- 1. Show that absolute irreducibility implies irreducibility.
- 2. The group orbit $\mathcal{G}x$ of a point $x \in \mathbb{R}^n$ is defined to be $\mathcal{G}x = \{gx : g \in \mathcal{G}\}$. Show that $\Sigma_{gx} = g\Sigma_x g^{-1}$, i.e. that points on the same group orbit have conjugate isotropy subgroups. (see lecture notes, page 10).
- 3. Show that the natural 2D action of D_3 , generated by

 $\rho(z) = e^{2\pi i/3} z, \quad \text{and} \quad m_x(z) = \bar{z}$

where z = x + iy is a coordinate on \mathbb{R}^2 , is absolutely irreducible. Either work explicitly in coordinates or argue geometrically.

- 4. Using the normal form from the lecture notes, check by hand, from the Jacobian matrix, that the nontrivial branch in a steady-state bifurcation with D_3 symmetry is unstable on both sides of the bifurcation point.
- 5. Rotating hexagonal lattice. Consider the bifurcation problem on a hexagonal lattice in a rotating system. The symmetry group is now $\mathbb{Z}_6 \ltimes T^2$ generated by ρ and τ_p as in the notes. Show that the amplitude equations are now

$$\dot{z}_1 = \mu z_1 + \varepsilon \bar{z}_2 \bar{z}_3 - a z_1 |z_1|^2 - b z_1 |z_2|^2 - c z_1 |z_3|^2$$

plus symmetric versions for z_2 and z_3 . Now consider the case where all the amplitudes are real, so that the equivariant ODEs (truncated at cubic order) take the form

$$\dot{x}_1 = x_1[\mu - ax_1^2 - bx_2^2 - cx_3^2] + x_2x_3 \dot{x}_2 = x_2[\mu - ax_2^2 - bx_3^2 - cx_1^2] + x_1x_3 \dot{x}_3 = x_3[\mu - ax_3^2 - bx_1^2 - cx_2^2] + x_1x_2$$

Describe the bifurcation, at $\mu = 0$, of the branch of solutions with $x_1 = x_2 = x_3$. Show that there is a secondary Hopf bifurcation from this branch when $x = \mu(b+c-2a)/(4a+b+c)$, assuming that the frequency $2\sqrt{3}\mu(c-b)/(4a+b+c)$ is non-zero (and that the usual non-degeneracy conditions on the nonlinear terms hold).

[Hint: use the structure of the Jacobian matrix to find its eigenvalues.]

6. [I. Melbourne, Dyn. Stab. Syst. 1, 293–321 (1986)]. Consider the group $\Gamma = \mathbb{O} \times \mathbb{Z}_2^c$ of rotations and reflections of a cube in \mathbb{R}^3 , centred at the origin and aligned with the coordinate axes. A representation of Γ on \mathbb{R}^3 is defined by the following matrices representing elements that generate the group:

$$\kappa_x = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad r_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad r_y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

(a) Show that this representation of Γ is absolutely irreducible.

(b) By determining their isotropy subgroups show that three (group orbits of) distinct equilibria are guaranteed to bifurcate from the origin in a generic Γ -symmetric steady-state bifurcation problem.

(c) Determine the normal form amplitude equations for the bifurcation, up to cubic order.

Hint: to simplify notation define κ_y , κ_z and r_z by analogy with the matrices above.

7. (Madruga, Riecke and Pesch, preprint, 2005). Consider the following modification to the ODEs for steadystate bifurcation on a hexagonal lattice:

$$\dot{x}_1 = \mu x_1 - x_2 x_3 (a + b\mu) - x_1 [x_1^2 + c(x_2^2 + x_3^2)] \dot{x}_2 = \mu x_2 - x_1 x_3 (a + b\mu) - x_2 [x_2^2 + c(x_3^2 + x_1^2)] \dot{x}_3 = \mu x_3 - x_1 x_2 (a + b\mu) - x_3 [x_3^2 + c(x_1^2 + x_2^2)]$$

(again restricting attention to the subspace where all amplitudes are real). The modification is that the coefficient of the quadratic terms now depends on the bifurcation parameter μ . This models thermal convection in a fluid that departs rapidly from the Boussinesq approximation as the Rayleigh number increases. For convenience the coefficient of x_1^3 has been scaled to be -1. Assume a, b > 0.

Change variables to $A_1 = x_1/(a + b\mu)$, $T = (a + b\mu)^2 t$ and hence interpret the resulting bifurcation diagram in terms of figure 9 (lecture notes, p29) in the case $a/b > \mu_3$, where μ_3 is as defined in figure 9. Discuss the stability of the hexagon branch at large $\mu \gg 1$.

8. Hopf bifurcation with \mathbb{Z}_2 symmetry [GS (2002), p93]. Let $\mathbb{Z}_2 = \{I, \kappa\}$ act on \mathbb{R} nontrivially, i.e. $\kappa(x) = -x$. Show that a generic Hopf bifurcation with this symmetry is symmetric under $\mathbb{Z}_2 \times S^1$ acting on \mathbb{R}^2 by

$$\kappa \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$

$$\tau_{\theta} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Apply the Equivariant Hopf Theorem to conclude there exists a unique branch of periodic orbits. Give the spatiotemporal symmetry group of these orbits.

9. Hopf bifurcation with D_3 symmetry [GS (2002), p94]. Consider three identical, and symmetrically bidirectionally coupled, cells governed by equations

$$\dot{x}_0 = f(x_0, x_1, x_2) \dot{x}_1 = f(x_1, x_2, x_0) \dot{x}_2 = f(x_2, x_0, x_1)$$

where $x_j \in \mathbb{R}^k$ describes the state of each cell, and $f(x_0, x_1, x_2) = f(x_0, x_2, x_1)$. Suppose that $x_0 = x_1 = x_2 = 0$ is a D_3 -symmetric equilibrium point. Let the complete system of ODEs in \mathbb{R}^{3k} be $\dot{x} = F(x)$. Show that the Jacobian matrix DF takes the form

$$DF = \begin{pmatrix} A & B & B \\ B & A & B \\ B & B & A \end{pmatrix},$$

where $A = \partial f / \partial x_0$ and $B = \partial f / \partial x_1$ are $k \times k$ matrices. Hence show that the eigenvalues of DF are

- those of A + 2B with the same multiplicity as they have in A + 2B, and
- those of A B with twice the multiplicity.

Discuss the two generic Hopf bifurcations that could take place (call these the trivial and non-trivial cases). In the non-trivial case the relevance action of $D_3 \times S^1$ on the centre manifold is generated by

$$\begin{aligned}
\rho_{\phi}(z_1, z_2) &= (e^{-i\phi} z_1, e^{i\phi} z_2) \\
\kappa(z_1, z_2) &= (z_2, z_1) \\
\tau_{\theta}(z_1, z_2) &= (e^{i\theta} z_1, e^{i\theta} z_2).
\end{aligned}$$

This action is D_3 -simple (check if you wish). Find three non-conjugate \mathbb{C} -axial isotropy subgroups and their fixed point subspaces. Interpret your results in terms of the dynamics of the original three coupled cells.