fig. 4). This dataset therefore shows where the global scientific
and science-policy communities have focused their attention to
date across the Goals and particular interactions. The identification
of the directionality and sign of interlinkages that are identified in
this study do indicate how we expect a specific pair of SDGs to
influence each other, but clearly the coverage of the network indi-
cated by the GSDR 2019 report will reflect biases and non-
uniformities in the scientific funding and research landscape,
rather than properties intrinsic to the SDG network itself. This
interlinkage data is summarised in Tables 2,3 in Appendix A for ref-
erence. A brief initial look shows, for example, that the influences
of other SDGs on Goals 1–3 are more commonly reported than
influences on later Goals, and that Goals 6 (Clean Water and Sani-
tation) and 7 (Affordable and Clean Energy) appear to be more
influential than others.

A comparison between the interlinkages identified across these
three reports (ICSU, GSDR 2019, and the IAM survey) allows us
therefore to consider the robustness of the results reported in
Dawes (2020) which were based on the ICSU report alone, as well
as offering insight into possible gaps in the literature concerning
particular interlinkages that we might expect to be significant. In
this paper we explore both of these issues, as well as introducing
relevant mathematical ideas to quantify three specific features of
interlinkage networks that we see as useful in interpreting them
for policy-related work. Firstly, the shape of the dominant ‘mode
of network response’ that distinguishes which SDGs benefit most
from the co-benefits in the network, and which are subject overall
to the strongest trade-offs. Secondly, the sensitivity of key network
properties to the addition of new interlinkages (or the variation in
strength of existing linkages). Thirdly, the extent to which the
directed links in the SDG network form a coherent overall hierar-
chy that allows the identification of some key ‘enabling’ or ‘up-
stream’ SDGs that drive progress on other ‘downstream’ Goals.

Our main conclusions are that there are strong similarities
between the interaction matrices deduced from the ICSU and GSDR
reports. Both have a single dominant ‘mode’ that shapes the overall
system-wide response of the network. In the case of the GSDR
report, the Goals most at risk of not being achieved include SDG
6 (Water), SDG 14 (Life below Water), SDG 15 (Life on Land), and
SDG 17 (Partnerships for the Goals), see Figs. 2 and 4. There appear
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to be structural similarities between the GSDR and ICSU Reports in
that more progress is expected on SDGs 1, 2, and 3 than on others
and there is a lack of attention as to how progress on Goals 1–3
feeds back into progress on Goals 4–17. The networks are therefore
more sensitive to the addition, or strengthening, of interlinkages
that reach from SDGs 1–3 to others, i.e. linkages in which progress
on SDGs 1–3 is made in such a way that it explicitly opens up fur-
ther progress on other SDGs. Similar messages emerge from the
analysis of hierarchy within the SDG networks: SDGs 1 and 2 are
consistency far ‘downstream’ of the other Goals, meaning that pro-
gress on SDGs 1 and 2 often reaps the rewards and benefits of pro-
gress elsewhere. In contrast, SDGs 12 (Sustainable Consumption
and Production) and 17 (Partnerships) consistently appear far ‘up-
stream’, i.e. these are Goals that are enablers of progress. Similar
conclusions are inferred from the IAM network, although, for rea-
sons that we discuss below, these results contain a higher level
of uncertainty than the ICSU and GSDR 2019 networks.

A final preliminary remark concerns the use of quantitative
analysis in such a complex and multilayered policy-driven arena.
The reduction of any set of SDG interactions to a matrix of numer-
ical values will always inevitably be a hugely incomplete and
highly reductionist viewpoint; it must be treated with caution.
However, an important motivation for this kind of analysis is to
develop a much greater sense of how a collection of individual
interlinkages builds into a system-level representation that allows
broader conclusions to be inferred. In this sense, then this paper
attempts to provide tools to explore the consequences of one or
other specific set of interlinkages, while acknowledging that the
precise interpretation of any one set of results is likely to be
affected by biases, often structural, that arise from the underlying
data collection methodology. Attempting to make this connection
between interlinkage inputs and system-level consequences is
nevertheless important, even if the results are imperfect.

The structure of the paper is as follows. In Section 2 we set out
the construction of interlinkage networks from the ICSU and GSDR
2019 reports, and in Section 2.2 we provide a detailed discussion of
eigenvalues and eigenvectors and their relationship to concepts of
centrality in networks. This motivates their applicability here and
aids the interpretation of the results in Section 2.3 for the ICSU
and GSDR interaction matrices. In Section 2.4 we use the separate
totals of positive and negative influences summarised in the GSDR
2019 report to test the robustness of the leading eigenvalue and
the shape of the leading eigenvector to random sampling over
these positive and negative values. Section 3 defines two distinct
sensitivity measures for the interlinkage matrices, depending on
whether one wishes to improve the overall growth rate of the
dominant mode of response (i.e. to intensify the influence of the
interactions), or to equalise the progress described by the domi-
nant mode across all the SDGs. In Section 4 we briefly summarise
similar results on the leading eigenvalue and eigenvector for the
IAM network, derived from the results of an expert survey on inter-
linkages related to Integrated Assessment models. These results
are perhaps less reliable than those presented in Section 2 but
are nevertheless consistent with them. Section 5 considers the
question of overall hierarchies within these weighted, directed net-
works, for all three interaction matrices. Finally, Section 6 presents
conclusions and directions for future work.
2. SDG interlinkages

2.1. Network structures

In this section we review the construction and interpretation of
interlinkage networks derived from the ICSU 2015 report
(International Council for Science (ICSU), 2015) and the GSDR
4

2019 report (Independent Group of Scientists appointed by the
Secretary-General, 2019). We then compare the results and present
a preliminary discussion on the implications forwhere this might
indicate gaps in the published literature. It is important to note
that the ICSU 2015 report omitted Goal 17 (Partnerships for the
Goals) and discussed interactions between Goals 1–16 only.
2.1.1. ICSU network
The methodology used to construct a network from the expert

analyses presented in the ICSU 2015 report is presented in detail
elsewhere (Dawes, 2020, section 2.1). In brief, the expert analysis
proposed linkages between Goals, in effect estimating the effects
that typical policies to achieve one goal would have on targets
within other SDGs, implicitly using the viewpoint discussed in Sec-
tion 1. This expert analysis allowed such linkages to be proposed
between each Goal and specific targets within each of the other
Goals. Narrative descriptions of these linkages usually allowed a
direction of influence to be inferred (in some cases mutual co-
benefits, or trade-offs, which were represented by bidirectional
linkages), with an interaction strength given by the number of
specific targets indicated as a proportion of the total number avail-
able (note that the number of targets per Goal varies between
Goals). In this fashion a set of weighted, directed interlinkages at
the level of entire Goals, can be deduced directly from the narrative
in the report. In the resulting adjacency matrix A, the influence of
SDG j on SDG i is described by the matrix entry Aij. Each linkage can
potentially be identified and described twice, in the narrative com-
menting on each of the Goals it connects. This is accounted for, and
the interaction strengths are scaled to lie in the range �1 6 Aij 6 1.

The ICSU adjacency matrix A is illustrated in Fig. 1(a). Since self-
reinforcing links (i.e. from a Goal to itself) were not allowed, the
matrix has zero entries on the main diagonal. Of the remaining
240 entries, 162 are non-zero: 152 of these are positive and 10
are negative. Since many of these are close to zero, the illustration
in Fig. 1(a) colours white the entries that are close to zero, as indi-
cated by the colour bar to the right of the figure. In terms of signif-
icant entries, there are 46 cases in which Aij P 1=3 and 2 cases in
which Aij 6 �1=3. The two significant negative entries are A14; 2

and A14; 11: the influence of SDG 2 (Zero Hunger) and SDG 11 (Sus-
tainable Cities) on SDG 14 (Life Below Water).

It is particularly interesting to note that there is a large mainly
white area in the leftmost three columns of the matrix, showing
that there are few influences of SDGs 1–3 on the later Goals 4–
16. In contrast, the top three rows of the matrix contain a large
number of significant positive entries shown in brighter (yellow
and orange) colours. These indicate that progress on SDGs 4–16
in many cases drives progress on SDGs 1–3. Within the collection
of SDGs 4–16 there are a large number of interactions, most of
these positive showing the overall self-reinforcing nature of the
SDGs viewed at a system level.
2.1.2. GSDR network
Turning to the GSDR 2019 report (Independent Group of

Scientists appointed by the Secretary-General, 2019), a similar
interaction network was computed by these authors based on their
literature survey of 177 global scientific assessments, UN flagship
reports and scientific articles on interlinkages between the SDGs.
These 177 reports and journal articles were analysed, wherever
possible, at the level of individual targets, as described by Pham-
Truffert et al. (2019) and Pham-Truffert et al. (2020). Articles were
read by hand in order to identify statements in which authors indi-
cated specific links between targets (or complete SDGs) and
assessed on the seven-point scale proposed by Nilsson et al.
(2016). Directionality was also inferred from the text. Results were
aggregated, keeping positive and negative scores separate; as the



Fig. 1. (a) ICSU interaction matrix, reproduced from (Dawes, 2020, Fig. 1). (b) The averaged interaction matrix produced by the GSDR 2019 report (Independent Group of
Scientists appointed by the Secretary-General, 2019), showing the average interaction strength Aav

ij :¼ ðNþ
ij � N�

ij Þ=Nmax for each link j ! i. Blanks indicate values close to zero.

Fig. 2. Comparisons between the interlinkage matrices from the ICSU Report (International Council for Science (ICSU), 2015) and the GSDR 2019 Report (Independent Group
of Scientists appointed by the Secretary-General, 2019). (a) Eigenvalues of the (averaged) interlinkage matrices. (b) Components v ð1Þ;...;vð1Þ

n
1 of the eigenvector vð1Þ corresponding

to the eigenvalue k1 having the largest real part, in the two cases. The horizontal axis indicates the SDGs by number. There is no component for SDG 17 shown on the red
dotted line as the ICSU network considered only SDGs 1–16. Each eigenvector is normalised so that the root-mean-square of the entries is equal to one.
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GSDR authors note (Pham-Truffert et al., 2020) the practice of com-
bining positive and negative scores to produce only a net score
often obscures the potential for negative influences. The analysis
of the development literature carried out for the GSDR 2019 report
appears implicitly to deal with policy as it appears to be currently
implemented rather than any more ambitious or forward-looking
policy design that might transform outcomes.

The use of the seven-point scale is also worth commenting on.
For a single research report, or policy initiative it feels entirely rea-
sonable to try to score an interaction on the seven-point scale (see
Table 1), in order to aid decision-making and force analysts to
come to some kind of agreement over, for example, the relative
importance of different influences between SDGs. When attempt-
ing to aggregate the effect of many possible influences, it is not
clear that one should simply sum up, or average over, the influence
5

scores from several sources. For example, two separate policy
choices may both result in a positive influence of one SDG on
another yet be themselves mutually exclusive due to resource con-
straints. In this case the set of options should ideally not include
both influence scores since an ‘either-or’ choice is required in pol-
icy terms. Despite shortcomings of this kind, the use of the scale
has many advantages, not least in the imposition of clarity both
in terms of evaluation of the set of possible policy actions, and
the methodology by which these quantitative scores are computed.

Although the GSDR data is presented at target level, in this
paper we will consider only the aggregated data that they present
at the level of entire Goals since, as the GSDR authors note, the
target-level coverage is considerably more sparse. The GSDR liter-
ature review produced a total of 5,758 interactions at the Goal
level: 4,976 positive influences and 782 negative. The numbers of
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positive and negative interactions are presented in Tables 2 and 3
respectively. These tables also contain the row and column sums
for each Goal which capture the total number of influences of other
Goals on a particular Goal (the row sum, known as the ‘in-degree’
of the network node) and influences of a particular Goal on all the
others (the column sum, known as the ‘out-degree’ of the network
node).

In considering interactions only at the level of entire Goals,
aggregating across targets within each Goal, the diagonal entries
in the adjacency matrix from the GSDR 2019 data lose some of
their meaning: instead of demonstrating that targets within the
same Goal are linked, they represent just that progress overall on
a Goal would lead to further progress. For consistency, both within
the GSDR network, and in comparison to the ICSU and IAM net-
works, neither of which (by construction) has diagonal entries,
we set the diagonal entries in the GSDR matrix to zero. The effect
of this change is small, as is shown by Fig. 11 in the Appendix
where we plot the eigenvalues and leading eigenvector for the
GSDR matrices with and without the diagonal elements.

For each pair of Goals ði; jÞ we define Nij as the number of
sources that describe a directed linkage from Goal j to Goal i.
Due to multiple linkages being possible at the target level, and
the subsequent aggregation of target level data up to Goal level,
the largest number of sources for a single linkage from one SDG
to another is slightly larger than 177 (the number of sources used
the literature review): Nmax ¼ 184. This occurs for the linkages
from Goal 7 to Goal 6 where the GSDR 2019 Report identifies
123 positive linkages and 61 negative linkages between (targets
associated with) these two Goals. Further, we denote the number
of positive, reinforcing links where progress on Goal j reinforces
progress on Goal i, by Nþ

ij . Similarly, the number of links with a neg-
ative weight, indicating a trade-off between Goal j and Goal i, is
denoted by N�

ij . The total number Nij ¼ Nþ
ij þ N�

ij .
Mindful of the potential issues involved in aggregating positive

and negative scores, as discussion in the second paragraph of this
section above, we define the adjacency matrix Aav for the GSDR
data to be the average interaction strength, i.e. the difference
between the total positive and negative contributions, scaled by
Nmax. Precisely, we define Aav

ij :¼ ðNþ
ij � N�

ij Þ=Nmax; the numerator
corresponds to the entries shown in Table 4 for reference. The adja-
cency matrix Aav is illustrated in Fig. 1(b). By construction we again
have �1 6 Aav

ij 6 1, for each pair ði; jÞ, as for the ICSU case.
The overwhelming majority of matrix entries, 228 out of a pos-

sible 272 (i.e. for the 17� 17 matrix but with the diagonal entries
removed), are positive, described in the GSDR report as producing
‘co-benefits to be harnessed’. In addition, 28 matrix elements are
zero (excluding the diagonal entries), and 16 are negative,
described as ‘trade-offs to be addressed’. In Fig. 1(b) where cells
are again coloured white if their values do not significantly differ
from zero, we see that none of the negative entries is less than
�0:1, and indeed only four are less than �0:025. These four are:
Aav
6; 1 ¼ �0:10;Aav

15; 1 ¼ �0:054, Aav
14; 13 ¼ �0:098, and Aav

7; 15 ¼ �0:054.
Although the interlinkages described by the ICSU Report and

the GSDR 2019 Report differ in numerous ways when considered
in detail; it is interesting to note similarities in the form of the
adjacency matrix. The GSDR matrix in Fig. 1(b) has greater white
space in the lower left of the figure compared to the top three rows,
similar to the ICSU matrix. SDGs 4, 5, 9, 10, 16 and 17 have notice-
ably lower in-degrees than the other SDGs; this is highlighted by
the amount of white space in each of these rows in Fig. 1(b). Sim-
ilarly, SDGs 1, 3, 4, 5, 10 and 16 have noticeably lower out-degrees
than the others; there is more white space (or light blue shading)
in these columns in Fig. 1(b). These results relate directly to the
discussion in Pham-Truffert et al. (2020) classifying SDGs as ‘buf-
6

fers’ (where the in-degree of the node is higher than the out-
degree), or ‘multipliers’ (where the out-degree of the node is higher
than the in-degree). Interestingly, the ICSU interaction matrix also
shares these in-degree and out-degree characteristics for these
SDGs, with the exception that the out-degrees for SDGs 4, 5 and
10 do not appear to be significantly lower than for other Goals.

2.2. Centrality measures, eigenvalues and eigenvectors

In this section we review the conditions for the two adjacency
matrices to show ‘self-consistent’ behaviour, and investigate
whether these conditions hold. Given the significant number of
negative linkages in the GSDR dataset, we also investigate the dis-
tribution of possible adjacency matrices that these could represent,
and the properties of this wider distribution of networks; this pro-
vides a sense of the robustness of these results for the GSDR
network.

To provide wider context, we begin by recalling the general idea
in network science of the ‘centrality’ of a node in a network: cen-
trality measures attempt to make a quantitative estimate of the
relative importance of different nodes (Newman, 2018). The most
obvious notion of centrality is the number of neighbours di that a
given node i has - this is known in the literature as degree centrality.
For a directed network the numbers of ingoing and outgoing edges
connected to node i can be calculated separately; the results are

the in-degree kini and out-degree kouti for each node i. In terms of
our adjacency matrix A where the element Aij represents the
strength of an interlinkage from node j to node i, we can write
these centrality measures by summing over one of the indices of
the matrix A:

kini ¼
Xn
j¼1

Aij; kouti ¼
Xn

j¼1

Aji; ki ¼ kini þ kouti : ð1Þ

To be precise, since the entries in A are weighted, rather than
just being either 1 or 0 to show the presence or absence of an edge,
these measures define the weighted in-degree, weighted out-degree,
and total weighted degree, respectively. These are the measures that
underpin the analysis by Pham-Truffert et al. (2020), for example,
and from which they describe their typology of roles played by dif-

ferent nodes, including the notion of ‘buffers’ where kin is much lar-
ger than kout and ‘multipliers’ where the reverse is true.

One criticism of the use of (weighted) in-degree and out-degree
as centrality measures is that these measures take account only of
the local connectivity of each node. Other centrality measures,
such as eigenvector centrality, or ‘eigencentrality’, take a more glo-
bal view of the network. Eigencentrality is motivated by defining
the importance v i of node i in terms of the importance of the nodes
that it is connected to, weighted by the strength of those connec-
tions, i.e.

v i :¼ 1
k

Xn
j¼1

Aijv j; ð2Þ

where k is an overall weighting parameter. At first sight this equa-
tion appears to be distinctly unhelpful since it is entirely self-
referential: in order to compute v i for node i I need to know v j

for all nodes j that connect to i. However, multiplying up by k and
considering all n nodes together we see that (2) is equivalent to
the matrix–vector equation Av ¼ kv which is mathematically well
understood. Generically an n� nmatrix Awill have n distinct eigen-
values k1; . . . ; kn and a corresponding collection of eigenvectors
v1; . . . ;vn each satisfying Avi ¼ kivi for i ¼ 1; . . . ; n. If the entries of
A are all non-negative then the largest (also known as the ‘leading’)
eigenvalue k1 of A is guaranteed to be real and to have an eigenvec-
tor (the ‘leading eigenvector’) v1 that has all components of the
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same sign (or zero); this is the Perron–Frobenius Theorem (New-
man, 2018). The elements of the vector v1 then satisfy (2) with
k ¼ k1 and hence can be interpreted as a measure of the relative
importance of each node in the network; they are known as the
eigencentralities of the nodes. We note that the eigencentralities of
nodes are defined only relative to the eigencentralities of other
nodes since the eigenvectors themselves are defined only up to an
overall scale factor.

Eigencentrality has a long history within the social networks lit-
erature, stretching back at least as far as the work of Bonacich
(1972). As Bonacich (2007) and Bonacich (2007) notes, eigencen-
trality takes account not only of the direct connections to and from
each node, but also the connectivities of these neighbours, and the
neighbours of neighbours, and so on. It is therefore a centrality
measure that takes account of the influence of a node across the
entire network structure.

The eigencentrality measure can be related to the definition of
self-consistency for the network with adjacency matrix A proposed
by Dawes (2020): in that paper a network was defined to be self-
consistent if k1 is real and positive and has an eigenvector v1 which
has all entries positive. If all entries of A are themselves positive
then A is self-consistent by the Perron–Frobenius Theorem, but this
is not a necessary condition for A to be self-consistent, i.e. the set of
self-consistent adjacency matrices is larger than the set of positive
adjacency matrices.

As well as defining eigencentrality, there is another sense in
which the leading eigenvalue and associated eigenvector of A is
important, which we turn to now; this is motivated by a dynamical
view of the interlinkages as encapsulated by the statement in
Weitz et al. (2018, page 536), noted earlier: ”If progress is made
on target x (rows), how does this influence progress on target y
(columns)”.

The simplest dynamical model for the intrinsic interactions
between the SDGs would be the linear differential equation
dx=dt ¼ Ax where xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ is the vector of values
describing the level of progress 0 6 xiðtÞ 6 1 on SDG i at time t,
rescaled to lie in the interval ½0;1�, i.e. to represent the proportion
of the target achieved so far, as discussed in Dawes (2020). This is
of course an extremely simple dynamical model, and far more
elaborate modelling has been carried out by several groups
(Spaiser et al., 2016; Ranganathan et al., 2017; Ranganathan and
Bali Swain, 2018; Pedercini et al., 2019). The simple linear equation
can be justified on grounds on minimality and that over relatively
short times, generically every dynamical system can be approxi-
mated by a linear one.

Of particular relevance here is that the solutions to dx=dt ¼ Ax
are in many cases described extremely well by just the leading
eigenvalue k1 and its corresponding eigenvector v1. This statement
holds in particular in the case of a self-consistent matrix A for
which the leading eigenvalue k1 is real and (much) larger than
the real parts of all the other eigenvalues k2; . . . ; kn, i.e. so that
ReðknÞ 6 Reðkn�1Þ 6 � � � 6 Reðk1Þ, where n is the size of the adja-
cency matrix and Re denotes the real part of the (possibly complex)
eigenvalue. The interpretation is that for such a matrix the expo-
nential growth described by dx=dt ¼ Ax is dominated by the lead-
ing eigenvector v1 as it is the dominant ‘mode of response’ of the
system. The amplitude of this ‘mode of response’ grows � v1ek1t

which is faster than the remaining n� 1 modes.
The eigenvector corresponding to the leading (i.e. largest)

eigenvalue therefore has a dual interpretation: for a matrix with
non-negative entries it describes the eigencentrality of nodes,
and for matrices in general it describes the components of the
dominant mode of response of the linear dynamical system
dx=dt ¼ Ax. In this way the leading eigenvector captures both a
static sense of the relative importances of different nodes and
7

the dynamic sense of how the network nodes may reinforce, or
counterbalance, each other over time.
2.3. Leading eigenvectors for interlinkage matrices

The interlinkage matrix Aav derived from the GSDR network is
an example of a self-consistent matrix. Self-consistency (a leading
eigenvalue that is real and positive) implies that the behaviour of
the model dx=dt ¼ Ax will show monotonic (i.e. not oscillating)
exponential growth in solutions as time t increases. This is clearly
a natural and desirable quality in interlinkage networks describing
SDG influences.

Fig. 2 summarises these similarities and differences by showing,
in Fig. 2(a) the set of eigenvalues of the two matrices. In both cases
the eigenvalue with the largest real part is actually real (rather
than being a complex conjugate pair of eigenvalues) and positive,
indicating that the co-benefits and trade-offs overall lead to mono-
tonic (and exponential) growth of progress on the SDGs. For the
ICSU network, k1 ¼ 1:4672; for the GSDR network k1 ¼ 1:1026
(both to 4dp). Although the leading eigenvalues for the two matri-
ces differ substantially, this is more a consequence of their differ-
ent constructions and the distribution of entries and is not in
itself important. Of more importance, and another point of similar-
ity between the two cases, is that there is a noticeable gap between
the leading eigenvalue k1 and the eigenvalue k2 with the next-
largest real part. For the ICSU network we find Reðk1 � k2Þ ¼ 0:86,
and for the GSDR network Reðk1 � k2Þ ¼ 0:71 (to 2dp). This indi-
cates that the behaviour will in both cases be dominated by just
one ‘mode’, given by the eigenvector corresponding to the leading
eigenvalue.

Fig. 2(b) compares, for the ICSU and GSDR cases, the compo-
nents of the (normalised) eigenvectors vð1Þ corresponding to the
leading eigenvalues k1. In both cases the first three components,
corresponding to SDGs 1–3 on No Poverty, Zero Hunger, and
Healthy Lives, are significantly higher than almost all the remain-
ing components. Both eigenvectors have low components for Goal
14 (Life Below Water). For the ICSU Report, this component is neg-
ative, meaning that over time progress on Goal 14 is likely to wor-
sen rather than improve. For the GSDR 2019 Report, this
component is positive (so the network implied by the GSDR 2019
Report is ‘self-consistent’ in the terminology of Dawes (2020) and
summarised above) but it is small; indeed it is the smallest compo-
nent apart from that corresponding to Goal 17 on Partnerships
(note that SDG 17 was not included in the ICSU analysis). The high
values for the components related to SDGs 1, 2, 3 and 8 are related
to their roles as ‘buffers’ in the analysis of Pham-Truffert et al.
(2020): there are positive ’co-benefits’ reinforcing progress on each
of these SDGs from several others.

As well as these two important similarities, there is one central
difference: the much larger component for Goal 8 (Growth) which
relates to the fact that SDG 8 has the fourth highest in-degree, after
SDGs 1, 2, and 3 (which have the highest in-degrees, in fact in the
same order as the numbering of the Goals themselves). This corre-
sponds to row eight in the interaction matrix in Fig. 1(b) which
contains significant positive entries in positions ð8;3Þ; ð8;6Þ; ð8;7Þ
and ð8;15Þ showing that progress on Goal 8 is supported in partic-
ular by progress on the Goals related to Healthy Living (SDG 3),
Water (SDG 6), Energy (SDG 7), and Life on Land (SDG 15),
respectively.
2.4. Testing robustness by constructing an ensemble of GSDR networks

The appearance of only 16 negative entries in Aav (and only four
that are significantly negative) obscures the fact that for 100 out of



Fig. 4. Violin plot showing the variation in components v ð1Þ
1 ; . . . ;v ð1Þ

n of the
eigenvector vð1Þ corresponding to the leading eigenvalue k1 of the GSDR interaction
matrix. The horizontal axis indicates the SDGs by their numbers. Note the
significant shaded areas below the horizontal line at zero for Goal 6 (Water), Goal
14 (Life Below Water) and Goal 15 (Life on Land). For clarity of presentation,
extreme outliers from the lowest and highest 0.5% of the simulation ensemble have
removed from the data shown in this figure.
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the 272 possible matrix entries some fraction of the linkages iden-
tified are in fact negative. Negative entries are important since they
point to trade-offs between SDGs which often demand additional
attention for Agenda 2030 to be able to suceed overall. Moreover,
the results presented by the GSDR depend crucially on the popula-
tion of reports that are used to compile the data, and if a different
set of reports had been analysed, the number of negative linkages
might have varied due to the inherent variability in the possible
sub-samples of the literature. Further, it seems likely that some
of the negative effects become more prominent in particular set-
tings; ’worst-case scenarios’ may include cases in which the co-
benefits are not available simply to cancel out trade-offs in the
manner suggested just by summing all contributions in the con-
struction of the GSDR network Aav above. To investigate the level
of variation, we extend the analysis of the GSDR interaction matrix
Aav by generating a distribution of interaction matrices in order to
explore the robustness of the results presented above.

We generate an ensemble of 105 matrices A by choosing posi-
tive or negative values, independently for each entry Aij, for all
entries where Nij > 0. If Nij ¼ 0 then we set Aij ¼ 0; but if Nij > 0
then we set Aij to take the.

� positive value Aij ¼ Nþ
ij =Nmax with probability pij :¼ Nþ

ij =Nij, or
� negative value Aij ¼ �N�

ij =Nmax with probability 1� pij ¼ N�
ij =Nij.

We then compute the eigenvalues of A and the eigenvector vð1Þ

for the leading eigenvalue k1. The results from this ensemble of
matrices are shown in Figs. 3 and 4. Fig. 3(a) illustrates the distri-
bution of eigenvalues of these sampled matrices in the complex
plane. Each matrix in the ensemble typically has a real leading
eigenvalue k1 and a complex conjugate pair of eigenvalues k2; k3
that have the next-most-positive real parts. We find that k1 typi-
cally lies in the range 0:7 6 k1 6 1:5; for comparison recall that
for Aav

; k1 ¼ 1:1026 which is close to the mode of the distribution
for k1 shown in Fig. 3(b). The real parts of the complex conjugate
pair k2; k3 vary approximately in the range 0.6–0.8, preserving
the separation between them and k1. Their imaginary parts vary
roughly between zero and 0.4. Fig. 3(a) shows that the remaining
eigenvalues k4; . . . ; k17 are distributed further to the left, roughly
within a circle of radius 0.5 centered on the origin as indicated
by the blue-green areas in the plot.
Fig. 3. Density plots of the locations in the complex plane of eigenvalues k1; . . . ; kn of the
interaction weights. (a) Heatmap showing density of all eigenvalues in the complex plane
an eigenvalue, on the positive real axis as well as near zero. (b) Histogram showing the d
yellow-blue line along the real axis in (a).
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Fig. 4 summarises the distribution of components of the leading
eigenvector corresponding to k1 from matrices in the ensemble.
These results are presented as a ‘violin’ plot (Hoffmann, 2015) in
which the width of the shape indicates the relative frequency of
the value, and the mean value for each component is indicted by
the horizontal black bar. In many cases the distributions are
multi-humped, with two or three separate maxima, leading to
repeated expansions and contractions of the shapes in the plot
(which are sometimes ‘violin-shaped’, hence the name). These fluc-
tuations are caused by the presence of a relatively small number of
high-weight edges in the network that contain significant negative
contributions; as these switch sign, the shape of the eigenvector
changes significantly, meaning that the distribution is quite
strongly influenced by a relatively small number of interlinkages
rather than being a composition of many independent interlink-
ages of more equal sizes.

In Fig. 4 it is particularly interesting to note that some SDGs are
associated with much greater variability than others. In particular,
SDGs 1, 3, 6, 14 and 15 have elongated distributions while the dis-
tributions for SDGs 4, 5, 9, 16 and 17 are much more compact. Fur-
ensemble of GSDR interaction matrices from 105 samples of positive and negative
(yellow - high, dark blue - low). Note the yellow regions, indicating high density of
istribution of the leading eigenvalue k1 along the real axis. This corresponds to the
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ther, SDGs 6 (Water), 14 (Life Below Water), and 15 (Life on Land)
have significant part of their distributions lying below zero. These
parts of the distributions, which signify negative progress on these
Goals, indicate that these three SDGs are most at risk. For compar-
ison, and ease of interpretation, conventional histograms of the
individual components of the leading eigenvector for the matrices
in the ensemble are shown in Fig. 12 and Fig. 13 in Appendix A.
3. Sensitivities

Since the nature of policy actions, and therefore implicitly these
typical SDG interlinkages, vary across regions of the world, and
indeed from country to country, a natural set of questions arise
as to where, if one were able through policy actions, the interlink-
age network could be most usefully adjusted in order better to
achieve the whole of Agenda 2030 overall. First, of course, it is nec-
essary to define clearly what one would mean by the most valuable
adjustments, or perturbations, to make to the SDG interlinkages.
This, therefore, is a question of the sensitivity of the initial network
to perturbations in each of the directed edges. What improvements
at the system level can we make by adjusting individual links?.

Of the many possible definitions of an ‘improvement’ to the SDG
network, we focus in this section on two: we seek either to
increase the multiplier effect associated with the leading eigen-
value of the adjacency matrix, i.e. to increase the growth rate
through which the SDGs, allow self-reinforcing progress; or, we
seek to make this progress more equal across the SDGs, i.e. to
equalise the components of the leading eigenvector displayed in
Fig. 2(b).

The mathematical and engineering literature on the effects of
perturbations on the eigenvalues and eigenvectors of a matrix is
large, extending back to the 19th century. The mathematical his-
tory, together with explicit results that we use here, has been
reviewed recently by Greenbaum et al. (2020); in the engineering
literature a foundational reference is the paper by Nelson (1976).

A suitablemathematicalmeasure of the sensitivity of the growth
rate to perturbations is to consider the rate of change of the leading
eigenvalue k1 of the interlinkagematrix to perturbations in one ele-
ment Aij of the adjacency matrix. We therefore define the ‘multi-
plier effect’ sensitivity matrix Sm to be the n� n matrix whose
ði; jÞ entry is Smij :¼ ð1=k1Þ@k1=@Aij. The factor of 1=k1 is included so

that Sm computes relative changes in k1 rather than absolute
changes. In the cases of interest here, Smij turns out to have a simple

expression in terms of the left and right eigenvectors (yð1ÞT and vð1Þ,
respectively) for the leading eigenvalue k1. A straightforward calcu-
lation, presented in Appendix B for completeness, leads to

Smij ¼ 1
k1

yð1Þi v ð1Þ
j

yð1ÞTvð1Þ ð3Þ

i.e. the matrix Sm is the outer product of the vectors yð1Þ and vð1Þ,
normalised.

Fig. 5 plots the growth rate sensitivity measure Smij for each edge
j ! i in the interlinkage network, for both the ICSU and GSDR net-
works. It is immediately clear that perturbing different links in the
network can lead to significantly different outcomes. The form of
Sm given in (3) shows that, for a fixed value of the row index i,
the values in each row have the same shape as the entries in the
right eigenvector vð1Þ which is shown in Fig. 2(b). Hence, reading
across each row of Fig. 5(a) follows the rises and falls in the com-
ponents of the leading eigenvector for the ICSU matrix, and simi-
larly with Fig. 5(b) and the GSDR eigenvector from Fig. 2(b). For
rows i where the left eigenvector yð1Þ (not shown) has a negative
component, the corresponding row in Fig. 5 has large negative
9

components where vð1Þ is large and positive, for example in row
2 in Fig. 5(a).

The perturbations that increase the leading eigenvalue k1 most
rapidly are, for the ICSUmatrix, seen to be those that link from SDGs
1, 2 and 3 to Goals 4, 5, 9, 12 and 14. Each of these links is one that
connects an SDG where significant progress would be predicted, to
an SDG where progress is less well supported by the internal net-
work structure. For the GSDR matrix, the links that most increase
k1 are from SDGs 1, 2, 3 and 8 to Goals 6, 7 and 12. The fact that links
from SDG 8 are favoured is connected to the large component on
Goal 8 in the leading eigenvector, which is a notable difference in
the ICSU andGSDR results, as discussed earlier. In theGSDRanalysis,
there are strong reinforcing links identified between SDGs 6 and 12
which explain why rows 6 and 12 in Fig. 5(b) are extremely similar.
Links from SDGs 1, 2, 3 or 8 to SDGs 6 or 12 could be achieved
through strategies that explicitly link progress on the first three
SDGs to sustainablewater resourceuse, recycling, and circular econ-
omy ambitions. Conversely, it is interesting to observe that the anal-
ysis does not support strategies to connect progress on SDGs 1, 2 and
3 to progress on SDGs 4 (Education), 16 (Peace) or 17 (Partnerships
for the Goals). From the analysis presented in Fig. 5 it appears that
enhancing those linkages within either SDG network would lead
to margin results at best.

The alternative measure of the effectiveness of a perturbation to
A is slightly more complicated to define, mainly because eigenvec-
tors themselves are only defined up to a scalar multiple. This
means we have to choose an appropriate normalisation of the
eigenvectors in order to describe the rate of change of an eigenvec-
tor with respect to a perturbation to the matrix. Optimal equal pro-
gress would be made on all SDGs if the leading eigenvector had all
components equal, i.e. n̂ :¼ ð1; . . . ;1Þ= ffiffiffi

n
p

where the factor of 1=
ffiffiffi
n

p

is included as a normalisation, i.e. so that
Pn

i¼1n̂
2
i ¼ 1. For the right

and left eigenvectors vð1Þ; . . . ;vðnÞ and yð1Þ; . . . ; yðnÞ respectively, we
normalise by requiring kvðjÞk ¼ 1 and yðiÞ�vðiÞ ¼ 1 for all i and j,
where the asterisk denotes the complex conjugate transpose.

We then define the sensitivity Seqij of the leading eigenvector vð1Þ

to be

Seqij :¼ n̂ � @v
ð1Þ

@Aij
: ð4Þ

That is, the entries of the matrix Seq measure the extent to
which a perturbation to Aij increases the alignment of the leading
eigenvector vð1Þ with the vector n̂ that describes complete equality
of progress on all SDGs. Mathematical details concerning (4) are
given in Appendix B.

Interestingly, the two parts of Fig. 6 show overall similarities to
the parts of Fig. 5, respectively. This can be explained in part by
similarities in the mathematics, and the appearance of the product
�̂yðkÞi v̂

ðkÞ
j in (11), similar to the term yð1Þi v ð1Þ

j in (3). But there are clear
differences, for example for the ICSU network Fig. 6(a) shows that a
strengthening of the interlinkages from SDGs f1;2;3g to SDG 14
would serve to equalise the leading eigenvector, but as indicated
in Fig. 5(a) it would increase the leading eigenvalue only
marginally.

Fig. 6 indicates that, in general, increasing the directed inter-
linkages from SDGs 1,2 and 3 to other Goals (especially SDGs 5,
6, 9, 12, 14, 16 or 17) leads to a more balanced leading eigenvector,
and so is more likely to lead to consistent progress across all the
Goals, rather than the unbalanced progress indicated in Fig. 2(b)
and Fig. 4 which emphasises progress on SDGs 1, 2 and 3. The intu-
itive explanation for these results is entirely in line with Fig. 2(b); if
the higher progress on SDGs 1, 2, and 3, implicit within the inter-
linkage matrix, can be directed towards advancing progress else-
where, particularly on SDGs that are less well supported by the



Fig. 5. Sensitivity matrices Sm for the leading eigenvalues k1 of (a) the ICSU network illustrated in Fig. 1(a); and (b) the averaged GSDR interaction network, illustrated in Fig. 1
(b). Yellow and orange entries in the matrix indicate where increases in those interlinkages would increase the leading eigenvalue k1; dark blue entries indicate where
increases in an interlinkage would decrease the leading eigenvalue k1.

Fig. 6. Eigenvector sensitivities Seq for (a) the ICSU matrix and (b) the GSDR matrix. Yellow and orange colours indicate that increasing those interlinkages serves to make the
components of the leading eigenvector vð1Þ more equal. Dark blue colours indicate that increasing an interlinkage will make the leading eigenvector more unbalanced. The
relative differences between matrix entries are significant; the absolute differences between the colour scales in (a) and (b) are not significant.
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internal network dynamics, then the internal dynamics of the net-
work will re-orient itself towards more equal progress.

Taken together, Figs. 5 and 6 indicate that the two sensitivity
measures, Sm and Seq, defined above while having distinct interpre-
tations, actually behave in very similar ways. As a result, there are
specific perturbations to the interlinkage network that would both
increase the growth rate k1 and equalise the leading eigenvector
vð1Þ. For the ICSU interlinkage matrix, links from SDGs 1, 2 and 3
to SDGs 4, 5, 9 and 12 are optimal; for the GSDR matrix, links from
SDGs 1, 2, 3 and 8 to SDGs 6 and 12 are optimal.
4. Integrated Assessment Models

A third recent example of an interaction matrix describing
interlinkages between the SDGs is given by van Soest et al.
(2019) in the context of Integrated Assessment Models (IAMs).
The major focus of van Soest et al. (2019) is to review the construc-
tion and focus of IAMs, examine areas where they need to be fur-
ther developed in order fully to account for all seventeen SDGs,
and recommend how best to structure that future development.
10
Hence the paper focuses on IAMs as a set of tools rather than
squarely focusing on the SDGs themselves.

As the authors remark early on in the paper, IAMs were origi-
nally developed primarily with a focus on climate, together with
energy, economic variables, and land. Human development, for
example as reflected in SDGs 5 (Gender Equality) and 11 (Inequal-
ity) tend to be far less well captured within IAMs in general. On
this point of coverage of the SDGs, the authors found that four
Goals SDGs 4 (Education), 5 (Gender Equality), 10 (Inequality),
and 16 (Peace) were ‘clearly not well covered in these models’.
SDG 17 on Partnerships is also difficult to incorporate within exist-
ing the methodology of existing IAMs.

The paper is underpinned by two surveys: a ‘model survey’ that
focused on the question of the representation of SDGs within a set
of 12 IAMs that participate in the Linking Climate and Develop-
ment Policies – Leveraging International Networks and Knowledge
Sharing (CD-LINKS) project, and an ‘expert survey’ to which 105
subject experts, including the authors of the ICSU report
(International Council for Science (ICSU), 2015) and the GSDR
2019 (Independent Group of Scientists appointed by the
Secretary-General, 2019), were invited. The expert survey asked
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respondents to select one SDG that best covered their personal
expertise, and then to indicate the linkages in both directions from
this SDG to all the others, using the seven point scale proposed by
Nilsson et al. (2016) and reproduced in Table 1 here for reference
here.

From the 50 responses to the expert survey that were received,
van Soest et al. (2019) construct an interaction matrix between the
SDGs. With any data collection exercise there are always caveats
and constraints that should be noted. For this expert survey there
are four particular issues that should be noted that make it a less
reliable set of interactions than the ICSU or GSDR networks pre-
sented above. First, compared to the ICSU and GSDR interaction
matrices, this is a relatively small number of data points, given that
each expert was asked to comment on linkages relating to a single
SDG. Second, the expert responses were not subjected to further
discussions, either in a Delphic method of allowing subsequent
modification of scores through reaction to the views of other
experts, or in a group discussion as was the case in the ICSU report.
As a result it is difficult to verify that the experts applied common
standards in their responses. Third, as van Soest et al. note, some
respondents noted that individual targets within a Goal gave rise
to synergies, and some to trade-offs, and so at the level of whole
Goals the nature of the interactions were not clear enough to
describe with confidence. Fourth, the supplementary material to
van Soest et al. (2019) shows that the 50 expert opinions that were
gathered were rather unequally distributed across the SDGs. For
example, no experts focussed directly on SDG 5 (Gender Equality),
and SDGs 7, 11 and 17 had the highest numbers of experts repre-
sented (six or seven in each case).

Finally, it is interesting to note that van Soest et al. included in
their invitations all the authors of both the ICSU and GSDR 2019
reports. This indicates that as well as the potential variability in
their results from working with a relatively small number of expert
responses, there is some potential lack of independence in views
between these expert responses and those that inform the ICSU
and GSDR reports.

Mindful of these potential issues with the data from the expert
survey, our methodology to construct an interlinkage network,
starting from the data provided in the supplementary material to
van Soest et al. (2019) was first, to re-weight the expert scores in
order to adjust for the uneven response across the SDGs. This
results in a more self-consistent set of average scores, where
weights correspond to the proportions of available experts who
gave positive and negative scores for different network links. As
in the case of the GSDR analysis above, we consider separately
the positive and negative scores in order to be able to run similar
ensemble simulations to test the robustness of any conclusions
and features of the network structure that arise. This could be
extended to include the complete distribution of the weightings
from �3 to + 3 but this is unlikely to change significantly the con-
clusions of the analysis presented below.

We show in Fig. 7(a) an illustration of the adjacency matrix of
the network, which we refer to as the IAM interlinkage network,
in a form comparable to those in Fig. 1 for the ICSU and GSDR net-
works. There are interestingly similarities in the overall structure,
with a significant number of strongly positive (bright yellow)
entries in the first three rows, showing the positive influences of
all SDGs on SDGs 1, 2 and 3. The network indicates particularly
large negative influences of SDG 9 (Industry) on SDGs 5 (Gender
Equality), 14 (Life BelowWater) and 15 (Life on Land). The negative
influence of SDG 9 on SDG 5 results from a single expert view; only
one expert respondent covered SDG 9 and (as remarked above)
none covered SDG 5. So the negative influence 9 ! 5 may not be
fully representative of expert option more broadly, and indicates
the need for care in drawing conclusions from the IAM matrix.
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Fig. 7(b) does however provide a level of reassurance about the
network structure overall since the leading eigenvalue of the IAM
matrix k1 ¼ 6:975 (3 d.p.) is much larger than the remaining eigen-
values; the nextmost positive is k2 ¼ 0:928 (3 d.p.). This implies that
the interactionswill be dominated by those described by the leading
eigenvector. This is also the case for the ICSU and GSDR interaction
matrices but the separation of the leading eigenvalue from the rest
is not so marked in those cases as it is for the IAM matrix.

This leading eigenvector is shown in Fig. 8(a) (the blue crosses)
together with those for the ICSU matrix (red squares) and GSDR
matrix (black dots). There are clear similarities in overall shape
across the three: the first three components of the eigenvector
are large, in fact for the IAM matrix they are the largest except
for SDGs 4 (Education) and 9 (Industry), and the components cor-
responding to SDGs 14 and 15 are low, as they are also for the ICSU
and GSDR eigenvectors. This indicates that the interlinkages
described by the IAM matrix would lead to greatest progress on
SDGs 1, 2, 4 and 9 and lower levels of progress on the other Goals.
Fig. 8(b) examines the variation in the shape of the leading eigen-
vector under a similar (but not identical) process of randomization
to that described in Section 2.4 for the GSDR matrix where both
positive and negative values for links were available.

The difference between the simulations here and those
described in Section 2.4 and Figs. 3 and 4 arises since there is a
need here to explicitly take into account the zeros reported by
experts in their assessments. The ensemble of 105 matrices A
was generated by choosing entries of þ1;�1 and 0 independently

for each entry Arandom
ij , for all entries where the number of expert

opinions NIAM
ij was positive. If NIAM

ij ¼ 0 then we set Aij ¼ 0; but if

NIAM
ij > 0 then we set Arandom

ij to take the.

� value þ1 with probability Aþ
ij ,

� value �1 with probability A�
ij , and

� value 0 with probability 1� Aþ
ij � A�

ij ,

where Aþ
ij and A�

ij are the weighted averages of the positive and
negative expert scores, separately. We then compute the eigenval-
ues of A and the eigenvector vð1Þ for the leading eigenvalue k1. The
corresponding violin plot is shown in Fig. 8(b). We see that the
means of each eigenvector component (i.e. the horizontal black
bars) agree with those plotted in Fig. 8(a) for the IAM matrix.
The variabilities around these means are approximately equal
across the 17 eigenvector components. As a result, a noticeable
part of the distribution of the components for SDGs 14 and 15 is
negative, indicating that these are most at risk when the whole
ensemble of interaction matrices, and the separated effects of the
positive and negative interlinkages, is considered.

The high values for the components of the leading eigenvector
for SDGs 1 (No Poverty), 2 (Zero Hunger), 4 (Education) and 9
(Industry) also show up in the sensitivity matrices shown in Fig. 9
where the interlinkages that offer the greatest improvements are
all links from one of those four SDGs. But it is interesting to note
that the sensitivity Sm of the leading eigenvalue is highest when
those linkages connect to SDGs 13 (Climate) or 16 (Peace), whereas
for the sensitivity Seq that attempts to equalise the components of
the leading eigenvector the highest-scoring interlinkages are those
that connect to SDGs 14 (Life Below Water) and 15 (Life on Land).
One interpretation would be that there are more self-reinforcing
loops containing SDGs 13 and 16, and that these are detected by
Sm which is a measure only of the growth rate of the leading eigen-
vector. In contrast, Seq is most improved by connections from the
SDGs that have the highest eigenvector components to those that
have the lowest components, as SDGs 14 and 15 do in this case.



Fig. 7. (a) Illustration of the IAM interlinkage network derived from the expert survey carried out in van Soest et al. (2019). Yellow and orange cells indicate high positive
linkages, and dark blue cells indicate strongly negative interlinkages between each pair of SDGs j ! i. White cells indicate values close to zero. (b) Eigenvalues k1; . . . ; kn for
the IAM interlinkage matrix (blue crosses) compared to those for the ICSU matrix (red squares) shown previously in Fig. 2(a).

Fig. 8. (a) Leading eigenvectors for the ICSU, GSDR and IAM interlinkage matrices, each normalised so that
Pn

i¼1 v ð1Þ
i

� �2
¼ 1. Note the large components for SDGs 1, 2 and 3 in

every case, and, likewise, the particularly low components on SDGs 14 and 15. (b) Violin plot for the IAM matrix illustrating the variability in the components v ð1Þ
1 ; . . . ;v ð1Þ

n of
the leading eigenvector when the negative elements in the interlinkage matrix are taken into account. In both plots the horizontal axis labels the SDGs by their number.
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5. Network hierarchy and overall directionality

In the discussion above we have repeatedly emphasised the
directed nature of the networks of interlinkages. There is a signif-
icant difference between SDG j influencing SDG i and the converse.
Mechanisms that enable influences in each the two directions are
likely to be different, and so to relate to different policy contexts
and priorities. This is particularly the case when the Goals related
to ‘human development’, for example SDGs 5 (Gender Equality)
and 10 (Inequality). Achieving Goals related to resource use (e.g.
SDG 6 on Water, or SDG 7 on Energy) is possible in a variety of
ways, of which many will not lead necessarily to progress on SDGs
5 and 10 as well. In this sense the interlinkages point to how likely
it is that the mechanisms that are available to address one SDG are
compatible with progress on others.
12
Capturing directionality in networks is a fundamental idea, and
is most vividly illustrated in the literature on food webs in ecosys-
tems, where nodes represent species, and directed edges describe
which predator species prey on which others. In the ecosystems lit-
erature, reviewed recently by Pringle and Hutchinson (2020) key
challenges include identifying precisely the trophic interactions
themselves, as well as moving from the identification of individual
predator–prey interactions to a system-wide analysis of the food
web, along the way developing an idea of the structured layers
within the food web. The expectation is often that such a stratifica-
tion will make sense biologically, with layers containing similar
types of prey that are predated by a collection of organisms in
the next level up. Real food webs are driven by a wide range of
external and internal effects, and the resulting behaviour is regu-
lated in a complex manner involving species at all levels within



Fig. 9. Sensitivities for the Integrative Assessment Models (IAM) interaction matrix. (a) Eigenvalue sensitivity Sm. Yellow and orange colours indicate that increasing those
interlinkages serves to increase the value of the leading eigenvalue. (b) Eigenvector sensitivity Seq. Yellow and orange colours indicate network perturbations that will make
the components of the leading eigenvector more equal.
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the network (rather than just a few ‘keystone’ species) - a truly
complex system (de Ruiter et al., 2005). The dynamics of real food
webs are often highly dynamic, both in space and time; while here
we appeal to food webs in order to motivate questions concerning
the construction of a hierarchy within a directed network, we will
restrict ourselves to a more static, but natural and general ques-
tion: to what extent can a given directed network be organised into
a collection of such ‘trophic levels’, so that the directed edges in the
network point, as far as possible, all in the same direction. This
question was recently explored by MacKay et al. (2020) and we fol-
low their presentation in this section, applying their results to our
SDG interlinkage networks.

Mathematically, the identification of network hierarchy, i.e. the
relative levels of different nodes, can be set up as a minimisation
problem. We wish to minimise the function

FðhÞ ¼ 1
Xn

i;j¼1

jAijj

Xn
i;j¼1

jAijjðhi � hj � 1Þ2 ð5Þ

which depends on the vector of levels h, where hi is the layer height
of of node i, and the interlinkages Aij. The theory presented by
MacKay et al. (2020) assumes that the network has no negatively
weighted edges, so we replace the interlinkage strength Aij by its
absolute value jAijj. The form of (5) indicates that FðhÞ will be min-
imised by choices of the hi that put a node i on a level (assumed to
be spaced out roughly by the integers) below a node j, so that
hi � hj 	 1, when there is a directed edge j ! i. An explicit equation
for the levels h that minimise FðhÞ can be deduced by differentiat-
ing (5) with respect to hi and setting @F=@hi ¼ 0 for all i. This results
in a linear matrix-vector equation which can be straightforwardly
solved for the vector h:

Kh ¼ kin � kout ð6Þ

where we recall from Section 2.2 that kini :¼ P
jAij is the in-degree of

node i, koutj :¼ P
iAij is the out-degree of node j, and the Laplacian

matrix K is defined to be K :¼ diagðkin þ koutÞ � A� AT where
diagðuÞ is the n� n matrix formed by putting the entries of the vec-
tor u on the diagonal and zeros elsewhere.
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For a given network, MacKay et al. (2020) refer to the minimum
achievable value of FðhÞ (denoted F0) as its trophic incoherence and
show that F0 always lies between zero and 1. F0 ¼ 0 if and only if
there exist a set of levels hi that separate nodes into layers, spaced
a unit apart, where all edges connect a node to (different) node in
the layer above. At the othe extreme, F0 ¼ 1 in the case that the
graph is a union of equal-weight cycles, for which no separation
into layers is possible and so the levels are equal, h1 ¼ . . . ¼ hn; this
is maximal trophic incoherence and is consistent with there being
no hierarchy that can be discerned among the nodes.

Fig. 10 shows the results of computing the optimal levels h for
each of the networks discussed above: the ICSU network, the GSDR
2019 network and the IAM network. Nodes that are lower down in
the figures indicate SDGs that are further ‘upstream’ and in general
influence other SDGs more than they themselves are influenced in
return. Nodes at higher levels are ‘downstream’ and benefit from
the influence of, and progress made on, other Goals. It should be
noted that in the construction of these figures all interlinkages
were taken to be positive, so that the distinction between trade-
offs and co-benefits has been lost. However, the overwhelming
majority of interlinkages are positive, and different treatments of
the negative edges (for example omitting them completely) led
to very similar results.

There are several general similarities between the three net-
works. First, SDGs 1 and 2 appear close to the top of each figure,
suggesting that progress on these Goals benefits significantly from
progress elsewhere. SDGs 12 and 17 are always close to the bottom
of the figure (SDG 17 does not appear in Fig. 10(a) since it was not
covered in the ICSU analysis). The very low position of SDG 7
(Energy) in the IAM network compared to its mid-ranking position
in the ICSU and GSDR networks may well reflect the additional
emphasis placed on SDG 7 in Integrated Assessment Models in
general. As van Soest et al. (2019) noted, IAMs are generally well
able to represent the influence of energy use on food production
(SDG 2), water and sanitation (SDG 6), sustainable consumption
(SDG 12), climate (SDG 13) and life on land (SDG 15). This
viewpoint pushes attainment of SDG 7 (Energy) down towards
the lowest levels of the network as its role ‘enabling’ other SDGs
is emphasised by the construction and features of IAMs
themselves.



Fig. 10. Trophic levels (on the y-axis) for the SDGs, derived from the three directed interlinkage networks: (a) ICSU network; (b) GSDR 2019 network; (c) IAM network. Low
(high) trophic levels indicate Goals that put in (take out) more from the network than others. Red dots are labelled by the number of the SDG they represent; note that the
ICSU network does not include SDG 17. Vertical coordinates in the plots are exactly the heights hi for SDG i constructed in order to minimise FðhÞ, setting the lowest level to
the value zero. Horizontal coordinates (x-axis) have no specific network interpretation and are chosen to optimise the clarity of the figures, for example by making as many
edges as possible into straight lines (Brandes and Köpf, 2002). Edge thicknesses are proportional to the weights jAijj.

J.H.P. Dawes World Development 149 (2022) 105693
6. Discussion and conclusions

In this paper we have developed mathematical techniques to
compute system-level features of interlinkage networks for the
SDGs that could help to inform the development of more coherent
policy responses for Agenda 2030. These mathematical techniques
are perhaps the simplest possible that enable an integration of the
individual-level description of the SDGs into a system-wide view.
Their simplicity is both an asset and a liability; they allow overall
conclusions to be extracted from individual links, but also reflect
biases and uneven-ness when this is present in the construction
of the underlying network. Nevertheless, they enable one to move
beyond the mere construction of an interlinkage network towards
the consideration of appropriate policy responses.

We also applied these techniques to compare three specific
interlinkage networks for the SDGs. Each of these three is formed
as a result of expert opinion in the policy or academic communities
and so have different limitations to other classes of network, most
obviously those based on correlations of time series of indicators
for the SDGs.

In terms of results from the specific example networks we find
that, broadly speaking, attention remains unequally distributed
across the parts of Agenda 2030. The findings of the GSDR 2019
report show that some SDGs have clearly received significantly
greater academic attention and policy scrutiny, with the result that
the literature there is substantial while in other places it is consid-
erably sparser, for example the literature on SDGs 4 (Education)
and 5 (Gender equality). This is echoed in the context of Integrated
Assessment Models where there is a clear emphasis on resource
allocation. The result is, unsurprisingly, that the literature priori-
tises SDGs related to resources and the economy, for example SDGs
8 (Growth), 9 (Industry). In terms of network structure, SDGs 12
(Sustainable Consumption and Production) and 17 (Partnerships
for the Goals) are consistently viewed as shaping the rest of Agenda
2030: these appear low down in the ‘food webs’ shown in Fig. 10,
driving progress on the remaining SDGs. The reliance on SDG 7
(Energy) of the construction of Integrated Assessment Models is
revealed by the much lower placing of SDG 7 in Fig. 10(c) com-
pared to its relative position in Figs. 10(a) and (b).
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All three networks have a dominant ‘mode of response’ that
indicates that, without external inputs, the interlinkages among
the SDGs that are proposed would drive the monotonic growth
of progress on Agenda 2030 in one particular way, described by
the leading eigenvector in each case. The alternative possibility,
that the leading eigenvalues of the network are a complex conju-
gate pair, which would indicate oscillatory growth of a dominant
mode with progress being naturally in-phase between some Goals
and out of phase between others, does not arise although it is the-
oretically possible. This is reassuring; policies considered implicitly
by the interlinkage networks are coherent at least in the most basic
way possible in order to ensure the potential success of Agenda
2030. Indeed the eigenvalue plots in Figs. 2(a) and 7(b) indicate
that the interlinkage matrices are (in some sense) reasonably far
from admitting this oscillatory possibility. This also supports the
stability that implicitly underpins data-driven analyses of SDG
interactions (e.g. Pradhan et al., 2017) since it implies that trends
should be monotonic and should persist over time.

The form of this response is given by the shape of the leading
eigenvector, as shown in Fig. 2(b) and 8(a); for all three networks
the components for SDGs 1, 2 and 3 are among the largest, indicat-
ing that the general directionality of the network is towards these
three; other SDGs act to enable progress on SDGs 1–3 more than
these three Goals are viewed as enabling progress elsewhere.
Fig. 10 tells the same story, with SDGs 1–3 appearing towards
the top of each plot, at the highest trophic levels, with other Goals
pointing upwards towards them. We can conclude that the sys-
temic views of the expert opinion reflected in these interlinkage
networks are that SDGs 1–3 are promoted by the other Goals,
asymmetrically. The linkages in the opposite directions, from SDGs
1–3 towards other Goals, are not strong enough to be able to con-
clude that Agenda 2030 is a single ‘indivisible’ collection of ambi-
tions: it can be stratified, and the network analysis indicates how.

The sensitivity analysis of Section 3 indicates how addressing
this stratification also improves either the growth rate of dominant
mode of the network, or its equality along the different compo-
nents (or both). Given the identification of the stratification of
the SDGs into different levels (as shown in Fig. 10), the resolution
makes intuitive sense: strengthen the couplings between progress
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on SDGs 1–3 and other Goals (in particular SDG 12, but also SDGs
4, 5, 9, 14 and 17) in order to offset the stratification and integrate
the network of SDGs with itself more comprehensively. This is the
policy challenge.

In terms of risks, a recurring conclusion from the analysis, as
shown in Figs. 2(b), 4, and 8(b) is that slow, or indeed negative,
progress is most likely on the environmental Goals, in particular
SDG 14 (Life below Water) but also SDG 15 (Life on Land). It is
interesting to contrast the results for SDG 14 and SDG 13 (Climate).
SDG 13 is far better supported by positive interlinkages, resulting
in larger leading eigenvector components (Fig. 8a) and SDG 13
being placed at a higher level than SDG 14 in Fig. 10(a) and (b).
The interlinkage networks systematically reinforce more progress
on Climate than on Life below Water. The risk of a lack of progress
on SDG 14 was highlighted by Dawes (2020) and it is noteworthy
that it is an issue on which there is substantial agreement between
the ICSU and GSDR networks.

Our final observation is on SDG 5 (Gender Equality): the ICSU
report clearly views SDGs 4 (Education) and 5 as key inputs driving
the SDG network, as is shown by the low position of these Goals in
Fig. 10(a). However, the literature on SDG 5 as reviewed by the
GSDR 2019 report appears to be considerably sparser than for
other interlinkages. Tables 2 and 3 in Appendix A show that far
fewer references to SDG 5 were made in the literature survey
reported there than for other Goals. This may well indicate an
important gap in our understanding of Agenda 2030 and that we
do not have enough of an evidence base to understand how SDG
5 interacts with other Goals. This is also the case for the expert sur-
vey related to Integrated Assessment Models reported in van Soest
et al. (2019) where no responses were obtained from experts who
self-identified SDG 5 as their ‘field of expertise’. In the context of
the GSDR 2019 report, if additional evidence were available which
pointed to the positive impact of progress towards SDG 5 on other
SDGs, including this would have the effect of moving SDG5 down-
wards in Fig. 10(b), so that its relative position became much more
comparable those it occupies in Fig. 10(a) and (c).

Turning now to future work, we outline briefly three general
important directions. First, the integration of data-driven
approaches with the expert survey-driven interlinkage networks
presented here. A key requirement for this is to isolate the directly
self-reinforcing effects of progress on a goal in accelerating further
progress on that goal, in order to separate this from the interlink-
ages between different SDGs. While the reports by the Sustainable
Development Solutions Network (SDSN) (Sachs et al., 2019; Sachs
et al., 2020) provide an excellent starting point, initial work by
the author using the input data presented in the main reports,
where levels and trend data are coarse-grained into one of only
four states both for current levels of achievement of each SDG
and the trend, has resulted in unreliable results containing large
fluctuations. But the detailed and rich coverage of the SDSN report
shows that further work could be extremely rewarding, allowing
regional or country-level detection of important interlinkages that
would help policymakers.

Indeed, many of the overall conclusions of the 2020 SDSN
Report (Sachs et al., 2020) are echoed above. For OECD countries
the SDSN report points to alarming trends on SDGs 13 and 14,
and a lack of progress on SDG 5. Similar summary comments, par-
ticularly related to poor performance on SDGs 12–15, are made for
most of the other regions of the world; see the summary com-
ments in section 2.4 of Sachs et al. (2020).
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More generally, there remains a significant opportunity to make
use of the global indicator framework developed by the Inter-
Agency and Expert Group on SDG Indicators (IAEG-SDGs) in the
construction of interlinkage networks, for example incorporating
the differences in uncertainty that are likely to exist between Tier
1 and Tier 2 indicators into robustness analyses. The use of SDG
indicator data for the construction of interlinkages is not com-
pletely straightforward due to the need to estimate correlations
in statistically appropriate ways, the need to distinguish between
correlations and causal effects, the effects of data gaps (which
are often very large) and instances in which even the best available
indicator data series may not capture accurately the intention
behind a particular target within Agenda 2030. We hope to return
to this challenge in future work.

A second direction for future work is to use the sensitivity mea-
sures presented in Section 3 to inform the discussion of the likely
effectiveness of the various proposed sets of policy actions that
seek to condense Agenda 2030 into a more manageable frame-
work. One example (among several) is the set of Six Transforma-
tions proposed by the SDSN. Each of the Six Transformations
focuses on a subset of the SDGs and suggests, in essence, that the
subset should be addressed together in policy terms. In terms of
the interlinkage network this feels similar to increasing self-links
from one SDG (or a small subset of SDGs) to themselves, in order
to boost their progress. But this may miss more beneficial opportu-
nities to link progress between SDGs that are currently not well-
enough connected, for example designing healthcare provision in
ways that automatically improve gender equality (i.e. seeking to
increase the link from SDG 3! SDG 5), which may well enable bet-
ter system-wide progress over longer time horizons.

Thirdly, although we have investigated issues of robustness,
most obviously in Section 2.4 with respect to the GSDR interaction
matrix, there remain many other structural issues that merit fur-
ther investigation. For example, are the conclusions reached from
analysis at the level of whole goals also true for networks con-
structed from target-level data? To what extent is a lack of primary
literature (‘evidence’) on a specific interlinkage actually evidence
of the lack of that interlinkage, or could this be remedied by a more
systematic approach to what appear, at first, to be missing data?
How could we test different approaches to the construction of
interlinkage networks for systematic overall biases towards a sub-
set of the SDGs?While comparisons between different studies pro-
vide useful answers for some of these issues, it is clear that much
remains to be done.
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Appendix A
Table 3
Numbers N�

ij of reports of negative interlinkages between Goals ði; jÞ reported in the GSDR 2019, where i is the row index and j the column index, and the ði; jÞ entry represents a
negative influence of Goal j on Goal i. Row and column totals are shown in the final column and last row, respectively. Blanks indicate zero entries. Data shown also in Pham-
Truffert et al., 2020, Fig. 4.

Goal j: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total

Goal i
1 7 30 3 2 4 4 1 11 9 71
2 1 8 1 28 1 1 2 3 6 3 54
3 4 25 1 19 2 1 2 1 1 3 59
4 4 1 1 6
5 1 1 1 2 5
6 19 50 2 61 10 6 4 4 156
7 15 1 9 2 3 4 2 1 3 27 67
8 21 2 2 2 14 41
9 1 1 2
10 1 16 4 3 2 1 27
11 2 1 1 19 1 24
12 3 1 3 4 1 12
13 1 11 7 8 1 2 2 32
14 2 1 9 9 3 22 75 7 128
15 10 39 26 1 4 9 1 2 92
16 3 1 2 6
17 0

Total 38 166 2 1 0 14 226 48 21 9 47 8 86 61 46 6 3 782

Table 2
Numbers Nþ

ij of positive interlinkages between Goals ði; jÞ reported in the GSDR 2019, where i is the row index and j the column index, and the ði; jÞ entry represents a positive
influence of Goal j on Goal i. Row and column totals are shown in the final column and last row, respectively. Blanks indicate zero entries. Data shown also in Pham-Truffert et al.,
2020, Fig. 4.

Goal j: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total

Goal i
1 6 54 4 16 11 43 94 58 23 28 36 14 36 57 61 5 14 560
2 12 36 9 3 28 76 56 8 21 13 10 26 54 62 96 4 37 551
3 8 60 35 22 14 52 96 19 9 14 66 11 30 13 37 5 6 497
4 2 7 2 4 6 34 31 2 3 5 5 1 4 8 2 116
5 10 33 3 15 3 33 23 3 9 2 8 2 3 1 6 11 3 168
6 46 2 1 9 123 14 34 7 32 115 21 6 37 4 15 466
7 27 1 7 45 31 22 44 4 4 48 35 3 17 32 25 345
8 4 25 70 22 6 54 73 8 32 9 9 30 11 39 67 15 17 491
9 6 4 22 25 3 5 1 19 5 4 2 4 22 122
10 6 3 8 5 19 32 11 2 8 10 4 10 7 3 6 9 143
11 2 33 43 16 7 8 12 24 25 22 7 22 221
12 10 2 1 107 40 4 6 2 2 5 6 34 5 10 16 250
13 32 2 8 12 55 6 14 2 15 13 16 49 73 5 21 323
14 2 24 20 10 2 3 21 35 57 56 5 2 8 245
15 40 4 6 3 32 22 10 4 8 6 48 41 12 66 12 33 347
16 6 2 8 4 5 4 3 1 8 1 10 4 2 13 8 8 87
17 2 4 2 1 2 2 3 2 2 7 17 44

Total 48 384 135 131 82 604 768 180 224 127 236 395 356 374 512 145 275 4,976
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Fig. 11. Comparisons between the interlinkage matrices from the GSDR 2019 Report (Independent Group of Scientists appointed by the Secretary-General, 2019) with and
without the diagonal entries in the interlinkage matrix. (a) Eigenvalues of the (averaged) interlinkage matrices. (b) Components v ð1Þ

1 ; . . . ;v ð1Þ
n of the eigenvector vð1Þ

corresponding to the eigenvalue k1 having the largest real part, in the two cases, along with the leading eigenvector of the ICSU matrix for reference. The horizontal axis
indicates the SDGs by number. Each eigenvector is normalised so that the root-mean-square of the entries is equal to one. We observe that the effect of the diagonal entries is
small; for example the leading eigenvalue k1 increases from k1 ¼ 1:1026 to k1 ¼ 1:2052 (to 4 d.p.) when the diagonal entries are included.

Table 4
Numbers Nav

ij :¼ Nþ
ij � N�

ij (i.e. Table 3 subtracted from Table 2) of reports of interlinkages of either sign between Goals ði; jÞ reported in the GSDR 2019, where i is the row index and
j the column index. Blanks indicate zero entries.

Goal j: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Goal i:
1 6 47 4 16 11 43 64 55 21 28 32 10 35 46 52 5 14
2 11 28 9 3 28 75 28 7 21 13 9 24 51 56 93 4 37
3 4 35 34 22 14 52 77 17 8 14 64 11 29 13 36 2 6
4 2 3 2 4 6 34 31 2 3 4 5 1 4 8 1
5 10 33 3 14 3 32 23 3 8 2 8 2 3 1 6 9 3
6 �19 �4 2 1 7 62 4 34 1 28 115 21 6 33 4 15
7 12 7 36 29 19 40 4 2 47 32 3 �10 32 25
8 4 25 70 22 6 54 52 6 30 7 9 30 11 25 67 15 17
9 �1 6 4 22 24 3 5 1 19 5 4 2 4 22
10 5 3 8 5 19 16 7 �1 8 10 4 10 5 2 6 9
11 �2 2 33 43 �1 16 7 8 12 23 6 22 6 22
12 7 2 1 106 37 6 2 2 5 6 34 4 10 16
13 �1 21 2 8 12 48 �2 13 2 13 13 16 47 73 5 21
14 �2 �1 2 24 11 1 �1 3 �1 35 �18 49 5 2 8
15 �10 1 4 6 3 32 �4 9 8 �3 47 39 12 66 12 33
16 6 2 8 4 5 1 3 1 8 10 4 2 13 8 6
17 2 4 2 1 2 2 3 2 2 7 17
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Fig. 12. Histograms showing the probability distribution of the components of the leading eigenvector, for SDGs 1–9, for the ensemble of GSDR 2019 networks, illustrating
the variability in the eigenvector components caused by the randomness in the choice of positive or negative entries in the matrix. These results correspond directly to the
violin plot in Fig. 4.
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Fig. 13. Histograms showing the probability distribution of the components of the leading eigenvector, for SDGs 10–17, for the ensemble of GSDR 2019 networks, illustrating
the variability in the eigenvector components caused by the randomness in the choice of positive or negative entries in the matrix. These results correspond directly to the
violin plot in Fig. 4.
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Appendix B

In this Appendix we briefly set out results (omitting details and
justifications), following Greenbaum et al. (2020), for the effects of
perturbations on the eigenvalues and eigenvectors of a (square)
matrix A. Let the matrix A have eigenvalues k1; . . . ; kn, which we
assume are distinct, with corresponding right and left eigenvectors

v̂ð1Þ; . . . ; v̂ðnÞ and y
^ ð1Þ; . . . ; y

^ ðnÞ normalised so that ŷðiÞ�v̂ðiÞ ¼ 1 for all
i ¼ 1; . . . ;n where � denotes the complex conjugate transpose.
Without loss of generality we may also assume kv̂ðiÞk ¼ 1 for all i.

In the case that both sets of eigenvectors are normalised sepa-
rately, we denote the right and left eigenvectors by vð1Þ; . . . ;vðnÞ

and yð1Þ; . . . ; yðnÞ where yðiÞ�vðiÞ – 1 in general, but kvðiÞk ¼ kyðiÞk ¼
1 for all i ¼ 1; . . . ;n.

In order to compute the effect of a perturbation to adjacency
matrix A we consider it to be a function of a parameter, writing
AðeÞ where A 
 Að0Þ. We suppose that AðeÞ has an eigenvalue
k1ðeÞ and a right eigenvector vð1ÞðeÞ that are continuously differen-
tiable functions of e, so that

AðeÞvð1ÞðeÞ ¼ k1ðeÞvð1ÞðeÞ: ð7Þ
Differentiating with respect to e and setting e ¼ 0 we obtain

A0ð0Þvð1Þð0Þ þ Að0Þvð1Þ0ð0Þ ¼ k01ð0Þvð1Þð0Þ þ k1ð0Þvð1Þ0ð0Þ; ð8Þ

where ’ denotes a derivative with respect to e. Now multiply on the
left by the left eigenvector yð1ÞTð0Þ and observe that the second term
on the left hand side will cancel with the second term on the right
hand side since they are both k1ð0Þyð1ÞTð0Þvð1Þ0ð0Þ. Hence we are left
with

k01ð0Þ ¼
yð1ÞTð0ÞA0ð0Þvð1Þð0Þ

yð1ÞTð0Þvð1Þð0Þ : ð9Þ

In the special case that the perturbation is to a single network
edge j ! i, the derivative matrix A0ð0Þ is just A0ð0Þ ¼ eieT

j (an outer

product) where ei is the column vector whose ith component is 1
and all other components are zero. For this case, omitting the
parameter dependence in the notation, the expression (9) simpli-
fies to become

k01 ¼ yð1Þi v ð1Þ
j

yð1ÞTvð1Þ

which describes the rate of change of the eigenvalue k1 with respect
to the value of the network edge from j ! i. This result is well-
known in the ecological literature, see for example Eq. (23) in
Neubert and Caswell (1997) who derive it in the context of ecosys-
tem resilience, i.e. considering the matrix A as describing perturba-
tions from a stable equilibrium for which all eigenvalues k1; . . . ; kn
have negative real parts, but it holds more generally as is evidenced
by their citation of Jacobi (1846) as a historical reference to the
result.

The matrix Sm introduced in (3) is precisely the n� n matrix of
rates of change with respect to perturbations in each element of A
in turn, scaled by a factor of k1:

Smij :¼ 1
k1

@k1
@Aij

¼ 1
k1

yð1Þi v ð1Þ
j

yð1ÞTvð1Þ 

1
k1

ŷð1Þ
i v̂ ð1Þ

j

ŷ ð1ÞT v̂ ð1Þ : ð10Þ

The factor of 1=k1 is included so that Sm computes relative
changes in the magnitude of the leading eigenvalue: this allows
better comparison of the values of Sm computed from different
matrices with different absolute values of k1. And the above calcu-
lation holds for both sets of eigenvectors: those with the ‘hats’ and
20
those without; as Smij is a ratio of these terms, any rescaling of the
eigenvectors in the numerator and denominator would just cancel
out.

We turn now to consideration of perturbations to the eigenvec-
tors. Let V1 ¼ v̂ð2Þ � � � v̂ðnÞ� �

and Y1 ¼ ŷð2Þ � � � ŷðnÞ� �
be the n� ðn� 1Þ

matrices whose columns are the eigenvectors corresponding to
k2; . . . ; kn, normalised so that ŷðiÞ�v̂ðiÞ ¼ 1 in line with previous
notation.

Further, let D1 ¼ diagðk2; . . . ; knÞ be the ðn� 1Þ � ðn� 1Þ matrix
whose diagonal elements are the remaining eigenvalues, and with
all off-diagonal elements zero, and let In�1 denote the
ðn� 1Þ � ðn� 1Þ identity matrix, i.e. the matrix having ones on
the main diagonal and zeros elsewhere. Greenbaum, Li & Overton

note that the expression V1ðD1 � k1In�1Þ�1Y�
1 is well-known and

referred to by various names such as the group inverse of A� k1I,
or the reduced resolvent matrix of A with respect to the eigenvalue
k1 in different parts of the mathematical literature.

As before, let ei denote the vector that has ith component equal
to 1 and all other elements zero. Then, in the network cases consid-
ered here where the derivative of A with respect to this perturba-
tion is just the matrix eieT

j , we can use Eq. (7) in Greenbaum et al.
(2020) to obtain a pleasingly compact expression for the eigenvec-
tor derivative as a linear combination of the other eigenvectors,
with coefficients that can be written in terms of the eigenvalues
and eigenvector components:

v̂ð1Þ0 
 @v̂ð1Þ

@Aij
¼ �V1ðD1 � k1In�1Þ�1Y�

1eieT
j v̂

ð1Þ

¼
Xn

k¼2

v̂ðkÞ
�̂yðkÞi v̂

ð1Þ
j

k1 � kk
; ð11Þ

where the first equality essentially follows from rearranging (8) and
using the fact that

Að0Þ � k1In ¼ X
0 0
0 D1 � k1In�1

� �
Y�

where X 
 ½v̂ð1Þ V1� and Y 
 ½ŷð1Þ Y1�; this can be verified directly.
Details, including discussion of the underlying assumptions, are
contained in Greenbaum et al. (2020). The second equality in (11)
is just an algebraic simplification using the special form of ei and eT

j .
Since here we employ the standard normalisation for which

both right and left eigenvectors are of unit length: kvðiÞk ¼ 1 and
kyðiÞk ¼ 1 for i ¼ 1; . . . ;n (this only leaves an ambiguity of the
choice of sign in the case that eigenvalues are real), we now need
to convert (11) into an expression for @vð1Þ=@Aij, i.e. for the eigen-
vector vð1Þ without the ‘hat’.

This is also discussed in detail in Greenbaum et al., 2020, see
Section 3.4, and we quote only the result here:

@vð1Þ

@Aij
¼ 1

ðv̂ð1ÞT v̂ð1ÞÞ1=2
@v̂ð1Þ

@Aij
� ð@v̂ð1Þ=@AijÞT v̂ð1Þ

ðv̂ð1ÞT v̂ð1ÞÞ3=2
v̂ð1Þ ð12Þ

which, when combined with (11), shows that the eigenvector
derivative is just a linear combination of the original eigenvectors.
It is a rather complicated-looking linear combination in order to
guarantee that the perturbed eigenvector is still normalised to have
unit length, and therefore it can be directly compared with the orig-
inal eigenvector. Now, finally, combining (12) with (4) enables the
computation of Seq starting from the eigenvalues ki and eigenvec-
tors v̂ðiÞ and ŷðiÞ of A.
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