
Isaac Newton Institute, Cambridge

Training Course: Pattern Formation, 1 – 5 August 2005

Problem sheet 2: Symmetric bifurcations

1. Show that absolute irreducibility implies irreducibility.

2. The group orbit Gx of a point x ∈ Rn is defined to be Gx = {gx : g ∈ G}. Show that Σgx = gΣxg−1, i.e.
that points on the same group orbit have conjuagte isotropy subgroups. (see lecture notes, page 10).

3. Show that the natural 2D action of D3, generated by

ρ(z) = e2πi/3z, and mx(z) = z̄

where z = x + iy is a coordinate on R2, is absolutely irreducible. Either work explicitly in coordinates or
argue geometrically.

4. Using the normal form from the lecture notes, check by hand, from the Jacobian matrix, that the nontrivial
branch in a steady-state bifurcation with D3 symmetry is unstable on both sides of the bifurcation point.

5. Rotating hexagonal lattice. Consider the bifurcation problem on a hexagonal lattice in a rotating system. The
symmetry group is now Z6 × T 2 generated by ρ and τp as in the notes. Show that the amplitude equations
are now

ż1 = µz1 + εz̄2z̄3 − az1|z1|2 − bz1|z2|2 − cz1|z3|2

plus symmetric versions for z2 and z3. Now consider the case where all the amplitudes are real, so that the
equivariant ODEs (truncated at cubic order) take the form

ẋ1 = x1[µ − ax2

1 − bx2

2 − cx2

3] + x2x3

ẋ2 = x2[µ − ax2

2
− bx2

3
− cx2

1
] + x1x3

ẋ3 = x3[µ − ax2

3 − bx2

1 − cx2

2] + x1x2

Describe the bifurcation, at µ = 0, of the branch of solutions with x1 = x2 = x3. Show that there is a
secondary Hopf bifurcation from this branch when x = µ(b+c−2a)/(4a+b+c), assuming that the frequency
2
√

3µ(c − b)/(4a + b + c) is non-zero (and that the usual non-degeneracy conditions on the nonlinear terms
hold).
[Hint: use the structure of the Jacobian matrix to find its eigenvalues.]

6. [I. Melbourne, Dyn. Stab. Syst. 1, 293–321 (1986)]. Consider the group Γ = O × Zc
2 of rotations and

reflections of a cube in R3, centred at the origin and aligned with the coordinate axes. A representation of Γ
on R3 is defined by the following matrices representing elements that generate the group:

κx =





−1 0 0
0 1 0
0 0 1



 , rx =





1 0 0
0 0 −1
0 1 0



 , ry =





0 0 1
0 1 0
−1 0 0



 .

(a) Show that this representation of Γ is absolutely irreducible.

(b) By determining their isotropy subgroups show that three (group orbits of) distinct equilibria are guaran-
teed to bifurcate from the origin in a generic Γ-symmetric steady-state bifurcation problem.

(c) Determine the normal form amplitude equations for the bifurcation, up to cubic order.

Hint: to simplify notation define κy, κz and rz by analogy with the matrices above.
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7. (Madruga, Riecke and Pesch, preprint, 2005). Consider the following modification to the ODEs for steady-
state bifurcation on a hexagonal lattice:

ẋ1 = µx1 − x2x3(a + bµ) − x1[x
2

1 + c(x2

2 + x2

3)]

ẋ2 = µx2 − x1x3(a + bµ) − x2[x
2

2
+ c(x2

3
+ x2

1
)]

ẋ3 = µx3 − x1x2(a + bµ) − x3[x
2

3 + c(x2

1 + x2

2)]

(again restricting attention to the subspace where all amplitudes are real). The modification is that the coef-
ficient of the quadratic terms now depends on the bifurcation parameter µ. This models thermal convection
in a fluid that departs rapidly from the Boussinesq approximation as the Rayleigh number increases. For
convenience the coefficient of x3

1
has been scaled to be −1. Assume a, b > 0.

Change variables to A1 = x1/(a + bµ), T = (a + bµ)2t and hence interpret the resulting bifurcation diagram
in terms of figure 9 (lecture notes, p29) in the case a/b > µ3, where µ3 is as defined in figure 9. Discuss the
stability of the hexagon branch at large µ ≫ 1.

8. Hopf bifurcation with Z2 symmetry [GS (2002), p93]. Let Z2 = {I, κ} act on R nontrivially, i.e. κ(x) = −x.
Show that a generic Hopf bifurcation with this symmetry is symmetric under Z2 × S1 acting on R

2 by

κ

(

x
y

)

=

(

−x
−y

)

τθ

(

x
y

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

.

Apply the Equivariant Hopf Theorem to conclude there exists a unique branch of periodic orbits. Give the
spatiotemporal symmetry group of these orbits.

9. Hopf bifurcation with D3 symmetry [GS (2002), p94]. Consider three identical, and symmetrically bidirec-
tionally coupled, cells governed by equations

ẋ0 = f(x0, x1, x2)

ẋ1 = f(x1, x2, x0)

ẋ2 = f(x2, x0, x1)

where xj ∈ Rk describes the state of each cell, and f(x0, x1, x2) = f(x0, x2, x1). Suppose that x0 = x1 =
x2 = 0 is a D3-symmetric equilibrium point. Let the complete system of ODEs in R3k be ẋ = F (x). Show
that the Jacobian matrix DF takes the form

DF =





A B B
B A B
B B A



 ,

where A = ∂f/∂x0 and B = ∂f/∂x1 are k × k matrices. Hence show that the eigenvalues of DF are

• those of A + 2B with the same multiplicity as they have in A + 2B, and

• those of A − B with twice the multiplicity.

Discuss the two generic Hopf bifurcations that could take place (call these the trivial and non-trivial cases).
In the non-trivial case the relevance action of D3 × S1 on the centre manifold is generated by

ρφ(z1, z2) = (e−iφz1, e
iφz2)

κ(z1, z2) = (z2, z1)

τθ(z1, z2) = (eiθz1, e
iθz2).

This action is D3-simple (check if you wish). Find three non-conjugate C-axial isotropy subgroups and their
fixed point subspaces. Interpret your results in terms of the dynamics of the original three coupled cells.
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